JPH0823634B2 - Liquid crystal element driving method - Google Patents

Liquid crystal element driving method

Info

Publication number
JPH0823634B2
JPH0823634B2 JP61189902A JP18990286A JPH0823634B2 JP H0823634 B2 JPH0823634 B2 JP H0823634B2 JP 61189902 A JP61189902 A JP 61189902A JP 18990286 A JP18990286 A JP 18990286A JP H0823634 B2 JPH0823634 B2 JP H0823634B2
Authority
JP
Japan
Prior art keywords
liquid crystal
temperature
driving
crystal element
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61189902A
Other languages
Japanese (ja)
Other versions
JPS6344636A (en
Inventor
直 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61189902A priority Critical patent/JPH0823634B2/en
Publication of JPS6344636A publication Critical patent/JPS6344636A/en
Publication of JPH0823634B2 publication Critical patent/JPH0823634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶素子の駆動方法に関する。さらに詳し
くは、強誘電性液晶を用いた液晶素子の温度特性を補償
する駆動方法に関する。
The present invention relates to a method for driving a liquid crystal element. More specifically, the present invention relates to a driving method for compensating the temperature characteristics of a liquid crystal element using a ferroelectric liquid crystal.

〔従来の技術〕[Conventional technology]

従来の、強誘電性液晶を用いた液晶素子の温度特性を
補償する駆動方法は、例えば、特開昭60-123825号に述
べられている。
A conventional driving method for compensating the temperature characteristics of a liquid crystal element using a ferroelectric liquid crystal is described in, for example, Japanese Patent Laid-Open No. 60-123825.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

強誘電性液晶を用いた液晶素子をマルチプレツクス駆
動した時、その光学特性の温度依存性は非常に激しく、
例えば第2図に、駆動電圧を一定にした時に必要な駆動
パルス幅の温度による変化を示すが、0〜40℃の温度範
囲で駆動パルス幅は約100倍変化する。又、第3図に駆
動パルス幅を一定にした時に必要な駆動電圧の温度によ
る変化を示すが、5〜40℃の温度範囲で駆動電圧は約20
倍変化する。従つて、この液晶素子をマルチプレツクス
駆動する場合、駆動電圧のみ、あるいは、駆動パルス幅
のみを調整するだけでは温度補償を行なう事が出来ない
という欠点を有していた。
When a liquid crystal device using a ferroelectric liquid crystal is driven by multiplex, the temperature dependence of its optical characteristics is extremely severe,
For example, FIG. 2 shows the change of the drive pulse width necessary with the temperature when the drive voltage is constant. The drive pulse width changes about 100 times in the temperature range of 0 to 40 ° C. In addition, Fig. 3 shows the change in the drive voltage required with the temperature when the drive pulse width is constant.
Change twice. Therefore, in the case of performing multiplex driving of this liquid crystal element, there is a drawback that temperature compensation cannot be performed by adjusting only the driving voltage or only the driving pulse width.

又、高温領域において駆動電圧を一定にして駆動した
場合、パルス幅を非常に短かくしなければならず、前記
液晶素子の配線抵抗及び駆動回路の出力インピーダンス
の影響によつて印加波形に鈍りが生じ、入力端子からの
距離によつて各画素の光学特性に差が生じるという問題
点もあつた。
In addition, when driving with a constant drive voltage in a high temperature region, the pulse width must be made extremely short, and the applied waveform becomes dull due to the influence of the wiring resistance of the liquid crystal element and the output impedance of the drive circuit. Another problem is that the optical characteristics of each pixel differ depending on the distance from the input terminal.

上述の従来例ではこの点に触れておらず、問題点を明
らかにはしていなかつた。
In the above-mentioned conventional example, this point was not touched and the problem was not clarified.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の液晶素子の駆動方法は、対向する基板内面に
複数の電極を有する一対の基板間にメモリ一性を有する
液晶を挟持してなる液晶素子の駆動方法において、第1
の温度領域では駆動電圧を一定とし温度変化に対して駆
動パルス幅を変化させた電圧パルスを前記液晶に印加し
てなり、第2の温度領域では駆動パルス幅を一定とし温
度変化に対して駆動電圧を変化させた電圧パルスを前記
液晶に印加してなることを特徴とする。
The method of driving a liquid crystal element according to the present invention is the method of driving a liquid crystal element, comprising a pair of substrates having a plurality of electrodes on opposing inner surfaces of a substrate, and a liquid crystal having a memory property sandwiched between the pair of substrates.
In the second temperature region, the driving voltage is constant and the driving pulse width is changed with respect to the temperature change to apply a voltage pulse to the liquid crystal. In the second temperature region, the driving pulse width is constant and the driving is performed with respect to the temperature change. It is characterized in that a voltage pulse whose voltage is changed is applied to the liquid crystal.

また、本発明の第2の液晶素子の駆動方法は、温度上
昇にともない前記第1の温度領域における駆動パルス幅
が狭くなることを特徴とする。
The second liquid crystal element driving method of the present invention is characterized in that the driving pulse width in the first temperature region becomes narrower as the temperature rises.

また、本発明の第3の液晶素子の駆動方法は、温度上
昇にともない前記第2の温度領域における駆動電圧が低
くなることを特徴とする。
Further, the third driving method of the liquid crystal element of the present invention is characterized in that the driving voltage in the second temperature region decreases as the temperature rises.

また、本発明の第4の液晶素子の駆動方法は、前記第
1の温度領域の温度は前記第2の温度領域の温度より低
いことを特徴とする。
Further, the fourth method of driving the liquid crystal element of the present invention is characterized in that the temperature of the first temperature range is lower than the temperature of the second temperature range.

〔作用〕[Action]

本発明を用いれば、低温領域では駆動パルス幅を長く
することで、駆動電圧の上昇することを避け、高温領域
では駆動電圧を下げると同時に、駆動パルス幅の下限を
設けることで、印加波形の鈍りによつて各画素に光学特
性の差が生じることを避けることが出来る。
According to the present invention, by increasing the drive pulse width in the low temperature region, it is possible to prevent the drive voltage from rising, and in the high temperature region, the drive voltage is lowered, and at the same time, the lower limit of the drive pulse width is set to reduce the applied waveform. It is possible to prevent the difference in optical characteristics between the pixels due to the dullness.

〔実施例〕〔Example〕

本発明の詳細について、具体例に基づいて以下に説明
する。
Details of the present invention will be described below based on specific examples.

(実施例1) シート抵抗30Ω/□のITOをスパツタし、マトリクス
状の透明電極を形成した2枚の光学研磨ソーダガラス基
板を用いて、640×400ドツト、画素ピツチ0.4mm、セル
ギヤツプ2μmのセルを作り、強誘電性液晶を注入して
液晶素子とした。
Example 1 A cell having 640 × 400 dots, a pixel pitch of 0.4 mm, and a cell gap of 2 μm was formed by using two optically polished soda glass substrates on which ITO having a sheet resistance of 30 Ω / □ was sputtered and transparent electrodes in a matrix were formed. A ferroelectric liquid crystal was injected to prepare a liquid crystal element.

この液晶素子のマルチプレツクス駆動に必要な駆動電
圧Vpと駆動パルス幅Pwの温度に対する関係を第1図に細
線で示す。この液晶素子を駆動電圧Vp=25Vで駆動した
時、温度26℃(この時、駆動パルス幅Pwは80μsecであ
つた)以下ではパネルの入力端子に最も近い画素と、最
も遠い画素の間で光学特性に差が見られた。入力端子か
ら最も遠い画素の時定数を計算したところ35μsecであ
つた。そこで、第4図に示すような、サーミスタ10によ
つて温度検出を行なう回路で駆動電圧Vpの補正を行な
い、第5図に示すように、5〜26℃の温度範囲では駆動
電圧がドライバーLSIの最大駆動電圧25Vとなり、26〜40
℃の温度範囲で駆動電圧Vpが25Vから5Vまで変化するよ
うに調整した。また、第6図に示すように、サーミスタ
13の両端の電圧をA/D変換器14でA/D変換し、プログラマ
ブル発振回路15を制御してクロツク周波数を変化させる
ことで、第7図に示すように、駆動パルス幅Pwが5〜26
℃で650μsecから80μsecまで変化し、26℃から40℃で
は80μsecで一定となるようにした。
The relationship between the driving voltage Vp and the driving pulse width Pw required for the multiplex driving of the liquid crystal element with respect to temperature is shown by the thin line in FIG. When this liquid crystal element is driven with a drive voltage Vp = 25V, at a temperature of 26 ° C. (the drive pulse width Pw was 80 μsec at this time) and below, the optical distance between the pixel closest to the panel input terminal and the pixel farthest from There was a difference in the characteristics. The time constant of the pixel farthest from the input terminal was calculated to be 35 μsec. Therefore, as shown in FIG. 4, the circuit for detecting the temperature by the thermistor 10 corrects the drive voltage Vp. As shown in FIG. 5, in the temperature range of 5 to 26.degree. Maximum drive voltage of 25V, 26-40
The driving voltage Vp was adjusted to change from 25V to 5V in the temperature range of ℃. Also, as shown in FIG. 6, the thermistor
By converting the voltage across 13 from A / D by the A / D converter 14 and controlling the programmable oscillator circuit 15 to change the clock frequency, as shown in FIG. 26
The temperature was changed from 650 μsec to 80 μsec at ℃, and was kept constant at 80 μsec from 26 ℃ to 40 ℃.

上記のように、駆動電圧Vp及び駆動パルス幅Pwを別個
に調整すことで、本実施例の駆動回路の温度特性は第1
図の太線で示すように直線的に変化する。
As described above, by adjusting the drive voltage Vp and the drive pulse width Pw separately, the temperature characteristic of the drive circuit of the present embodiment has the first temperature characteristic.
It changes linearly as shown by the thick line in the figure.

このような温度補償条件で前記液晶素子を駆動したと
ころ、20〜40℃の温度範囲では問題なかつたが、20℃以
下の温度では、温度が下がるに従つてちらつきが目立つ
ようになり、10℃以下では1画面の走査時間が0.3sec以
上かかるようになり、走査自体が見えるようになつた。
When the liquid crystal element was driven under such temperature compensation conditions, there was no problem in the temperature range of 20 to 40 ° C., but at a temperature of 20 ° C. or lower, flicker became conspicuous as the temperature decreased, and 10 ° C. In the following, the scanning time for one screen became 0.3 sec or more, and the scanning itself became visible.

(実施例2) 実施例1と同じ構成のセルを用い、実施例1に較べて
応答の速い、即ち、5℃における応答速度が400μsecの
液晶を注入した液晶素子を、第8図に示すような、温度
補償特性が連続的に変化する駆動回路で駆動したとこ
ろ、5〜40℃の温度範囲で、画面のちらつき等は見え
ず、問題無く駆動出来た。
(Example 2) A liquid crystal element in which a cell having the same configuration as that of Example 1 is used and a liquid crystal having a faster response than that of Example 1, that is, a response speed at 5 ° C of 400 µsec is injected is shown in Fig. 8. When driven by a drive circuit in which the temperature compensation characteristics change continuously, no flicker on the screen was visible in the temperature range of 5 to 40 ° C, and driving was possible without problems.

(実施例3) 実施例1及び2と同じ電極構成であるが、ITOのシー
ト抵抗を15〜80Ω/□まで変化させたセルを試作し、実
施例2で用いた液晶を注入した。これらの液晶素子を、
駆動電圧Vpが25V一定の駆動回路で駆動したところ、5
〜40℃の温度範囲でシート抵抗30Ω/□以下のITOを用
いた液晶素子は問題無く駆動出来たが、それ以上のシー
ト抵抗の液晶素子では、高温側で画素による光学特性の
差が見られた。5℃において、画素によつて光学特性に
差が出て来る駆動パルス幅Pwと各液晶素子の最大時定数
τmaxとの関係を調べたところ、およそ Pw=3×τmax であつた。
(Example 3) A cell having the same electrode configuration as in Examples 1 and 2, but having a sheet resistance of ITO varied from 15 to 80 Ω / □ was prototyped, and the liquid crystal used in Example 2 was injected. These liquid crystal elements
When driven by a drive circuit with a constant drive voltage Vp of 25V, 5
A liquid crystal element using ITO with a sheet resistance of 30Ω / □ or less could be driven without problems in the temperature range of -40 ℃, but a liquid crystal element with a sheet resistance higher than that showed a difference in optical characteristics due to pixels on the high temperature side. It was At 5 ° C., the relationship between the drive pulse width Pw in which the optical characteristics differ depending on the pixel and the maximum time constant τmax of each liquid crystal element was examined, and it was found that Pw = 3 × τmax.

この値は、本実施例で用いた強誘電性液晶の場合の物
であり、他の材料を用いれば異なつた値となるが、実用
上は時定数τmaxの2〜4倍であることが望ましい。
This value is the case of the ferroelectric liquid crystal used in this example, and it will be different if other materials are used, but in practice it is desirable to be 2 to 4 times the time constant τmax. .

駆動電圧Vpあるいは駆動パルス幅Pwの温度補償用回路
は本実施例によつて制限されるものではなく、例えば第
9図に示すような、サーミスタ91,92を用いたブロツキ
ング発振させる回路を、温度検出に用いてクロツク周波
数を変化させ、駆動パルス幅の調整を行なつてもよく、
通常、同じ目的で使用される回路構成ならばどのような
構成でもよい。
The temperature compensating circuit for the driving voltage Vp or the driving pulse width Pw is not limited by this embodiment, and for example, a circuit for oscillating blocking using thermistors 91 and 92 as shown in FIG. It may be used for detection to change the clock frequency and adjust the drive pulse width.
Generally, any circuit configuration may be used as long as it is used for the same purpose.

〔発明の効果〕〔The invention's effect〕

本発明によれば、強誘電性液晶を用いた液晶素子の温
度補償を、実用上問題無く行なうことが出来る。
According to the present invention, temperature compensation of a liquid crystal element using a ferroelectric liquid crystal can be performed without any practical problems.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例1で用いた液晶のマルチプレ
ツクス駆動に必要な駆動電圧Vpと駆動パルス幅Pwの温度
特性、及びその温度補償回路の特性を示す図。 第2図は、駆動電圧を一定にした時に必要な駆動パルス
幅の温度による変化を示す図。 第3図は、駆動パルス幅を一定にした時に必要な駆動電
圧の温度による変化を示す図。 第4図及び第5図は、それぞれ本発明の実施例1におけ
る駆動電圧Vpの補正回路部分、及びその補正特性を示す
図。 第6図及び第7図は、それぞれ本発明の実施例1におけ
る駆動パルス幅Pwの補正回路部分、及びその補正特性を
示す図。 第8図は、本発明の実施例2における回路の温度補償特
性を示す図。 第9図は、本発明に用い得る他の駆動パルス幅調整回路
の一例を示す図。 10,13,91,92……温度検出用サーミスタ 1……ツエナーダイオード 7,8,9……分圧用抵抗
FIG. 1 is a diagram showing temperature characteristics of a drive voltage Vp and a drive pulse width Pw necessary for multiplex driving of a liquid crystal used in Embodiment 1 of the present invention, and a characteristic of a temperature compensation circuit thereof. FIG. 2 is a diagram showing a change in drive pulse width required with temperature when the drive voltage is kept constant. FIG. 3 is a diagram showing a change in driving voltage required with temperature when the driving pulse width is constant. FIG. 4 and FIG. 5 are diagrams respectively showing a correction circuit portion of the drive voltage Vp and its correction characteristic in the first embodiment of the present invention. FIG. 6 and FIG. 7 are diagrams showing a correction circuit portion of the drive pulse width Pw and its correction characteristic in the first embodiment of the present invention, respectively. FIG. 8 is a diagram showing temperature compensation characteristics of a circuit according to the second embodiment of the present invention. FIG. 9 is a diagram showing an example of another drive pulse width adjusting circuit that can be used in the present invention. 10,13,91,92 …… Thermistor for temperature detection 1 …… Zener diode 7,8,9 …… Resistor for voltage division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】対向する基板内面に複数の電極を有する一
対の基板間にメモリー性を有する液晶を挟持してなる液
晶素子の駆動方法において、 第1の温度領域では駆動電圧を一定とし温度変化に対し
て駆動パルス幅を変化させた電圧パルスを前記液晶に印
加してなり、第2の温度領域では駆動パルス幅を一定と
し温度変化に対して駆動電圧を変化させた電圧パルスを
前記液晶に印加してなることを特徴とする液晶素子の駆
動方法。
1. A method of driving a liquid crystal element, comprising a pair of substrates having a plurality of electrodes on opposite inner surfaces of a substrate, and a liquid crystal having a memory property sandwiched between the substrates. To the liquid crystal, a voltage pulse having a drive pulse width changed is applied to the liquid crystal, and a voltage pulse having a constant drive pulse width in the second temperature region and having a drive voltage changed with respect to the temperature change is applied to the liquid crystal. A method for driving a liquid crystal element, characterized in that the voltage is applied.
【請求項2】温度上昇にともない前記第1の温度領域に
おける駆動パルス幅が狭くなることを特徴とする特許請
求の範囲第1項記載の液晶素子の駆動方法。
2. The method of driving a liquid crystal element according to claim 1, wherein the driving pulse width in the first temperature region becomes narrower as the temperature rises.
【請求項3】温度上昇にともない前記第2の温度領域に
おける駆動電圧が低くなることを特徴とする特許請求の
範囲第1項記載の液晶素子の駆動方法。
3. The method of driving a liquid crystal element according to claim 1, wherein the driving voltage in the second temperature region decreases as the temperature rises.
【請求項4】前記第1の温度領域の温度は前記第2の温
度領域の温度より低いことを特徴とする特許請求の範囲
第1項記載の液晶素子の駆動方法。
4. The method of driving a liquid crystal element according to claim 1, wherein the temperature of the first temperature region is lower than the temperature of the second temperature region.
JP61189902A 1986-08-13 1986-08-13 Liquid crystal element driving method Expired - Lifetime JPH0823634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189902A JPH0823634B2 (en) 1986-08-13 1986-08-13 Liquid crystal element driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189902A JPH0823634B2 (en) 1986-08-13 1986-08-13 Liquid crystal element driving method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7232706A Division JP2616496B2 (en) 1995-09-11 1995-09-11 Driving method of liquid crystal element

Publications (2)

Publication Number Publication Date
JPS6344636A JPS6344636A (en) 1988-02-25
JPH0823634B2 true JPH0823634B2 (en) 1996-03-06

Family

ID=16249111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189902A Expired - Lifetime JPH0823634B2 (en) 1986-08-13 1986-08-13 Liquid crystal element driving method

Country Status (1)

Country Link
JP (1) JPH0823634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3342341B2 (en) * 1997-03-13 2002-11-05 キヤノン株式会社 Liquid crystal device and driving method of liquid crystal device
WO2009050777A1 (en) * 2007-10-15 2009-04-23 Fujitsu Limited Display device having dot matrix type display element and its driving method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367924A (en) * 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device
JPH0640253B2 (en) * 1982-12-24 1994-05-25 日立マイクロコンピユ−タエンジニアリング株式会社 Liquid crystal display
JPS6012529A (en) * 1983-07-04 1985-01-22 Sharp Corp Driving method of liquid crystal display device
JPS62118326A (en) * 1985-11-19 1987-05-29 Canon Inc Driving method for liquid crystal element

Also Published As

Publication number Publication date
JPS6344636A (en) 1988-02-25

Similar Documents

Publication Publication Date Title
EP0228557B1 (en) Optical modulation device and driving method therefor
JPH0296117A (en) Liquid crystal device
US4462027A (en) System and method for improving the multiplexing capability of a liquid crystal display and providing temperature compensation therefor
US6091392A (en) Passive matrix LCD with drive circuits at both ends of the scan electrode applying equal amplitude voltage waveforms simultaneously to each end
US6339416B1 (en) Antiferroelectric liquid crystal display and method of driving
JP2616496B2 (en) Driving method of liquid crystal element
JPH0823634B2 (en) Liquid crystal element driving method
EP0475770B1 (en) Method for driving an electro-optical device
JPS61166590A (en) Liquid crystal display element and driving thereof
US4432611A (en) Photoconductor control of electro-optically variable display cell
EP0811179B1 (en) Liquid crystal display device
CA1252925A (en) Temperature compensation in active substrate electro- optic displays
US4547042A (en) Liquid crystal display with electrode shielding another electrode
JPH0412326A (en) Liquid crystal element
JPH0667626A (en) Liquid crystal driving method
JP2802692B2 (en) Display device
JP3331922B2 (en) Aging method and device
US6046715A (en) Liquid crystal array device
JPH05273524A (en) Liquid crystal display element
JP2903600B2 (en) Liquid crystal display
JP2769943B2 (en) Manufacturing method of ferroelectric liquid crystal device
JPH01107233A (en) Liquid crystal display panel
JPH0823636B2 (en) Driving method of optical modulator
JPH1184405A (en) Liquid crystal element
JPS62246014A (en) Liquid crystal display device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term