JP2616496B2 - Driving method of liquid crystal element - Google Patents

Driving method of liquid crystal element

Info

Publication number
JP2616496B2
JP2616496B2 JP7232706A JP23270695A JP2616496B2 JP 2616496 B2 JP2616496 B2 JP 2616496B2 JP 7232706 A JP7232706 A JP 7232706A JP 23270695 A JP23270695 A JP 23270695A JP 2616496 B2 JP2616496 B2 JP 2616496B2
Authority
JP
Japan
Prior art keywords
liquid crystal
temperature
driving
pulse width
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7232706A
Other languages
Japanese (ja)
Other versions
JPH08101372A (en
Inventor
直 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7232706A priority Critical patent/JP2616496B2/en
Publication of JPH08101372A publication Critical patent/JPH08101372A/en
Application granted granted Critical
Publication of JP2616496B2 publication Critical patent/JP2616496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶素子の駆動方
法に関する。さらに詳しくは、強誘電性液晶を用いた液
晶素子の温度特性を補償する駆動方法に関する。
The present invention relates to a method for driving a liquid crystal element. More specifically, the present invention relates to a driving method for compensating temperature characteristics of a liquid crystal element using a ferroelectric liquid crystal.

【0002】[0002]

【従来の技術】従来の、強誘電性液晶を用いた液晶素子
の温度特性を補償する駆動方法は、例えば、特開昭60
−125825号に述べられている。
2. Description of the Related Art A conventional driving method for compensating temperature characteristics of a liquid crystal element using a ferroelectric liquid crystal is disclosed in, for example,
No. 125825.

【0003】[0003]

【発明が解決しようとする課題】強誘電性液晶を用いた
液晶素子をマルチプレックス駆動したとき、その光学特
性の温度依存性は非常に激しく、例えば図2に駆動電圧
を一定にした時に必要な駆動パルス幅の変化を示すが、
0〜40℃の温度範囲で駆動パルス幅は約100倍変化
する。また、図5に駆動パルス幅を一定にしたときに必
要な駆動電圧の温度による変化を示すが、5〜40℃の
温度範囲で駆動電圧は約20倍変化する。従って、この
液晶素子をマルチプレックス駆動する場合、駆動電圧の
み、あるいは駆動パルス幅のみを調整するだけでは温度
補償を行うことができないという欠点を有していた。
When a liquid crystal device using a ferroelectric liquid crystal is multiplex driven, the temperature dependence of its optical characteristics is very severe. For example, FIG. The change of the drive pulse width is shown.
The driving pulse width changes about 100 times in the temperature range of 0 to 40 ° C. FIG. 5 shows a change in driving voltage required by the temperature when the driving pulse width is fixed. The driving voltage changes about 20 times in a temperature range of 5 to 40 ° C. Therefore, when this liquid crystal element is multiplex-driven, there is a disadvantage that temperature compensation cannot be performed only by adjusting only the driving voltage or only the driving pulse width.

【0004】また、高温領域において駆動電圧を一定に
して駆動した場合、パルス幅を非常に短くしなければな
らず、前記液晶素子の配線抵抗及び駆動回路の出力イン
ピータンスの影響によって印加波形に鈍りが生じ、出力
端子からの距離によって各画素の光学特性に差が生じる
という問題点もあった。
Further, when driving is performed at a constant driving voltage in a high temperature region, the pulse width must be very short, and the applied waveform becomes dull due to the influence of the wiring resistance of the liquid crystal element and the output impedance of the driving circuit. And the optical characteristics of each pixel differ depending on the distance from the output terminal.

【0005】上述の従来例ではこの点にはふれておら
ず、問題点を明らかにはしていなかった。
The above-mentioned conventional example does not address this point and does not clarify the problem.

【0006】[0006]

【課題を解決するための手段】本発明の液晶素子の駆動
方法は、対向する基板内面に電極を有する一対の基板間
にメモリー性を有する液晶を挟持してなる液晶素子の駆
動方法において、前記液晶に印加する駆動電圧及び駆動
パルス幅を温度変化に応じて変化させ、前記駆動電圧は
温度上昇に応じて小さくなるように変化させ且つ温度上
昇に対する前記駆動電圧の変化量を大きくしてなり、前
記駆動パルス幅は温度上昇に応じて狭くなるように変化
させ且つ温度上昇に対する前記駆動パルス幅の変化量を
小さくしてなることを特徴とする。
According to the present invention, there is provided a method for driving a liquid crystal element comprising a pair of substrates having electrodes on the inner surfaces of opposing substrates, wherein the liquid crystal has a memory property. Drive voltage and drive applied to liquid crystal
The pulse width is changed according to the temperature change, and the driving voltage is
Change so that it becomes smaller as the temperature rises and
The amount of change in the drive voltage with respect to
The drive pulse width changes so as to narrow as the temperature rises
And the amount of change in the drive pulse width with respect to temperature rise
It is characterized by being made smaller .

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】本発明を用いれば、低温領域では駆動パル
ス幅を長くすることで、駆動電圧の上昇することを避
け、高温領域では駆動電圧を下げると同時に、駆動パル
ス幅の下限を設けることで、印加波形の鈍りによって各
画素に光学特性の差が生じることを避けることができ
る。
According to the present invention, by increasing the drive pulse width in the low temperature region, it is possible to avoid an increase in the drive voltage, and in the high temperature region, the drive voltage is lowered and at the same time, the lower limit of the drive pulse width is set. It is possible to avoid a difference in optical characteristics between the pixels due to dulling of the applied waveform.

【0013】[0013]

【発明の実施の形態】本発明の詳細について、具体例に
基づいて以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on specific examples.

【0014】[参考例1] シート抵抗30Ω/□のITOをスパッタし、マトリク
ス状の透明電極を形成した2枚の光学研磨ソーダガラス
基板を用いて、640×400ドット、画素ピッチ0.
4mm、セルギャップ2μmのセルを作り、強誘電性液
晶を注入して液晶素子とした。
REFERENCE EXAMPLE 1 640 × 400 dots and a pixel pitch of 0,0 using an optically polished soda glass substrate having a matrix-shaped transparent electrode formed by sputtering ITO having a sheet resistance of 30Ω / □.
A cell having a cell gap of 4 mm and a cell gap of 2 μm was formed, and a ferroelectric liquid crystal was injected to obtain a liquid crystal element.

【0015】この液晶素子のマルチプレックス駆動に必
要な駆動電圧Vpと駆動パルス幅Pwの温度に対する関
係を図1に詳細に示す。この液晶素子を駆動電圧Vp=
25Vで駆動したとき、温度26℃(この時、駆動パル
ス幅Pwは80μsecであった)以下ではパネルの入
力端子に最も近い画素と、最も遠い画素の間で光学特性
に差が見られた。入力端子から最も遠い画素の時定数を
計算したところ35μsecであった。そこで、図4に
示すような、サーミスタ10によって温度検出を行う回
路で駆動電圧Vpの補正を行い、図5に示すように、5
〜26℃の温度範囲では駆動電圧がドライバーLSIの
最大駆動電圧25Vとなり、26〜40℃の温度範囲で
駆動電圧Vpが25V〜5Vまで変化するように調整し
た。
FIG. 1 shows the relationship between the driving voltage Vp and the driving pulse width Pw required for the multiplex driving of the liquid crystal element with respect to the temperature. When the driving voltage Vp =
When driven at 25 V, at a temperature of 26 ° C. or less (at this time, the drive pulse width Pw was 80 μsec), a difference was observed in the optical characteristics between the pixel closest to the input terminal of the panel and the pixel farthest away. When the time constant of the pixel farthest from the input terminal was calculated, it was 35 μsec. Therefore, the drive voltage Vp is corrected by a circuit for detecting the temperature by the thermistor 10 as shown in FIG.
The drive voltage was adjusted to a maximum drive voltage of 25 V for the driver LSI in the temperature range of up to 26 ° C., and the drive voltage Vp was changed to 25 V to 5 V in the temperature range of 26 to 40 ° C.

【0016】また、図6に示すように、サーミスタ13
の両端の電圧をA/D変換し、プログラマブル発信回路
15を制御してクロック周波数を変化させることで、図
7に示すように、駆動パルス幅Pwが5〜26℃で65
0μsecまで変化し、26℃〜40℃では80μse
cで一定となるようにした。
Further, as shown in FIG.
A / D-converts the voltage at both ends of the circuit and changes the clock frequency by controlling the programmable oscillation circuit 15 so that the drive pulse width Pw is 65 ° C. at 5 to 26 ° C. as shown in FIG.
0 μsec, and 80 μsec at 26 ° C. to 40 ° C.
It was set to be constant at c.

【0017】上記のように、駆動電圧Vp及び駆動パル
ス幅Pwを別個に調整することで、駆動回路の温度特性
は図1の本線で示すように直線的に変化する。
As described above, by separately adjusting the drive voltage Vp and the drive pulse width Pw, the temperature characteristic of the drive circuit changes linearly as shown by the main line in FIG.

【0018】このような温度補償条件で前記液晶素子を
駆動したところ、20〜40℃の温度範囲では問題なか
ったが、20℃以下の温度では、温度が下がるに従って
ちらつきが目立つようになり、10℃以下では1画素の
走査時間が0.3sec以上かかるようになり、走査自
体が見えるようになった。
When the liquid crystal element was driven under such temperature compensation conditions, there was no problem in the temperature range of 20 to 40.degree. C., but at a temperature of 20.degree. When the temperature is lower than ° C., the scanning time of one pixel takes 0.3 sec or more, and the scanning itself becomes visible.

【0019】[実施例] 前述の参考例1と 同じ構成のセルを用い、参考例1に較
べて応答の速い、すなわち、5℃における応答速度が4
00μsecの液晶を注入した液晶素子を図8に示すよ
うな温度補償特性が連続的に変化する駆動回路で駆動し
たところ、5〜40℃の温度範囲で、画面のちらつき等
は見えず、問題なく駆動できた。
[Embodiment] A cell having the same configuration as that of the above-described first embodiment was used, and the response was faster than that of the first embodiment , that is, the response speed at 5 ° C. was 4
When the liquid crystal element in which the liquid crystal of 00 μsec was injected was driven by a drive circuit having a temperature compensation characteristic continuously changing as shown in FIG. 8, no flickering of the screen was observed in a temperature range of 5 to 40 ° C. I was able to drive.

【0020】[参考例2] 参考例1及び実施例 と同じ電極構成であるが、ITOの
シート抵抗を15〜80Ω/□まで変化させたセルを試
作し、実施例で用いた液晶を注入した。これらの液晶素
子を駆動電圧Vpが25V一定で駆動したところ、5〜
40℃の温度範囲でシート抵抗30Ω/□以下のITO
を用いた液晶素子は問題なく駆動できたが、それ以上の
シート抵抗の液晶素子では、高温側で画素による光学特
性の差が見られた。
Reference Example 2 A cell having the same electrode configuration as that of Reference Example 1 and Example was manufactured by changing the sheet resistance of ITO from 15 to 80 Ω / □, and the liquid crystal used in Example was injected. . When these liquid crystal elements were driven at a constant driving voltage Vp of 25 V, the driving voltage Vp was 5 to 5.
ITO with a sheet resistance of 30Ω / □ or less in a temperature range of 40 ° C
Although the liquid crystal element using the liquid crystal element could be driven without any problem, in the liquid crystal element having a higher sheet resistance, a difference in optical characteristics depending on the pixel was observed on the high temperature side.

【0021】5℃において画素によって光学特性に差が
出てくる駆動パルス幅Pwと各液晶素子の最大時定数m
axとの関係を調べたところ、およそPw=3×rma
xであった。
At 5 ° C., the driving pulse width Pw at which the optical characteristics differ depending on the pixel and the maximum time constant m of each liquid crystal element
When the relationship with ax was examined, approximately Pw = 3 × rma
x.

【0022】この値は、本参考例で用いた強誘電性液晶
の場合の物であり、他の材料を用いれば異なった値とな
るが、実用上は時定数rmaxの2〜4倍であることが
望ましい。
This value is a value in the case of the ferroelectric liquid crystal used in the present embodiment. If another material is used, the value will be different, but practically it is 2 to 4 times the time constant rmax. It is desirable.

【0023】駆動電圧Vpあるいは駆動パルス幅Pwの
温度補償用回路は本実施例によって制限されるものでは
なく、例えば図9に示すようなサーミスタ91、92を
用いたブロッキング発信させる回路を、温度検出に用い
てクロック周波数を変化させ、駆動パルス幅の調整を行
ってもよく、通常、同じ目的で使用される回路構成なら
ばどのような構成でも良い。
The circuit for temperature compensation of the drive voltage Vp or the drive pulse width Pw is not limited by this embodiment. For example, a circuit for performing blocking transmission using thermistors 91 and 92 as shown in FIG. May be used to change the clock frequency to adjust the drive pulse width. Usually, any configuration may be used as long as it is a circuit configuration used for the same purpose.

【0024】[0024]

【発明の効果】本発明は、以上のような構成とすること
により以下のような効果が得られる。すなわち、温度変
化に対して駆動電圧及び駆動パルスを変化させることに
より最適な駆動電圧及び駆動パルス幅で液晶素子を駆
動することができる。
According to the present invention, the following effects can be obtained by adopting the above configuration. That is, the temperature change
The drive voltage and drive pulse
More, the liquid crystal device driving at an optimum driving voltage and the driving pulse width
Can move.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参考例1で用いた液晶の温度に対する駆動電圧
と駆動パルス幅の特性を示した図。
FIG. 1 is a diagram showing characteristics of a driving voltage and a driving pulse width with respect to a temperature of a liquid crystal used in Reference Example 1 .

【図2】駆動電圧を一定にした時に必要な駆動パルス幅
の温度に対する変化を示した図。
FIG. 2 is a diagram illustrating a change in a required driving pulse width with respect to a temperature when a driving voltage is fixed.

【図3】駆動パルス幅を一定にした時に必要な駆動電圧
の温度に対する変化を示した図。
FIG. 3 is a diagram showing a change in drive voltage with respect to temperature required when a drive pulse width is fixed.

【図4】参考例1で用いた駆動電圧の補正回路部分を示
した図。
FIG. 4 is a diagram showing a drive voltage correction circuit portion used in Reference Example 1 .

【図5】参考例1の温度に対する駆動電圧の補正特性を
示す図。
FIG. 5 is a diagram showing a correction characteristic of a drive voltage with respect to a temperature in Reference Example 1 .

【図6】参考例1で用いた駆動パルス幅の補正回路部分
を示した図。
FIG. 6 is a diagram showing a drive pulse width correction circuit portion used in Reference Example 1 .

【図7】参考例1の温度に対する駆動パルス幅の補正特
性を示す図。
FIG. 7 is a diagram showing a correction characteristic of a drive pulse width with respect to a temperature in Reference Example 1 .

【図8】本発明の実施例における回路の温度補償特性を
示す図。
FIG. 8 is a diagram showing a temperature compensation characteristic of a circuit according to the embodiment of the present invention .

【図9】参考例2で用いる駆動パルス幅調整回路を示す
図。
FIG. 9 is a diagram showing a drive pulse width adjustment circuit used in Reference Example 2 .

【符号の説明】[Explanation of symbols]

1・・・ツェナーダイオード 7・・・分圧用抵抗 8・・・分圧用抵抗 9・・・分圧用抵抗 10・・・温度検出用サーミスタ 13・・・温度検出用サーミスタ 91・・・温度検出用サーミスタ 92・・・温度検出用サーミスタ DESCRIPTION OF SYMBOLS 1 ... Zener diode 7 ... Resistor for voltage division 8 ... Resistor for voltage division 9 ... Resistor for voltage division 10 ... Thermistor for temperature detection 13 ... Thermistor for temperature detection 91 ... For temperature detection Thermistor 92 ・ ・ ・ Thermistor for temperature detection

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対向する基板内面に電極を有する一対の基
板間にメモリー性を有する液晶を挟持してなる液晶素子
の駆動方法において、前記液晶に印加する駆動電圧及び駆動パルス幅を温度変
化に応じて変化させ、前記駆動電圧は温度上昇に応じて
小さくなるように変化させ且つ温度上昇に対する前記駆
動電圧の変化量を大きくしてなり、前記駆動パルス幅は
温度上昇に応じて狭くなるように変化させ且つ温度上昇
に対する前記駆動パルス幅の変化量を小さくしてなる
とを特徴とする液晶素子の駆動方法。
1. A method of driving a liquid crystal element comprising a pair of substrates having electrodes on inner surfaces of opposed substrates, wherein a liquid crystal having a memory property is sandwiched between the substrates.
The driving voltage is changed according to the temperature rise.
And the drive against temperature rise.
The change amount of the dynamic voltage is increased, and the driving pulse width is
Change to narrow as temperature rises and temperature rise
A method for driving a liquid crystal element, wherein the amount of change in the driving pulse width with respect to (i) is reduced .
JP7232706A 1995-09-11 1995-09-11 Driving method of liquid crystal element Expired - Lifetime JP2616496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7232706A JP2616496B2 (en) 1995-09-11 1995-09-11 Driving method of liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7232706A JP2616496B2 (en) 1995-09-11 1995-09-11 Driving method of liquid crystal element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61189902A Division JPH0823634B2 (en) 1986-08-13 1986-08-13 Liquid crystal element driving method

Publications (2)

Publication Number Publication Date
JPH08101372A JPH08101372A (en) 1996-04-16
JP2616496B2 true JP2616496B2 (en) 1997-06-04

Family

ID=16943509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7232706A Expired - Lifetime JP2616496B2 (en) 1995-09-11 1995-09-11 Driving method of liquid crystal element

Country Status (1)

Country Link
JP (1) JP2616496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081154B2 (en) 2006-03-17 2011-12-20 Citizen Holdings Co., Ltd. Ferroelectric liquid crystal device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218300B2 (en) 2003-03-03 2007-05-15 Victor Company Of Japan, Ltd. Liquid crystal display and method of driving liquid crystal display
CN100392479C (en) * 2003-08-04 2008-06-04 富士通株式会社 Liquid crystal display device
KR100804119B1 (en) * 2005-12-13 2008-02-18 후지쯔 가부시끼가이샤 Liquid crystal display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104925A (en) * 1983-11-14 1985-06-10 Nippon Denso Co Ltd Driving device of liquid crystal element
JPS60123825A (en) * 1983-12-09 1985-07-02 Seiko Instr & Electronics Ltd Liquid crystal display element
JPS62118326A (en) * 1985-11-19 1987-05-29 Canon Inc Driving method for liquid crystal element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081154B2 (en) 2006-03-17 2011-12-20 Citizen Holdings Co., Ltd. Ferroelectric liquid crystal device

Also Published As

Publication number Publication date
JPH08101372A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
EP0524766B1 (en) Liquid crystal display device
US5644330A (en) Driving method for polymer stabilized and polymer free liquid crystal displays
JP4861632B2 (en) Liquid crystal display device and video signal correction method
ATE121204T1 (en) LIQUID CRYSTAL DEVICE.
JPH0296117A (en) Liquid crystal device
US5805131A (en) Ferroelectric display device with temperature compensation
JP2616496B2 (en) Driving method of liquid crystal element
US6888527B2 (en) Antiferroelectric liquid crystal display and method of driving the same
US6091392A (en) Passive matrix LCD with drive circuits at both ends of the scan electrode applying equal amplitude voltage waveforms simultaneously to each end
US5225919A (en) Optical modulation element including subelectrodes
JPH0823634B2 (en) Liquid crystal element driving method
KR101171181B1 (en) Liquid crystal display
EP0811179B1 (en) Liquid crystal display device
CA1252925A (en) Temperature compensation in active substrate electro- optic displays
JP3247519B2 (en) Adjustment method of liquid crystal display
JPH10307284A (en) Antiferroelectric liquid crystal display and its driving method
JP3332106B2 (en) Liquid crystal display
US11881189B1 (en) Display device and control method thereof
WO2023210287A1 (en) Device capable of switching between mirror state and image display state
US6369872B1 (en) Antiferroelectric liquid crystal display with liquid crystal layer structure control
JPH08304775A (en) Liquid crystal display device
JP3108943B2 (en) LCD panel
JP2007226049A (en) Liquid crystal display device and driving method therefor
JPH0843798A (en) Liquid crystal display device
JP2001506381A (en) Display device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term