JPH08236335A - Low-loss oxide magnetic material - Google Patents

Low-loss oxide magnetic material

Info

Publication number
JPH08236335A
JPH08236335A JP7062195A JP6219595A JPH08236335A JP H08236335 A JPH08236335 A JP H08236335A JP 7062195 A JP7062195 A JP 7062195A JP 6219595 A JP6219595 A JP 6219595A JP H08236335 A JPH08236335 A JP H08236335A
Authority
JP
Japan
Prior art keywords
mgo
oxide
less
powder
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7062195A
Other languages
Japanese (ja)
Inventor
Hiroshi Oyanagi
浩 大柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7062195A priority Critical patent/JPH08236335A/en
Publication of JPH08236335A publication Critical patent/JPH08236335A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To reduce the power loss of an oxide magnetic material and suppress its heat generation even in the high-frequency band of about 100kHz to about 1MHz, by making an Mn-Zn based ferrite contain an auxiliary component MgO of a specific wt.%, and further, by dissolving this MgO in a spinel crystal particles in the range of a specific ratio to a total MgO content. CONSTITUTION: The raw material powders of high-purity Fe2 O3 , Mn3 O4 and ZnO are weighed, mixed with each other and calcined. To the calcined powder, 0.02wt.% of SiO2 . 0.04wt.% of CaO and 0.3wt.% of MgO are added, and further, to the obtained powder, six kinds of auxiliary components are added by a predetermined combination, and then, these materials are mixed with each other to be crashed. After the obtained powder is mixed with a binder to be granulated, the granulated powder is molded to be burned. An MgO amount in a spinel phase crystal grain is represented by the weight ratio to an total MgO content, removing its grain boundary phase through a chemical etching. A low Pcv value is obtained in the range of this weight ratio having the value of 70-95%. In this manner, an oxide magnetic material having excellent performances as a low-loss transformer material for powder wupplies is obtained in 100kHz-1MHz.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低損失酸化物磁性材料
に関し、更に詳しくは、電源用トランス材等に用いられ
るスピネル型Mn−Zn系フェライトに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss oxide magnetic material, and more particularly to a spinel type Mn-Zn type ferrite used for a power transformer material or the like.

【0002】[0002]

【従来の技術】従来、電源用トランス材は、その駆動周
波数が200kHz程度以下で使用されてきた。しかし
ながら、近年の各種電子機器の高性能化及び小型化の進
展は著しく、それに伴い、電源用トランス材の、より一
層の高性能化、小型化が望まれている。それ故、メイン
トランス、あるいは平滑チョーク等や、電源用トランス
材に用いられるMn−Zn系フェライトの、より一層の
低損失化が望まれているところである。又、電子機器の
小型、軽量化のため、駆動周波数の高周波化に対する検
討も各方面で著しく、1MHz程度の電源も製品化され
つつあるのが現状である。
2. Description of the Related Art Conventionally, a power transformer material has been used at a driving frequency of about 200 kHz or less. However, in recent years, the progress of high performance and miniaturization of various electronic devices has been remarkable, and accordingly, further high performance and miniaturization of transformer materials for power supplies have been demanded. Therefore, it is desired to further reduce the loss of the main transformer, the smooth choke, or the like, or the Mn-Zn-based ferrite used for the power transformer material. In addition, in order to reduce the size and weight of electronic devices, a study on increasing the driving frequency is remarkable in various fields, and a power supply of about 1 MHz is being commercialized.

【0003】ところが、従来のMn−Zn系フェライト
を1MHzのような高周波で使用した場合、フェライト
の電力損失による発熱が著しく、その機能を有効に果た
すことができないという欠点を有していた。
However, when the conventional Mn-Zn type ferrite is used at a high frequency such as 1 MHz, there is a drawback that heat generation due to power loss of the ferrite is significant and the function cannot be effectively performed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、低周波から
高周波までの全域の使用に対して、Mn−Zn系フェラ
イトの低損失化の要望に応えるためになされたもので、
前記従来の技術の欠点を除去し、100KHz程度から
1MHz付近の高周波帯域においても、電力損失が小さ
く、発熱を有効に抑えた低損失酸化物磁性材料を提供す
ることにある。
DISCLOSURE OF THE INVENTION The present invention has been made in order to meet the demand for low loss of Mn-Zn type ferrite for use in the entire range from low frequency to high frequency.
It is an object of the present invention to provide a low-loss oxide magnetic material that eliminates the above-mentioned drawbacks of the prior art and has a small power loss even in a high frequency band of about 100 KHz to about 1 MHz and effectively suppresses heat generation.

【0005】[0005]

【課題を解決するための手段】一般的に、MgOは、主
成分と置換して、スピネル結晶粒子内に固溶するとされ
ているが、従来の技術において、その固溶量の明確な限
定は、未だなされていない。そこで、本発明者は、種々
の検討を行った結果、副成分であるMgOを、結晶粒子
内と共に、結晶粒界へも特定比率濃縮せしめることによ
り、前述した問題を解決し、より一層損失の低いMn−
Zn系フェライトが得られることを見い出したものであ
る。
Generally, MgO is said to substitute for the main component to form a solid solution in the spinel crystal grains. However, in the prior art, there is no clear limitation on the amount of solid solution. , Not yet done. Therefore, as a result of various studies, the present inventor solved the above-mentioned problem by concentrating MgO, which is a subcomponent, inside the crystal grains as well as at the crystal grain boundaries at a specific ratio, thereby further reducing the loss. Low Mn-
It has been found that a Zn-based ferrite can be obtained.

【0006】即ち、MgOをMgO総含有量の70〜9
5%の範囲でスピネル結晶粒子中に固溶せしめることに
より、コアロス特性が改善でき、電源用トランス材の高
性能化を実現できるものである。
That is, MgO is added to the total MgO content of 70-9.
By making a solid solution in the spinel crystal particles in the range of 5%, the core loss characteristics can be improved and the performance of the power transformer material can be improved.

【0007】即ち、本発明は、主成分として、30〜4
2mol%の酸化マンガン(MnO)、4〜19mol
%の酸化亜鉛(ZnO)、及び残部の酸化第二鉄(Fe
23)からなり、第一の副成分として、0.1wt%以
下(0を含まず)の酸化珪素(SiO2)、0.15wt
%以下(0を含まず)の酸化カルシウム(CaO)、更
に、第二の副成分として、0.2wt%以下(0を含ま
ず)の五酸化バナジウム(V25)、0.2wt%以下
(0を含まず)の酸化タンタル(Ta25)、0.1w
t%以下(0を含まず)の酸化ニオブ(Nb25)、
0.4wt%以下(0を含まず)の酸化ハフニウム(H
fO2)、0.4wt%以下(0を含まず)の酸化チタン
(TiO2)、0.4wt%以下(0を含まず)の酸化錫
(SnO2)のうち、少なくとも一種以上を含有する低
損失酸化物磁性材料において、更に、第三の副成分とし
て、0.2wt%以下(0を含まず)の酸化マグネシウ
ム(MgO)を含有させ、かつ、MgO総含有量の70
〜95wt%の範囲でスピネル結晶粒子中に固溶させた
ことを特徴とする低損失酸化物磁性材料である。
That is, in the present invention, the main component is 30 to 4
2 mol% manganese oxide (MnO), 4 to 19 mol
% Zinc oxide (ZnO), and the balance ferric oxide (Fe
2 O 3 ), and 0.1 wt% or less (not including 0) of silicon oxide (SiO 2 ) as the first subcomponent, 0.15 wt.
% Or less (not including 0) calcium oxide (CaO), and 0.2 wt% or less (not including 0) vanadium pentoxide (V 2 O 5 ), 0.2 wt% as a second subcomponent. the following tantalum oxide (not including 0) (Ta 2 O 5), 0.1w
t% or less (not including 0) niobium oxide (Nb 2 O 5 ),
Hafnium oxide (H) of 0.4 wt% or less (not including 0)
fO 2 ), 0.4 wt% or less (not including 0) titanium oxide (TiO 2 ), and 0.4 wt% or less (not including 0) tin oxide (SnO 2 ) at least one or more. The low loss oxide magnetic material further contains 0.2 wt% or less (not including 0) of magnesium oxide (MgO) as a third subcomponent, and the total MgO content is 70% or less.
It is a low loss oxide magnetic material characterized by being dissolved in spinel crystal grains in the range of up to 95 wt%.

【0008】[0008]

【作用】本発明において、副成分であるMgOを、スピ
ネル相結晶粒子内へ特定比率固溶させることにより、電
力損失特性の向上が図れたのは、焼結の昇温部におい
て、700℃以上の温度で、1vol%から大気(Ai
r)までの範囲で酸素分圧を調整し、かつ、冷却部にお
いて、50〜1000℃/Hrの各冷却速度に応じた酸
素分圧の制御を行うことにより、結晶粒子内と共に、結
晶粒界へもMgOを濃縮させることができ、結果とし
て、粒界相及びスピネル相結晶の比抵抗が共に向上し、
主に渦電流損失が低下したためと思われる。
In the present invention, the power loss characteristic was improved by dissolving MgO, which is a sub-component, in the spinel phase crystal grains in a specific ratio so that the temperature rise temperature of sintering was 700 ° C or more. At the temperature of 1 vol% to the atmosphere (Ai
By adjusting the oxygen partial pressure in the range up to r) and controlling the oxygen partial pressure according to each cooling rate of 50 to 1000 ° C./Hr in the cooling unit, the inside of the crystal grains and the crystal grain boundaries are controlled. It is possible to concentrate MgO even in the following, and as a result, both the specific resistance of the grain boundary phase and the spinel phase crystal are improved,
This is probably because the eddy current loss decreased.

【0009】本発明において、スピネル相結晶粒子中の
MgO固溶量をMgO総含有量の70〜95wt%とし
たのは、95wt%より多いMgOを結晶粒子中に固溶
せしめた場合には、粒界相の形成が不十分となり、粒界
相の比抵抗が著しく低下し、ヒステリシス損失と渦電流
損失が共に増大し、電力損失が劣化するためである。
又、70wt%未満でMgOを結晶粒子中に固溶せしめ
た場合においては、粒界相とスピネル相結晶粒子との組
成及び酸化度の差によって生じる磁気的な歪の影響や、
結晶粒子内の比抵抗の低下等により、電力損失特性のみ
ならず、透磁率の低下を招くためである。
In the present invention, the solid solution amount of MgO in the spinel phase crystal particles is set to 70 to 95 wt% of the total content of MgO, in the case where more than 95 wt% of MgO is dissolved in the crystal particles. This is because the formation of the grain boundary phase becomes insufficient, the specific resistance of the grain boundary phase significantly decreases, both hysteresis loss and eddy current loss increase, and the power loss deteriorates.
When MgO is dissolved in the crystal grains in an amount of less than 70 wt%, the influence of magnetic strain caused by the difference in composition and oxidation degree between the grain boundary phase and the spinel phase crystal grains, and
This is because not only the power loss characteristic but also the magnetic permeability is deteriorated due to the reduction of the specific resistance in the crystal particles.

【0010】更に、本発明においては、副成分として、
0.2wt%以下のV25、0.2wt%以下のTa
25、0.1wt%以下のNb25、0.4wt%以下の
HfO2、0.4wt%以下のTiO2、0.4wt%以下
のSnO2のうち、少なくとも一種以上を添加している
ため、電力損失を更に向上させることができる。しか
し、上記の添加量を越えた場合には、異常粒成長が生じ
る等して結晶粒径が不均一となり、比抵抗が著しく低下
し、ヒステリシス損失と渦電流損失が共に増大し、電力
損失が増加する。
Further, in the present invention, as an accessory component,
V 2 O 5 of 0.2 wt% or less, Ta of 0.2 wt% or less
At least one of 2 O 5 , 0.1 wt% or less of Nb 2 O 5 , 0.4 wt% or less of HfO 2 , 0.4 wt% or less of TiO 2 , and 0.4 wt% or less of SnO 2 is added. Therefore, the power loss can be further improved. However, when the amount exceeds the above-mentioned addition amount, the crystal grain size becomes non-uniform due to abnormal grain growth, etc., the specific resistance is remarkably lowered, the hysteresis loss and the eddy current loss are both increased, and the power loss is increased. To increase.

【0011】[0011]

【実施例】以下、本発明に係る低損失酸化物磁性材料の
実施例について説明する。
EXAMPLES Examples of the low loss oxide magnetic material according to the present invention will be described below.

【0012】(実施例1)高純度のFe23,Mn
34,ZnOの原料粉末を、53.2mol%のFe2
3、36.8mol%のMnO、10.0mol%のZn
Oとなるように秤量し、これらの粉末をボールミルにて
混合した後、950℃で仮焼した。
(Example 1) High purity Fe 2 O 3 and Mn
The raw material powder of 3 O 4 and ZnO was mixed with 53.2 mol% of Fe 2 O.
3 , 36.8 mol% MnO, 10.0 mol% Zn
The powder was weighed so as to be O, and these powders were mixed by a ball mill and then calcined at 950 ° C.

【0013】次に、この仮焼粉末に0.02wt%のS
iO2、0.04wt%のCaO、及び0.3wt%以下
のMgOを添加し、更に、6種類の副成分、即ち、0.
3wt%以下のV25、0.3wt%以下のTa25
0.2wt%以下のNb25、0.5wt%以下のHfO
2、0.5wt%以下のTiO2、0.5wt%以下のSn
2を所定の組み合せにて添加して、更に、ボールミル
で混合、解砕を行った。
Next, 0.02 wt% of S was added to the calcined powder.
iO 2 , 0.04 wt% CaO, and 0.3 wt% or less MgO are added, and further six kinds of subcomponents, that is, 0.02%.
3 wt% or less of V 2 O 5 , 0.3 wt% or less of Ta 2 O 5 ,
Nb 2 O 5 of 0.2 wt% or less, HfO of 0.5 wt% or less
2 , 0.5 wt% or less TiO 2 , 0.5 wt% or less Sn
O 2 was added in a predetermined combination, and further mixed and crushed with a ball mill.

【0014】又、比較試料として、Fe23,MnO,
ZnO,SnO2,CaOの組成は、上記と同様で、上
記6種類の副成分のみを所定の組み合わせで添加して、
混合、解砕した粉末も作製した。
As comparative samples, Fe 2 O 3 , MnO,
The composition of ZnO, SnO 2 , and CaO is the same as above, and only the above 6 kinds of subcomponents are added in a predetermined combination,
A mixed and crushed powder was also prepared.

【0015】これらの得られた粉末にバインダーを混合
し造粒した後、2ton/cm2で成形し、これらの成
形体を焼成温度1200〜1400℃、酸素分圧1〜1
0vol%、冷却速度50〜1000℃/Hrの条件下
で焼成した。
A binder is mixed with these obtained powders and granulated, and then molded at 2 ton / cm 2 , and these molded bodies are fired at a temperature of 1200 to 1400 ° C. and an oxygen partial pressure of 1 to 1.
Firing was performed under the conditions of 0 vol% and a cooling rate of 50 to 1000 ° C./Hr.

【0016】表1は、焼成条件を変化させた中で、周波
数100kHz、磁束密度2000G、温度100℃に
おいて、最も優れた電力損失(以下、Pcvと称す)を
各試料毎に示したものである。
Table 1 shows, for each sample, the most excellent power loss (hereinafter referred to as Pcv) at a frequency of 100 kHz, a magnetic flux density of 2000 G, and a temperature of 100 ° C. while changing the firing conditions. .

【0017】[0017]

【表1】 [Table 1]

【0018】表1のスピネル相結晶粒子内のMgO量
は、化学的なエッチングにより粒界相を除去したスピネ
ル相結晶粒子内の含有量を、総含有量に対する比率(w
t%)で示した値である。なお、表1中には、本発明の
範囲内の試料のみを示した。
The MgO content in the spinel phase crystal particles in Table 1 is the ratio (w) of the content in the spinel phase crystal particles from which the grain boundary phase is removed by chemical etching to the total content.
t%). In addition, in Table 1, only the samples within the scope of the present invention are shown.

【0019】表1より、本発明の試料は、比較試料より
も著しく低いPcv値が得られていることがわかる。
From Table 1, it can be seen that the sample of the present invention has a significantly lower Pcv value than the comparative sample.

【0020】(実施例2)高純度のFe23,Mn
34,ZnOの原料粉末を、53.2mol%のFe2
3、36.8mol%のMnO、10.0mol%のZn
Oとなるように秤量し、これらの粉末をボールミルにて
混合した後、950℃で仮焼した。
Example 2 High-purity Fe 2 O 3 and Mn
Raw material powder of 3 O 4 and ZnO was added to 53.2 mol% of Fe 2 O.
3 , 36.8 mol% MnO, 10.0 mol% Zn
The powder was weighed so as to be O, and these powders were mixed by a ball mill and then calcined at 950 ° C.

【0021】次に、この仮焼粉末に0.02wt%のS
iO2、0.05wt%のCaO、及び0.03wt%の
Nb25、及び0〜0.3wt%のMgOを添加して、
更に、ボールミルで混合、解砕を行った。
Next, 0.02 wt% of S was added to the calcined powder.
iO 2 , 0.05 wt% CaO, and 0.03 wt% Nb 2 O 5 and 0 to 0.3 wt% MgO were added,
Further, they were mixed and crushed with a ball mill.

【0022】次に、得られた粉末にバインダーを混合し
造粒した後、2ton/cm2で成形し、これらの成形
体を焼成温度1200〜1400℃、酸素分圧1〜10
vol%、冷却速度10〜1000℃/Hrの条件下で
焼成した。
Next, the obtained powder is mixed with a binder and granulated, and then molded at 2 ton / cm 2 , and these molded bodies are fired at a temperature of 1200 to 1400 ° C. and an oxygen partial pressure of 1 to 10.
It was fired under the conditions of vol% and a cooling rate of 10 to 1000 ° C./Hr.

【0023】図1は、MgO含有量を変化させた時に得
られた各試料の100kHz、2000G、100℃の
条件でのPcv、及び100kHz、常温の条件での初
透磁率(以下、μiと称す)の値を示す図であり、各試
料毎に最も低いPcv値が得られたスピネル相結晶粒子
内のMgO量を示している。なお、グラフ中のプロット
点付近の数値は、MgO総含有量中のスピネル相結晶粒
子内のMgO量を示している。
FIG. 1 shows the Pcv of each sample obtained when the MgO content was changed at 100 kHz, 2000 G, and 100 ° C., and the initial magnetic permeability at 100 kHz and room temperature (hereinafter referred to as μi). ) Is a graph showing the value of), and shows the amount of MgO in the spinel phase crystal particles from which the lowest Pcv value was obtained for each sample. The numerical values near the plot points in the graph indicate the amount of MgO in the spinel phase crystal particles in the total MgO content.

【0024】図1より、MgOの含有量が0〜0.20
wt%(0wt%を除く)の時に優れた磁気特性が得ら
れていることがわかる。
From FIG. 1, the content of MgO is 0 to 0.20.
It can be seen that excellent magnetic properties are obtained at wt% (excluding 0 wt%).

【0025】(実施例3)高純度のFe23,Mn
34,ZnOの原料粉末を、53.2mol%のFe2
3、36.8mol%のMnO、10.0mol%のZn
Oとなるように秤量し、これらの粉末をボールミルにて
混合した後、950℃で仮焼した。
(Example 3) High-purity Fe 2 O 3 and Mn
The raw material powder of 3 O 4 and ZnO was mixed with 53.2 mol% of Fe 2 O.
3 , 36.8 mol% MnO, 10.0 mol% Zn
The powder was weighed so as to be O, and these powders were mixed by a ball mill and then calcined at 950 ° C.

【0026】次に、この仮焼粉末に0.02wt%のS
iO2、0.05wt%のCaO、0.1wt%のTi
2、及び0.03wt%のMgOを添加して、更に、ボ
ールミルで混合、解砕を行った。
Next, 0.02 wt% of S was added to the calcined powder.
iO 2 , 0.05 wt% CaO, 0.1 wt% Ti
O 2 and 0.03 wt% of MgO were added, and further mixed and crushed by a ball mill.

【0027】次に、得られた粉末にバインダーを混合し
造粒した後、2ton/cm2で成形し、これらの成形
体を焼成温度1200〜1400℃、酸素分圧1〜10
vol%、冷却速度50〜1000℃/Hrの条件下で
焼成した。
Next, the obtained powder is mixed with a binder and granulated and then molded at 2 ton / cm 2 , and these molded bodies are fired at a temperature of 1200 to 1400 ° C. and an oxygen partial pressure of 1 to 10.
It was fired under the conditions of vol% and cooling rate of 50 to 1000 ° C./Hr.

【0028】図2は、スピネル相結晶粒子内のMgO含
有量を変化させた時に得られた各試料の100kHz、
2000G、100℃の条件でのPcv、及び100k
Hz、常温の条件でのμi値を示している。
FIG. 2 shows 100 kHz of each sample obtained when the MgO content in the spinel phase crystal grains was changed,
2000g, Pcv at 100 ° C, and 100k
It shows the μi value under the conditions of Hz and room temperature.

【0029】図2のスピネル相結晶粒子内のMgO量
は、化学的なエッチングにより粒界相を除去したスピネ
ル相結晶粒子内の含有量を、総含有量に対する比率
(%)で示した値である。
The amount of MgO in the spinel phase crystal particles of FIG. 2 is a value which indicates the content in the spinel phase crystal particles from which the grain boundary phase has been removed by chemical etching, as a ratio (%) to the total content. is there.

【0030】図2より、MgOの総含有量の70〜95
%の範囲で、MgOをスピネル相結晶粒子中に固溶せし
めた試料は、低いPcv値が得られていることがわか
る。
From FIG. 2, the total content of MgO is 70 to 95.
It can be seen that the sample in which MgO is solid-solved in the spinel phase crystal particles has a low Pcv value in the range of%.

【0031】(実施例4)高純度のFe23,Mn
34,ZnOの原料粉末を、53mol%のFe23
39mol%のMnO、8mol%のZnOとなるよう
に秤量し、これらの粉末をボールミルにて混合した後、
800℃で仮焼した。
Example 4 High-purity Fe 2 O 3 and Mn
The raw material powder of 3 O 4 and ZnO was replaced with 53 mol% of Fe 2 O 3 ,
After weighing so as to have 39 mol% MnO and 8 mol% ZnO and mixing these powders with a ball mill,
It was calcined at 800 ° C.

【0032】次に、この仮焼粉末に0.03wt%のS
iO2、0.10wt%のCaO、0.20wt%のHf
2、及び0.02wt%のMgOを添加して、更に、ボ
ールミルで混合、解砕を行った。
Next, 0.03 wt% of S was added to the calcined powder.
iO 2 , 0.10 wt% CaO, 0.20 wt% Hf
O 2 and 0.02 wt% of MgO were added, and further mixed and crushed by a ball mill.

【0033】次に、得られた粉末にバインダーを混合し
造粒した後、2ton/cm2で成形し、これらの成形
体を焼成温度1200〜1400℃、酸素分圧3vol
%以下、冷却速度50〜1000℃/Hrの条件下で焼
成した。
Next, the obtained powder is mixed with a binder and granulated, and then molded at 2 ton / cm 2 , and these molded bodies are fired at a temperature of 1200 to 1400 ° C. and an oxygen partial pressure of 3 vol.
% Or less, and the firing rate was 50 to 1000 ° C./Hr.

【0034】図3は、スピネル相結晶粒子内のMgO含
有量を変化させた時に得られた各試料の1MHz、50
0G、60℃の条件でのPcvの値を示している。
FIG. 3 is a graph of 50 MHz at 1 MHz of each sample obtained when the MgO content in the spinel phase crystal grains was changed.
The value of Pcv under the conditions of 0 G and 60 ° C. is shown.

【0035】図3のスピネル相結晶粒子内のMgO量
は、化学的なエッチングにより粒界相を除去したスピネ
ル相結晶粒子内の含有量を、総含有量に対する比率
(%)で示した値である。
The amount of MgO in the spinel phase crystal particles of FIG. 3 is a value which shows the content in the spinel phase crystal particles from which the grain boundary phase has been removed by chemical etching as a ratio (%) to the total content. is there.

【0036】図3より、MgO総含有量の70〜95%
の範囲で、MgOをスピネル相結晶粒子中に固溶せしめ
た試料は、低いPcv値が得られていることがわかる。
From FIG. 3, 70 to 95% of the total MgO content
It is understood that, in the range of 1, the sample in which MgO is dissolved in the spinel phase crystal particles has a low Pcv value.

【0037】[0037]

【発明の効果】以上、述べた如く、本発明により、10
0kHz〜1MHzにおいて、従来よりも低損失で、電
源用トランス材として優れた性能を示す酸化物磁性材料
を得ることができた。
As described above, according to the present invention, 10
At 0 kHz to 1 MHz, it was possible to obtain an oxide magnetic material having a lower loss than conventional and exhibiting excellent performance as a power transformer material.

【図面の簡単な説明】[Brief description of drawings]

【図1】MgO含有量とPcv及びμiとの関係を示す
図。図1(a)はMgO含有量とμiとの関係を示す
図。図1(b)はMgO含有量とPcvとの関係を示す
図。
FIG. 1 is a graph showing the relationship between MgO content and Pcv and μi. FIG. 1A is a diagram showing the relationship between the MgO content and μi. FIG. 1B is a diagram showing the relationship between the MgO content and Pcv.

【図2】スピネル相結晶粒子内のMgO量とPcv及び
μiとの関係を示す図。図2(a)はスピネル相結晶粒
子内のMgO量とμiとの関係を示す図。図2(b)は
スピネル相結晶粒子内のMgO量とPcvとの関係を示
す図。
FIG. 2 is a diagram showing the relationship between the amount of MgO in spinel phase crystal particles and Pcv and μi. FIG. 2A is a diagram showing the relationship between the amount of MgO in the spinel phase crystal particles and μi. FIG. 2B is a diagram showing the relationship between the MgO amount in the spinel phase crystal particles and Pcv.

【図3】スピネル相結晶粒子内のMgO量とPcvとの
関係を示す図。
FIG. 3 is a diagram showing the relationship between the amount of MgO in spinel phase crystal particles and Pcv.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主成分として、30〜42mol%の酸
化マンガン(MnO)、4〜19mol%の酸化亜鉛
(ZnO)、及び残部の酸化第二鉄(Fe23)からな
り、第一の副成分として、0.1wt%以下(0を含ま
ず)の酸化珪素(SiO2)、0.15wt%以下(0を
含まず)の酸化カルシウム(CaO)、更に、第二の副
成分として、0.2wt%以下(0を含まず)の五酸化
バナジウム(V25)、0.2wt%以下(0を含ま
ず)の酸化タンタル(Ta25)、0.1wt%以下
(0を含まず)の酸化ニオブ(Nb25)、0.4wt
%以下(0を含まず)の酸化ハフニウム(HfO2)、
0.4wt%以下(0を含まず)の酸化チタン(Ti
2)、0.4wt%以下(0を含まず)の酸化錫(Sn
2)のうち、少なくとも一種以上を含有する低損失酸
化物磁性材料において、更に、第三の副成分として、
0.2wt%以下(0を含まず)の酸化マグネシウム
(MgO)を含有させ、かつ、MgO総含有量の70〜
95wt%の範囲でスピネル結晶粒子中に固溶させたこ
とを特徴とする低損失酸化物磁性材料。
1. A main component comprising 30 to 42 mol% of manganese oxide (MnO), 4 to 19 mol% of zinc oxide (ZnO), and the balance of ferric oxide (Fe 2 O 3 ). As a sub-component, 0.1 wt% or less (not including 0) silicon oxide (SiO 2 ), 0.15 wt% or less (not including 0) calcium oxide (CaO), and further as a second sub-component, Vanadium pentoxide (V 2 O 5 ) of 0.2 wt% or less (not including 0), tantalum oxide (Ta 2 O 5 ) of 0.2 wt% or less (not including 0), 0.1 wt% or less (0 Niobium oxide (Nb 2 O 5 ), 0.4 wt.
% Or less (not including 0) hafnium oxide (HfO 2 ),
Titanium oxide (Ti not exceeding 0.4 wt%)
O 2 ), 0.4 wt% or less (not including 0) tin oxide (Sn)
O 2 ), in a low-loss oxide magnetic material containing at least one or more of
Magnesium oxide (MgO) of 0.2 wt% or less (not including 0) is contained, and the total content of MgO is 70 to 70%.
A low loss oxide magnetic material characterized by being solid-solved in spinel crystal grains in the range of 95 wt%.
JP7062195A 1995-02-23 1995-02-23 Low-loss oxide magnetic material Pending JPH08236335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7062195A JPH08236335A (en) 1995-02-23 1995-02-23 Low-loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7062195A JPH08236335A (en) 1995-02-23 1995-02-23 Low-loss oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH08236335A true JPH08236335A (en) 1996-09-13

Family

ID=13193133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7062195A Pending JPH08236335A (en) 1995-02-23 1995-02-23 Low-loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH08236335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229626A (en) * 2014-06-06 2015-12-21 Jfeケミカル株式会社 Mn-Zn-Co FERRITE AND PRODUCTION METHOD THEREOF
CN114608320A (en) * 2022-02-16 2022-06-10 江苏省福达特种钢有限公司 Control system and method for large-section high-speed steel production process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229626A (en) * 2014-06-06 2015-12-21 Jfeケミカル株式会社 Mn-Zn-Co FERRITE AND PRODUCTION METHOD THEREOF
CN114608320A (en) * 2022-02-16 2022-06-10 江苏省福达特种钢有限公司 Control system and method for large-section high-speed steel production process
CN114608320B (en) * 2022-02-16 2023-11-21 江苏省福达特种钢有限公司 Control system and method for large-section high-speed steel production process

Similar Documents

Publication Publication Date Title
JP5546135B2 (en) MnZn-based ferrite core and manufacturing method thereof
JP2001068326A (en) MnZn BASED FERRITE
JP4279995B2 (en) MnZn ferrite
US6627103B2 (en) Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
JP2008143744A (en) MnCoZn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP3247930B2 (en) Mn-Zn soft ferrite
JPH07297020A (en) Ferrite and ferrite core for power supply
JP4750563B2 (en) MnCoZn ferrite and transformer core
JPH113813A (en) Ferrite material
JPH08236336A (en) Low-loss oxide magnetic material
JPH08236335A (en) Low-loss oxide magnetic material
JP3790606B2 (en) Mn-Co ferrite material
JP3597665B2 (en) Mn-Ni ferrite material
JP3654303B2 (en) Low loss magnetic material
JPH0558721A (en) Manganese-zinc ferrite and magnet core
JPH10270231A (en) Mn-ni ferrite material
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPH09180926A (en) Low loss oxide magnetic material
JPH10177912A (en) Low-loss oxide magnetic material and manufacture thereof
JP2007197255A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material
JP3499283B2 (en) High permeability oxide magnetic material
JPH05299230A (en) Manufacturing method for low loss oxide magnetic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224