JPH08236609A - Isolation method for semiconductor device - Google Patents

Isolation method for semiconductor device

Info

Publication number
JPH08236609A
JPH08236609A JP4030895A JP4030895A JPH08236609A JP H08236609 A JPH08236609 A JP H08236609A JP 4030895 A JP4030895 A JP 4030895A JP 4030895 A JP4030895 A JP 4030895A JP H08236609 A JPH08236609 A JP H08236609A
Authority
JP
Japan
Prior art keywords
substrate
recess
groove
oxide film
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4030895A
Other languages
Japanese (ja)
Other versions
JP4384269B2 (en
Inventor
Nobuyoshi Takeuchi
信善 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP04030895A priority Critical patent/JP4384269B2/en
Publication of JPH08236609A publication Critical patent/JPH08236609A/en
Application granted granted Critical
Publication of JP4384269B2 publication Critical patent/JP4384269B2/en
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To lessen damage on a substrate by removing oxide from the substrate and making a recess in the removed part, depositing an insulation film over the entire surface and then removing the insulation film by etching except the side wall of the recess, making a trench in the recess and filling with an insulating material. CONSTITUTION: An oxide 2 is deposited on a substrate 1 followed by deposition of nitride thereon. The nitride is then patterned using a resist 3 as a mask to form a nitride pattern 4. After removing the resist 3, an oxide 5 is deposited and eventually removed by etching before a recess 6 is made in the removed part. Subsequently, an insulation film 7 is deposited entirely over the recess 6 and eventually removed by etching except the insulation film 7' on the side wall of the recess 6. Finally, a trench 8 is made in the recess 6 and an oxide 9 is deposited on the surface of the trench 8 before TEOS 10a-10c is buried therein in order to form an isolation region 11. with such method, damage on the substrate 1 can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置の素子分
離方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an element isolation method for semiconductor devices.

【0002】[0002]

【従来の技術】従来、素子分離技術として、長い間LO
COS(Local Oxidation of Silicon)法が用いら
れてきた。しかし、LOCOS法では、バーズビークと
呼ばれる酸化膜の横広がり現象が生じる為、分離領域が
大きくなってしまうという問題があった。
2. Description of the Related Art Conventionally, as element isolation technology, LO
The COS (Local Oxidation of Silicon) method has been used. However, the LOCOS method has a problem that the isolation region becomes large because a lateral spreading phenomenon of an oxide film called bird's beak occurs.

【0003】この問題を解決するためにトレンチ分離技
術が開発された。これは、シリコン等からなる基板に該
基板面と垂直な穴を掘るもので、バーズビークがないた
め分離領域を設計どおりに形成できるという利点を有す
る。つまり、微細化に適した素子分離方法である。しか
し、0.6μmルールのデバイスが市販されている現在
でも素子分離の主役はLOCOS法である。
Trench isolation techniques have been developed to solve this problem. This is to dig a hole perpendicular to the substrate surface in a substrate made of silicon or the like, and has an advantage that the isolation region can be formed as designed because there is no bird's beak. That is, it is an element isolation method suitable for miniaturization. However, the LOCOS method still plays a major role in element isolation even when a device having a rule of 0.6 μm is commercially available.

【0004】トレンチ法には、掘った穴を絶縁膜等で埋
め込むこと及び埋め込み部以外の絶縁膜等をエッチバッ
ク等で除去し、平坦化する必要がある。この絶縁膜等の
埋め込みでは、トレンチ穴エッジ(開孔上部)にオーバ
ハングによるボイドの発生等が問題であり、例えばUS
P4626317では、これを回避する為、膜堆積→エ
ッチバック→膜堆積という繰り返しでオーバーハング部
を削りながらトレンチを埋め込んでいくという方法が提
案されている。
In the trench method, it is necessary to fill the dug hole with an insulating film or the like and to remove the insulating film or the like other than the buried portion by etching back or the like to flatten the surface. The embedding of the insulating film or the like has a problem that voids are generated due to overhang at the trench hole edge (upper part of the hole).
In order to avoid this, P4626317 proposes a method of burying the trench while removing the overhang portion by repeating film deposition → etchback → film deposition.

【0005】また、一方では、制御の難しいエッチバッ
クプロセスを避けるため、例えばUSP5130268
(図8参照)のように選択エピタキシャルシリコン法を
用い、トレンチ内のみにシリコンをトレンチ深さの〜4
0%だけ堆積し、続く熱酸化によるシリコンの体積膨張
を利用してトレンチ埋込みと平坦化を同時に達成しよう
とする提案がある。図8において、図中の符号81は表面
にPウェル82,Nウェル83を形成したp- 型の基板であ
る。前記Pウェル82はNウェル83の表面に開孔部が形成
されており、この開孔部にはアモルファスSi84を介し
てSiO2 からなる絶縁物85が埋め込まれている。前記
絶縁物85で囲まれたPウェル82はNウェル83の表面に
は、SiO2 膜86,多結晶Si層87及びSiN膜88が順
次積層された積層膜が設けられている。なお、前記アモ
ルファスSi84の上部はこの積層膜の上部まで達してい
る。また、図中の符号89は酸化物フィラメントである。
On the other hand, in order to avoid an etchback process which is difficult to control, for example, USP 5130268 is used.
As shown in FIG. 8, the selective epitaxial silicon method is used to add silicon only within the trench to a depth of about 4 mm.
There is a proposal to achieve trench filling and planarization at the same time by depositing 0% and utilizing the volume expansion of silicon due to the subsequent thermal oxidation. In FIG. 8, reference numeral 81 in the drawing is a p type substrate having a P well 82 and an N well 83 formed on the surface. The P well 82 has an opening formed in the surface of the N well 83, and an insulator 85 made of SiO 2 is embedded in the opening through amorphous Si 84. The P well 82 surrounded by the insulator 85 is provided on the surface of the N well 83 with a laminated film in which a SiO 2 film 86, a polycrystalline Si layer 87 and a SiN film 88 are sequentially laminated. The upper part of the amorphous Si 84 reaches the upper part of this laminated film. Further, reference numeral 89 in the drawing is an oxide filament.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、下記に述べる問題点を有する。
However, the above-mentioned prior art has the following problems.

【0007】(1)前者の場合、堆積→エッチング→堆
積を繰り返すため、プロセスが複雑になるとともに、基
板に与える損傷も大きくなってしまう。
(1) In the former case, since the process of deposition → etching → deposition is repeated, the process becomes complicated and the damage given to the substrate also becomes large.

【0008】(2)後者の場合、埋め込まれたシリコン
の酸化の際、体積膨張はトレンチ上方だけでなく横方向
にも進もうとするため、トレンチ部全体が大きな応力を
受け、欠陥が発生しやすくなる。また、これ以外にも、
トレンチ開孔部での欠陥発生がトレンチ法で解決される
べき大きな問題である。
(2) In the latter case, when the buried silicon is oxidized, the volume expansion tends to proceed not only above the trench but also laterally, so that the entire trench is subjected to a large stress and a defect occurs. It will be easier. Also, besides this,
The generation of defects at the trench opening is a major problem to be solved by the trench method.

【0009】この発明はこうした事情を考慮してなされ
たもので、プロセスを簡略化できるとともに、基板に与
える損傷を軽減でき、更にトレンチ部全体に受ける応力
を小さくして欠陥を発生を素子分離方法を提供すること
を目的とする。
The present invention has been made in consideration of such circumstances, and can simplify the process, reduce damage to the substrate, and reduce the stress applied to the entire trench portion to generate a defect. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明者は、バーズビー
クが大きくなりすぎない程度のLOCOSを形成し、L
OCOS部の酸化膜を除去し、絶縁膜等を堆積した後、
スペーサエッチでLOCOSリセス(凹部)内にスペー
サを形成し、スペーサをマスクにLOCOS凹部内にト
レンチを形成し、このトレンチを絶縁膜等で埋め込んで
形成するようにした。
DISCLOSURE OF THE INVENTION The inventor of the present invention formed LOCOS to such an extent that the bird's beak does not become too large.
After removing the oxide film of the OCOS portion and depositing an insulating film and the like,
A spacer was formed in the LOCOS recess (recess) by spacer etching, a trench was formed in the LOCOS recess using the spacer as a mask, and the trench was filled with an insulating film or the like.

【0011】即ち、本願第1の発明は、基板上に耐酸化
膜パターンを形成する工程と、この耐酸化膜パターンを
マスクとして前記基板を酸化させ、酸化膜を形成する工
程と、この酸化膜を除去し、前記基板に該酸化膜の除去
部分に対応する凹部を形成する工程と、この凹部を含む
全面に絶縁膜を堆積する工程と、この絶縁膜をエッチン
グし、前記凹部の側壁にのみ前記絶縁膜を残存させる工
程と、前記凹部が位置する基板に溝を形成する工程と、
この溝を絶縁物質で埋め込む工程とを具備することを特
徴とする半導体装置の素子分離方法である。
That is, the first invention of the present application is a step of forming an oxidation resistant film pattern on a substrate, a step of oxidizing the substrate using the oxidation resistant film pattern as a mask to form an oxide film, and the oxide film. To form a concave portion corresponding to the removed portion of the oxide film on the substrate, depositing an insulating film on the entire surface including the concave portion, and etching the insulating film so that only the sidewall of the concave portion is formed. A step of leaving the insulating film, a step of forming a groove in the substrate in which the concave portion is located,
And a step of filling the groove with an insulating material.

【0012】また、本願第2の発明は、基板上に耐酸化
膜パターンを形成する工程と、この耐酸化膜パターンを
マスクとして前記基板を酸化させ、酸化膜を形成する工
程と、この酸化膜を除去し、前記基板に該酸化膜の除去
部分に対応する凹部を形成する工程と、この凹部を含む
全面に絶縁膜を堆積する工程と、この絶縁膜をエッチン
グし、前記凹部の側壁にのみ前記絶縁膜を残存させる工
程と、前記凹部が位置する基板に溝を形成する工程と、
この溝の底部及び側壁に熱酸化膜を形成し、更に前記溝
に半導体物質又は導電物質を埋め込む工程とを具備する
ことを特徴とする半導体装置の素子分離方法である。
A second invention of the present application is a step of forming an oxidation resistant film pattern on a substrate, a step of oxidizing the substrate using the oxidation resistant film pattern as a mask to form an oxide film, and the oxide film. To form a concave portion corresponding to the removed portion of the oxide film on the substrate, depositing an insulating film on the entire surface including the concave portion, and etching the insulating film so that only the sidewall of the concave portion is formed. A step of leaving the insulating film, a step of forming a groove in the substrate in which the concave portion is located,
And a step of forming a thermal oxide film on the bottom and side walls of the groove and further burying a semiconductor material or a conductive material in the groove.

【0013】この発明において、前記耐酸化膜パターン
を形成した後、前記基板表面に該基板と同導電型の不純
物をイオン注入することが好ましい。ここで、基板の表
面にウェルを形成した場合は、ウェルと同導電型の不純
物をイオン注入する。
In the present invention, it is preferable that after forming the oxidation resistant film pattern, an impurity of the same conductivity type as that of the substrate is ion-implanted into the surface of the substrate. Here, when a well is formed on the surface of the substrate, impurities of the same conductivity type as the well are ion-implanted.

【0014】この発明において、絶縁物質は、前記基板
に溝を形成し、更に溝の底部及び側壁に熱酸化膜を形成
した後、前記溝にTEOS膜等の絶縁物質を埋め込むこ
とにより形成される。
In the present invention, the insulating material is formed by forming a groove in the substrate, further forming a thermal oxide film on the bottom and side walls of the groove, and then filling the groove with an insulating material such as a TEOS film. .

【0015】この発明において、前記基板に溝を形成し
た後、溝の側壁に熱酸化膜を形成し、更にエピタキシャ
ル法で溝に溝底部で基板と接触するようにシリコンを埋
め込むことができる。
In the present invention, after forming the groove in the substrate, a thermal oxide film may be formed on the side wall of the groove, and further silicon may be embedded in the groove by an epitaxial method so as to contact the substrate at the groove bottom.

【0016】[0016]

【作用】この発明によれば、トレンチ上部になだらかな
開孔部があるため、ステップカバレッジの改善,埋込み
多結晶シリコン等の酸化の際の応力緩和が行われる。L
OCOS時に拡散したボロンがトレンチ周囲に均一なド
ーピングを与える。
According to the present invention, since there is a gentle opening in the upper portion of the trench, the step coverage is improved and the stress is relaxed when the buried polycrystalline silicon or the like is oxidized. L
Boron diffused during OCOS provides uniform doping around the trench.

【0017】[0017]

【実施例】以下、この発明の一実施例について図1〜図
6を参照して工程順に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in the order of steps with reference to FIGS.

【0018】(1) まず、p- 型のSi基板1に920
℃,O2 雰囲気で厚さ20nmの酸化膜(SiO2 膜)2
を形成した。つづいて、この酸化膜2上に、LPCVD
法を用い790℃,SiH2 Cl2 /NH3 の雰囲気で
厚さ150nmの窒化膜(Si34 膜)を形成した。次
に、フォトリソグラフィ技術を用いてレジスト3を形成
した後、このレジスト3をマスクとして前記窒化膜をパ
ターニングし、窒化膜パターン4を形成した。更に、フ
ィールドイオン注入として知られる寄生NMOS分離用
のB(ボロン)イオン注入を、加速電圧30KeV,ド
ーズ量4×1013/cm2 と加速電圧180KeV,ドー
ズ量8×1011/cm2 の条件で2段階で行なった(図1
参照)。
(1) First, 920 is formed on the p type Si substrate 1.
Oxide film (SiO 2 film) with a thickness of 20 nm in O 2 atmosphere
Was formed. Then, LPCVD is performed on the oxide film 2.
Method was used to form a nitride film (Si 3 N 4 film) having a thickness of 150 nm in the atmosphere of SiH 2 Cl 2 / NH 3 at 790 ° C. Next, a resist 3 was formed by using a photolithography technique, and then the nitride film was patterned using the resist 3 as a mask to form a nitride film pattern 4. Further, B (boron) ion implantation for parasitic NMOS isolation known as field ion implantation is performed under the conditions of an acceleration voltage of 30 KeV, a dose amount of 4 × 10 13 / cm 2 and an acceleration voltage of 180 KeV, and a dose amount of 8 × 10 11 / cm 2 . In two steps (Fig. 1
reference).

【0019】(2) 次に、前記レジスト3を剥離した後、
980℃,O2 /H2 雰囲気でLOCOS酸化を行な
い、酸化膜(SiO2 膜)5を形成した(図2参照)。
ここで、バーズビークを抑制するため、酸化膜5の膜厚
は600nm以下とするが、望ましくは200nm〜400
nmが良い。但し、続くトレンチ形成で深いトレンチを用
いる場合には、酸化膜の膜厚はさらに薄くできる。つづ
いて、前記酸化膜5をHFを含むエッチング液を用いて
エッチング除去した。その結果、酸化膜5が除去された
基板部分に凹部6が形成された(図3参照)。
(2) Next, after peeling off the resist 3,
LOCOS oxidation was performed at 980 ° C. in an O 2 / H 2 atmosphere to form an oxide film (SiO 2 film) 5 (see FIG. 2).
Here, in order to suppress the bird's beak, the thickness of the oxide film 5 is set to 600 nm or less, preferably 200 nm to 400 nm.
nm is good. However, when a deep trench is used in the subsequent trench formation, the film thickness of the oxide film can be further reduced. Subsequently, the oxide film 5 was removed by etching using an etching solution containing HF. As a result, the recess 6 was formed in the substrate portion where the oxide film 5 was removed (see FIG. 3).

【0020】(3) 次に、全面にLPCVD法により膜厚
300nmの酸化膜(LTD:low temperature oxide )
7を380℃,SiH4 /O2 の条件で堆積した(図4
参照)。ここで、前記酸化膜7は、LPCVDの代わり
に、TEOS,HTO(highteperature oxide),スパ
ッタ,プラズマCVD等を用いて行なって形成してもよ
い。つづいて、前記酸化膜7をRIE(Reactive ion
etching )を用いて、Ar/CHF3 混合ガスで異方性
エッチングを行ない、凹部6の側壁に酸化膜(スペー
サ)7′を残存させた(図5参照)。
(3) Next, a 300 nm-thick oxide film (LTD: low temperature oxide) is formed on the entire surface by LPCVD.
7 was deposited under the conditions of 380 ° C. and SiH 4 / O 2 (FIG. 4).
reference). Here, the oxide film 7 may be formed by using TEOS, HTO (high temperature oxide), sputtering, plasma CVD or the like instead of LPCVD. Then, the oxide film 7 is removed by RIE (Reactive ion).
Etching) was used to perform anisotropic etching with a mixed gas of Ar / CHF 3 to leave an oxide film (spacer) 7'on the sidewall of the recess 6 (see FIG. 5).

【0021】(4) 次に、RIEを用いてCl2 /CHF
3 4 混合ガスで前記Si基板1を異方性エッチングし、
トレンチ(溝)8を形成した。ここで、トレンチ8の深
さは素子分離用としては1.0μm以下とし、望ましく
は200nm〜400nmが良い。つづいて、トレンチ8の
底部の分離能を高めるため、ボロンを加速電圧30Ke
V,ドーズ量3×1012/cm2 の条件で前記Si基板1
にイオン注入した。更に、トレンチ8の表面を軽く熱酸
化して酸化膜9を形成した後、TEOS膜10a,10b,
10cの埋込みを行ない、素子分離領域11を形成した(図
6参照)。
(4) Next, by using RIE, Cl 2 / CHF
3 4 the Si substrate 1 in a mixed gas is anisotropically etched,
A trench (groove) 8 was formed. Here, the depth of the trench 8 is 1.0 μm or less for element isolation, and preferably 200 nm to 400 nm. Subsequently, in order to enhance the separating ability of the bottom of the trench 8, boron is accelerated at an accelerating voltage of 30 Ke.
The Si substrate 1 under the conditions of V and dose of 3 × 10 12 / cm 2.
Ion-implanted into. Further, after lightly oxidizing the surface of the trench 8 to form an oxide film 9, the TEOS films 10a, 10b,
A device isolation region 11 was formed by embedding 10c (see FIG. 6).

【0022】上記実施例では、図1で基板1にイオン注
入したボロンがLOCOS酸化で酸化膜5を形成する
際、ボロンが酸化膜5から所定距離離れて基板1に均一
に拡散されており(図2参照)、その内にトレンチ8を
形成しているので、トレンチが深くない場合は、追加の
Bイオン注入は不要である。また、Bイオン注入を行な
う場合でも、低エネルギー,低ドーピングレベルで良い
という特徴がある。
In the above embodiment, when the boron ion-implanted into the substrate 1 in FIG. 1 forms the oxide film 5 by LOCOS oxidation, the boron is uniformly diffused into the substrate 1 at a predetermined distance from the oxide film 5 ( (See FIG. 2), since the trench 8 is formed therein, if the trench is not deep, additional B ion implantation is unnecessary. Further, even when B ion implantation is performed, low energy and a low doping level are required.

【0023】これに対し、一般にトレンチ分離ではトレ
ンチのまわりにBドープ層を形成するため、トレンチ側
壁に斜めにイオン注入などを行なうが、チャネリングや
シャドウイング効果で一様なドーピングが難しい。
On the other hand, generally, in the trench isolation, since the B-doped layer is formed around the trench, ion implantation is performed obliquely on the sidewall of the trench, but uniform doping is difficult due to channeling and shadowing effects.

【0024】また、上記実施例の場合、次のような利点
を有する。図6から分かるように、トレンチ8の上部は
なだらかな開口部となっている。良く知られているよう
に、コンタクトホールやビアホールは、メタルのステッ
プカバレッジを高めるためラウンドエッチングを行な
う。ここでは、LOCOS凹部を利用してラウンド部を
形成している。また、LOCOS凹部があるため、トレ
ンチ深さはトレンチだけの場合より浅くできるため、ト
レンチにおけるアスペクト比を小さくできる。つまり、
図6に示すようにボイドフリーな絶縁膜埋込みに適した
構造になっている。これに対し、従来例(USP462
6317)では、ボイド等の欠陥が生じることが確認さ
れている。
Further, the above embodiment has the following advantages. As can be seen from FIG. 6, the upper portion of the trench 8 has a gentle opening. As is well known, contact holes and via holes are round-etched to improve the step coverage of metal. Here, the LOCOS concave portion is used to form the round portion. Further, since the LOCOS concave portion is provided, the trench depth can be made shallower than in the case of only the trench, so that the aspect ratio in the trench can be reduced. That is,
As shown in FIG. 6, the structure is suitable for embedding a void-free insulating film. In contrast, the conventional example (USP462
6317), it has been confirmed that defects such as voids occur.

【0025】なお、上記実施例では、トレンチに酸化膜
を介してTEOS膜を埋め込んだ場合について述べた
が、これに限らず、図7に示すようにエピタキシャルシ
リコン(Si)71を堆積してもよい。具体的には、例え
ばまずトレンチ部を30nm程度酸化した後、HTOを堆
積する。つづいて、異方性ドライエッチングを行ない、
トレンチ底面のSi基板1を露出させる。次いで、選択
エピタキシャルSi71を堆積し、トレンチ部にのみSi
を成長させる。図7に示すようにSiがLOCOS凹部
まで成長した後、酸化を行なう。酸化は、酸化後のエピ
タキシャルSi酸化膜面が基板面に達する程度で良い。
この場合、エピタキシャルSiは前記凹部のラウンド部
(なだらかな面)にあるため、酸化によるエピタキシャ
ルSiの体積膨張はこの開放系で吸収され、応力による
欠陥発生が妨げる。また、上記実施例において、特許請
求の範囲の請求項1の絶縁物質がSiO2 の場合はトレ
ンチ内が全て(Siの)酸化物となるが、トレンチ内が
Si3 4 の場合は、Si34 の表面にトラップされ
た電荷が表面をつたってリークする恐れがあるので熱酸
化膜がある方が好ましい。
In the above embodiment, the case where the TEOS film is buried in the trench via the oxide film has been described, but the present invention is not limited to this, and epitaxial silicon (Si) 71 may be deposited as shown in FIG. Good. Specifically, for example, the trench portion is first oxidized to about 30 nm, and then HTO is deposited. Subsequently, anisotropic dry etching is performed,
The Si substrate 1 on the bottom surface of the trench is exposed. Next, selective epitaxial Si71 is deposited, and Si is formed only in the trench portion.
Grow. As shown in FIG. 7, after Si grows up to the LOCOS recess, oxidation is performed. The oxidation may be performed so that the surface of the epitaxial Si oxide film after the oxidation reaches the surface of the substrate.
In this case, since the epitaxial Si is in the round portion (smooth surface) of the recess, the volume expansion of the epitaxial Si due to oxidation is absorbed by this open system, and the generation of defects due to stress is prevented. Further, in the above embodiment, when the insulating material of claim 1 is SiO 2 , the inside of the trench is entirely (Si) oxide, but when the inside of the trench is Si 3 N 4 , Si It is preferable to have a thermal oxide film because charges trapped on the surface of 3 N 4 may leak across the surface.

【0026】これに対し、図8の従来例(USP513
0268)の場合、エピタキシャルSiは完全にトレン
チで囲まれており、体積膨張の応力をまともに受けてし
まう。 なお、本例ではエピタキシャルSiにBドープ
を行ない、そこからトレンチ底部にBドープ層を作成し
ている。このような応力緩和は選択エピタキシャルシリ
コンに限らない。
On the other hand, the conventional example of FIG. 8 (USP513
In the case of (0268), the epitaxial Si is completely surrounded by the trench and is directly subjected to the stress of volume expansion. In this example, the epitaxial Si is doped with B, and the B-doped layer is formed on the bottom of the trench from the epitaxial Si. Such stress relaxation is not limited to selective epitaxial silicon.

【0027】また、本例では、トレンチはLOCOS凹
部の中にあり、直接トランジスタなどのデバイスと接触
しないが、デバイスと接触するLOCOSに関しても、
犠牲酸化等の欠陥対策が確立してので、トレンチ起因の
欠陥によるデバイス特性劣化は抑制できる。
In this example, the trench is in the LOCOS recess and does not directly contact the device such as a transistor.
Since measures against defects such as sacrificial oxidation have been established, deterioration of device characteristics due to defects due to trenches can be suppressed.

【0028】更に、本例では、Si基板を用いた場合に
つて述べたが、これに限らず、Ge基板でもよい。ま
た、本例では、基板と同導電型の不純物(ボロン)をイ
オン注入した場合について述べたが、基板表面にウェル
を形成し、該ウェルと同導電型の不純物を導入する場合
でも同様に適用できる。
Further, in this example, the case where the Si substrate is used has been described, but the present invention is not limited to this, and a Ge substrate may be used. Further, in this example, the case where the impurity (boron) of the same conductivity type as that of the substrate is ion-implanted is described, but the same applies to the case of forming a well on the surface of the substrate and introducing the impurity of the same conductivity type as the well it can.

【0029】ところで、素子の微細化に伴ないトランジ
スタの狭チャネル効果が問題になっている。LOCOS
分離にしろ、トレンチ分離にしろ、電気的分離に用いて
いるドーパントの横広がりがこの原因の1つである。
By the way, the narrow channel effect of transistors has become a problem with the miniaturization of devices. LOCOS
Whether it is isolation or trench isolation, the lateral spread of the dopant used for electrical isolation is one of the causes.

【0030】例えば、LOCOS後イオン注入のように
LOCOS直下に高エネルギーでドーパントを注入し、
チャネル部まで広がらないようにすることができる。し
かし、高エネルギーイオン注入によるダメージや、イオ
ンとして実用的なのはB(ボロン)のみである、という
問題がある。
For example, by implanting a dopant with high energy just below LOCOS, such as ion implantation after LOCOS,
It is possible not to spread to the channel part. However, there is a problem that damage due to high energy ion implantation and that only B (boron) is practical as an ion.

【0031】一方、本発明を用いると、LOCOS凹部
にスペーサー形成後又はトレンチ形成後に低エネルギー
で種々のドーパントを目的に応じてイオン注入したり、
またドープト多結晶Siからの拡散でドーポアントを拡
散でき、しかもチャネル部から離れたLOCOS凹部内
のトレンチでこれが行われるため、上記狭チャネル効果
を抑制することができる。
On the other hand, according to the present invention, after forming spacers or trenches in the LOCOS recesses, various dopants are ion-implanted at low energy depending on the purpose, or
Further, since the dopant can be diffused by the diffusion from the doped polycrystalline Si, and this is performed in the trench in the LOCOS concave portion apart from the channel portion, the narrow channel effect can be suppressed.

【0032】[0032]

【発明の効果】以上詳述した如くこの発明によれば、プ
ロセスを簡略化できるとともに、基板に与える損傷を軽
減でき、更にトレンチ部全体に受ける応力を小さくして
欠陥を発生を抑制しえる半導体装置の素子分離方法を提
供できる。
As described above in detail, according to the present invention, the process can be simplified, the damage to the substrate can be reduced, and the stress applied to the entire trench portion can be reduced to suppress the generation of defects. An element isolation method of the device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る素子分離方法の一工
程を示す断面図で、基板表面にボロンを注入した状態ま
でを示す。
FIG. 1 is a cross-sectional view showing one step of an element isolation method according to an embodiment of the present invention, showing up to a state where boron is implanted into a substrate surface.

【図2】この発明の一実施例に係る素子分離方法の一工
程を示す断面図で、基板表面に凹部用の酸化膜を形成入
した状態までを示す。
FIG. 2 is a cross-sectional view showing one step of an element isolation method according to an embodiment of the present invention, showing a state where an oxide film for a recess is formed and formed on the surface of a substrate.

【図3】この発明の一実施例に係る素子分離方法の一工
程を示す断面図で、凹部用の酸化膜を除去した状態まで
を示す。
FIG. 3 is a cross-sectional view showing one step of an element isolation method according to an embodiment of the present invention, showing up to a state where the oxide film for the recess is removed.

【図4】この発明の一実施例に係る素子分離方法の一工
程を示す断面図で、スペーサ用の酸化膜を基板全面に形
成した状態までを示す。
FIG. 4 is a cross-sectional view showing one step of an element isolation method according to an embodiment of the present invention, showing up to a state where an oxide film for a spacer is formed on the entire surface of the substrate.

【図5】この発明の一実施例に係る素子分離方法の一工
程を示す断面図で、基板表面に形成した凹部にスペーサ
を形成した状態までを示す。
FIG. 5 is a cross-sectional view showing one step of an element isolation method according to an embodiment of the present invention, showing up to a state where spacers are formed in the recesses formed on the substrate surface.

【図6】この発明の一実施例に係る素子分離方法の一工
程を示す断面図で、基板表面おトレンチにTEOS膜を
形成して素子分離領域を形成した状態までを示す。
FIG. 6 is a cross-sectional view showing one step of an element isolation method according to an embodiment of the present invention, showing up to a state where a TEOS film is formed in a trench on a substrate surface to form an element isolation region.

【図7】この発明の他の実施例に係る素子分離方法の例
を示す概略断面図。
FIG. 7 is a schematic sectional view showing an example of an element isolation method according to another embodiment of the present invention.

【図8】従来の素子分離方法の一例を示す断面図。FIG. 8 is a sectional view showing an example of a conventional element isolation method.

【符号の説明】[Explanation of symbols]

1…Si基板、 2,5,7,7′,9…酸化膜、
3…窒化膜、4…レジスト、 6…凹部
8…トレンチ、10a,10b,10c…TEO
S膜、 11…素子分離領域、71…エ
ピタキシャルSi。
1 ... Si substrate, 2, 5, 7, 7 ', 9 ... Oxide film,
3 ... Nitride film, 4 ... Resist, 6 ... Recess
8 ... Trench, 10a, 10b, 10c ... TEO
S film, 11 ... Element isolation region, 71 ... Epitaxial Si.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/76 S 21/94 Z Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area H01L 21/76 S 21/94 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に耐酸化膜パターンを形成する工
程と、この耐酸化膜パターンをマスクとして前記基板を
酸化させ、酸化膜を形成する工程と、この酸化膜を除去
し、前記基板に該酸化膜の除去部分に対応する凹部を形
成する工程と、この凹部を含む全面に絶縁膜を堆積する
工程と、この絶縁膜をエッチングし、前記凹部の側壁に
のみ前記絶縁膜を残存させる工程と、前記凹部が位置す
る基板に溝を形成する工程と、この溝を絶縁物質で埋め
込む工程とを具備することを特徴とする半導体装置の素
子分離方法。
1. A step of forming an oxidation resistant film pattern on a substrate, a step of oxidizing the substrate using the oxidation resistant film pattern as a mask to form an oxide film, and removing the oxide film to form a substrate. A step of forming a recess corresponding to the removed portion of the oxide film, a step of depositing an insulating film on the entire surface including the recess, and a step of etching the insulating film to leave the insulating film only on the sidewall of the recess. And a step of forming a groove in the substrate in which the recess is located, and a step of filling the groove with an insulating material.
【請求項2】 前記耐酸化膜パターンを形成した後、前
記基板表面に該基板と同導電型の不純物をイオン注入す
ることを特徴とする請求項1記載の半導体装置の素子分
離方法。
2. The element isolation method for a semiconductor device according to claim 1, wherein after forming the oxidation resistant film pattern, impurities of the same conductivity type as the substrate are ion-implanted into the surface of the substrate.
【請求項3】 前記基板に前記溝を形成した後、該溝の
底部及び側壁に熱酸化膜を形成し、更に前記溝に絶縁物
質を埋め込むことを特徴とする請求項1記載の半導体装
置の素子分離方法。
3. The semiconductor device according to claim 1, wherein after forming the groove in the substrate, a thermal oxide film is formed on a bottom portion and a side wall of the groove, and an insulating material is embedded in the groove. Element isolation method.
【請求項4】 前記基板に前記溝を形成した後、溝の側
壁に熱酸化膜を形成し、更にエピタキシャル法で前記溝
に溝底部で基板と接触するシリコンを埋め込むことを特
徴とする請求項1記載の素子分離方法。
4. A thermal oxide film is formed on the side wall of the groove after the groove is formed in the substrate, and silicon which is in contact with the substrate at the groove bottom is embedded in the groove by an epitaxial method. 1. The element isolation method as described in 1.
【請求項5】 基板上に耐酸化膜パターンを形成する工
程と、この耐酸化膜パターンをマスクとして前記基板を
酸化させ、酸化膜を形成する工程と、この酸化膜を除去
し、前記基板に該酸化膜の除去部分に対応する凹部を形
成する工程と、この凹部を含む全面に絶縁膜を堆積する
工程と、この絶縁膜をエッチングし、前記凹部の側壁に
のみ前記絶縁膜を残存させる工程と、前記凹部が位置す
る基板に溝を形成する工程と、この溝の底部及び側壁に
熱酸化膜を形成し、更に前記溝に半導体物質又は導電物
質を埋め込む工程とを具備することを特徴とする半導体
装置の素子分離方法。
5. A step of forming an oxidation resistant film pattern on a substrate, a step of oxidizing the substrate using the oxidation resistant film pattern as a mask to form an oxide film, and removing the oxide film to form a substrate on the substrate. A step of forming a recess corresponding to the removed portion of the oxide film, a step of depositing an insulating film on the entire surface including the recess, and a step of etching the insulating film to leave the insulating film only on the sidewall of the recess. And a step of forming a groove in the substrate where the recess is located, a step of forming a thermal oxide film on the bottom and side walls of the groove, and further embedding a semiconductor material or a conductive material in the groove. Element isolation method for semiconductor device.
JP04030895A 1995-02-28 1995-02-28 Element isolation method for semiconductor device Expired - Lifetime JP4384269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04030895A JP4384269B2 (en) 1995-02-28 1995-02-28 Element isolation method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04030895A JP4384269B2 (en) 1995-02-28 1995-02-28 Element isolation method for semiconductor device

Publications (2)

Publication Number Publication Date
JPH08236609A true JPH08236609A (en) 1996-09-13
JP4384269B2 JP4384269B2 (en) 2009-12-16

Family

ID=12576997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04030895A Expired - Lifetime JP4384269B2 (en) 1995-02-28 1995-02-28 Element isolation method for semiconductor device

Country Status (1)

Country Link
JP (1) JP4384269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043135A (en) * 1997-02-06 2000-03-28 Nec Corporation Process of fabricating a semiconductor device having trench isolation allowing pattern image to be exactly transferred to photo-resist layer extending thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043135A (en) * 1997-02-06 2000-03-28 Nec Corporation Process of fabricating a semiconductor device having trench isolation allowing pattern image to be exactly transferred to photo-resist layer extending thereon
CN1094256C (en) * 1997-02-06 2002-11-13 日本电气株式会社 Technology for making semiconductor device

Also Published As

Publication number Publication date
JP4384269B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US6069058A (en) Shallow trench isolation for semiconductor devices
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
US5902127A (en) Methods for forming isolation trenches including doped silicon oxide
US5436190A (en) Method for fabricating semiconductor device isolation using double oxide spacers
US5294562A (en) Trench isolation with global planarization using flood exposure
JPH0513566A (en) Manufacture of semiconductor device
KR19980053391A (en) Semiconductor device isolation structure and formation method
US5872044A (en) Late process method for trench isolation
US6326272B1 (en) Method for forming self-aligned elevated transistor
KR0157875B1 (en) Manufacture of semiconductor device
US5371036A (en) Locos technology with narrow silicon trench
JP2002100580A (en) Epitaxial growth method of semiconductor element
JPH11145273A (en) Manufacture of semiconductor device
US6274455B1 (en) Method for isolating semiconductor device
KR0152909B1 (en) Insulation structure of semiconductor and manufacturing method thereof
JP2955838B2 (en) Method for manufacturing semiconductor device
JP4384269B2 (en) Element isolation method for semiconductor device
JP2000208612A (en) Production of semiconductor device having trench element isolating region
JPH0729971A (en) Manufacture of semiconductor device
KR100230745B1 (en) Method for isolating semiconductor device
JP2001244324A (en) Method for manufacturing semiconductor device
JPH05166823A (en) Manufacture of semiconductor device
JP2000150870A (en) Semiconductor device and its manufacture
KR100517348B1 (en) Method for Fabricating semiconductor
KR970009273B1 (en) Method for forming the field oxide on the semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term