JPH05299230A - Manufacturing method for low loss oxide magnetic material - Google Patents

Manufacturing method for low loss oxide magnetic material

Info

Publication number
JPH05299230A
JPH05299230A JP4129640A JP12964092A JPH05299230A JP H05299230 A JPH05299230 A JP H05299230A JP 4129640 A JP4129640 A JP 4129640A JP 12964092 A JP12964092 A JP 12964092A JP H05299230 A JPH05299230 A JP H05299230A
Authority
JP
Japan
Prior art keywords
temperature
power loss
magnetic material
range
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4129640A
Other languages
Japanese (ja)
Inventor
Takashi Yamaya
孝志 山家
Makoto Saito
斎藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4129640A priority Critical patent/JPH05299230A/en
Publication of JPH05299230A publication Critical patent/JPH05299230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To manufacture the oxide magnetic material at low power loss by a method wherein the temperature descending rate of said material containing V2O5, Nb2O5 in addition to the subcomponents is to be fluctuated within the range from the sustained temperature to the transfer temperature to the nitrogen 100% atmosphere. CONSTITUTION:Within the manufacturing method of low loss oxide magnetic material containing 30-42mol% of MnO, 4-19mol% of ZnO and residual mol% of Fe2O3 as the main components as well as 0.02-0.15wt.% of CaO and 0.005-0.10wt.% of SiO2 are the subcomponents furthermore, not exceeding 0.3wt% of Nb2O5 and not exceeding 0.2wt.% of V2O5 as additional subcomponents, the temperature descending rate in the sintering step is to be controlled at not exceeding 250 deg.C/hour within the temperature range from the sustained temperature to the transfer temperature to the nitrogen 100% atmosphere. Through these procedures, the temperature minimizing the power loss PB can be freely selected within the range of 20 deg.C-120 deg.C furthermore enabling the power loss PB value to be extenuated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電源トランス等に用いら
れる低損失酸化物磁性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide magnetic material used in power transformers and the like.

【0002】[0002]

【従来の技術】従来のスイッチング電源用変圧器に於い
ては、スイッチング周波数として、専ら10〜200K
Hz程度のものが使用されており、これに対応すべき低
損失磁性材料として、主成分として30〜42モル%の
一酸化マンガン(MnO)、4〜19モル%の酸化亜鉛
(ZnO)及び残部として酸化第二鉄(Fe23)を含
み、副成分として0.02〜0.15重量%の酸化カル
シウム(CaO)と0.005〜0.100重量%の二
酸化ケイ素(SiO2)とを含むMn−Zn系スピンネ
ル型フェライトがすでに開発されている。一方、低損失
酸化物磁性材料をスイッチング電源用の変圧器の磁心材
料として使用する場合、電力損失PBの温度特性を考慮
し、設計するのが一般である。即ちスイッチング電源を
使用する周囲の温度、電力損失による磁心の発熱を考慮
し電力損失PBが最小値となる温度をあらかじめ決めな
ければならない。
2. Description of the Related Art A conventional switching power supply transformer has a switching frequency of 10 to 200K.
A low loss magnetic material corresponding to this is used as a low loss magnetic material. As a main component, 30 to 42 mol% of manganese monoxide (MnO), 4 to 19 mol% of zinc oxide (ZnO) and the balance are used. Containing ferric oxide (Fe 2 O 3 ) as an auxiliary component, and 0.02 to 0.15% by weight of calcium oxide (CaO) and 0.005 to 0.100% by weight of silicon dioxide (SiO 2 ) as secondary components. An Mn-Zn based spinel ferrite containing Al has been already developed. On the other hand, when a low loss oxide magnetic material is used as a magnetic core material of a transformer for a switching power supply, it is generally designed in consideration of the temperature characteristic of the power loss P B. That is, the temperature at which the power loss P B becomes the minimum value must be determined in advance in consideration of the ambient temperature in which the switching power supply is used and the heat generation of the magnetic core due to the power loss.

【0003】電力損失PBの最小値となる温度は従来、
主成分となる一酸化マンガン(MnO)、酸化亜鉛(Z
nO)及び酸化第二鉄(Fe23)の配合比、あるいは
イオンの価数が4価のチタンTi4+、スズSn4+等を添
加することにより決定されたが電力損失の最小値となる
値が大きくなるという問題があった。また前記従来組成
のフェライトの場合焼結過程に於ける降温速度を制御す
ることによりPBの最小値を増大させることなく最小と
なる温度を変化させることは可能であるが、その値自体
の改善はできなかった。
Conventionally, the temperature at which the power loss P B has a minimum value is
Manganese monoxide (MnO), zinc oxide (Z
nO) and ferric oxide (Fe 2 O 3 ) compounding ratios, or the valence of ions was determined by adding tetravalent titanium Ti 4+ , tin Sn 4+, etc., but the minimum power loss There was a problem that the value of becomes large. Further, in the case of ferrite having the above-mentioned conventional composition, it is possible to change the minimum temperature of P B without increasing the minimum value of P B by controlling the temperature lowering rate in the sintering process, but the value itself is improved. I couldn't.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明の技術
的課題は、電力損失の最小値となる温度を20〜120
℃の範囲内で自由に設定でき、該温度を特に有用な高温
側に設定した時電力損失をさらに小さくでき、鉄損が小
さく発熱の少ない低損失酸化物磁性材料の製造方法を提
供することにある。
Therefore, the technical problem of the present invention is that the temperature at which the power loss becomes the minimum value is 20 to 120.
To provide a method for producing a low loss oxide magnetic material which can be freely set within a range of 0 ° C., can further reduce power loss when the temperature is set to a particularly useful high temperature side, and has a small iron loss and a small heat generation. is there.

【0005】[0005]

【課題を解決するための手段】本発明によれば、主成分
として30〜42モル%の一酸化マンガン(MnO)、
4〜19%の酸化亜鉛(ZnO)及び残部として酸化第
二鉄(Fe23)を含み、第2成分として、0.02〜
0.15重量%の酸化カルシウム(CaO)と0.00
5〜0.10重量%の二酸化ケイ素(SiO2)とを含
む酸化物磁性材料に於いて、さらに副成分として0.3
重量%以下(0を含まず)の五酸化ニオブ(Nb25
及び0.2重量%以下(0を含まず)の五酸化バナジウ
ム(V25)を添加し、焼結過程に於ける高温速度を保
持温度から窒素100%の雰囲気への切り替え温度まで
の温度範囲内で250℃/時間以下(0は含まず)で制
御することにより、電力損失PBの最小値となる温度を
20℃〜120℃の範囲で変化させたとき、高温側のも
のほど電力損失PBの値が小さくできることを特徴とす
る低損失酸化物磁性材料を提供するものである。
According to the present invention, 30 to 42 mol% of manganese monoxide (MnO) as a main component,
It contains 4 to 19% of zinc oxide (ZnO) and the balance of ferric oxide (Fe 2 O 3 ), and the second component is 0.02 to 0.02.
0.15 wt% calcium oxide (CaO) and 0.00
In an oxide magnetic material containing 5 to 0.10% by weight of silicon dioxide (SiO 2 ), 0.3
Weight% or less (not including 0) niobium pentoxide (Nb 2 O 5 ).
And 0.2% by weight or less (not including 0) of vanadium pentoxide (V 2 O 5 ) was added, and the high temperature rate in the sintering process was changed from the holding temperature to the temperature at which the atmosphere was switched to 100% nitrogen. By controlling the temperature at the minimum value of the power loss P B in the range of 20 ° C. to 120 ° C. by controlling at 250 ° C./hour or less (not including 0) within the temperature range, the higher temperature side becomes The present invention provides a low-loss oxide magnetic material characterized in that the value of power loss P B can be reduced.

【0006】[0006]

【作用】本発明は、副成分として二酸化ケイ素(SiO
2)と酸化カルシウム(CaO)を含む従来組成のMn
−Znフェライトに更に副成分として五酸化ニオブ(N
25)、五酸化バナジウム(V25)を添加し、焼結
時の降温速度を保持温度から窒素100%の雰囲気へ切
替える温度までの温度範囲で制御することにより鉄イオ
ンの2価と3価の比率Fe2+/Fe3+及びマンガンイオ
ンの2価と3価の比率Mn2+/Mn3+を制御し、PB
最小となる温度を任意に変化させることが可能となり、
更にNb25及びV25の結晶粒界への析出濃縮度が高
まることにより粒界の比抵抗を高めると共に結晶粒の成
長を均一とすることにより、高温側のうず電流損失及
び、ヒステリリシス損失を更に低下することが可能とな
った。
In the present invention, silicon dioxide (SiO 2) is used as an accessory component.
2 ) and Mn of conventional composition containing calcium oxide (CaO)
-Zn ferrite with niobium pentoxide (N
b 2 O 5 ) and vanadium pentoxide (V 2 O 5 ) are added, and the rate of temperature decrease during sintering is controlled in the temperature range from the holding temperature to the temperature at which the atmosphere is switched to 100% nitrogen, and The ratio of trivalent to trivalent Fe 2+ / Fe 3+ and the divalent to trivalent ratio Mn 2+ / Mn 3+ of manganese ions can be controlled to arbitrarily change the minimum P B temperature. Next to
Furthermore, by increasing the precipitation concentration of Nb 2 O 5 and V 2 O 5 to the crystal grain boundary, the resistivity of the grain boundary is increased and the growth of the crystal grain is made uniform, so that eddy current loss on the high temperature side and It has become possible to further reduce the hysteresis loss.

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0008】主成分として、52.5モル%の酸化第二
鉄(Fe23)、36.5モル%の一酸化マンガン(M
nO)及び10モル%の酸化亜鉛(ZnO)を含有し、
副成分として0.015重量%の二酸化ケイ素(SiO
2)と0.050重量%の酸化カルシウム(CaO)と
0.040重量%の五酸化ニオブ(Nb25)と、0.
050重量%の五酸化バナジウム(V25)を含有し、
これらを混合し、予焼し造粒する。造粒した粉末を外径
30mm、内径18mm、高さ7mmのリング状に成形
し、酸素濃度1at%、温度1300℃において焼結し
た。窒素100%への切り替え温度を1150℃とし、
1300℃から1150℃までの降温速度を250℃/
時間、150℃/時間、100℃/時間、50℃/時
間、25℃/時間、15℃/時間、5℃/時間に変えた
ときの電力損失が最小となる温度と電力損失の値を表1
に示した。
As main components, 52.5 mol% ferric oxide (Fe 2 O 3 ) and 36.5 mol% manganese monoxide (M
nO) and 10 mol% zinc oxide (ZnO),
As an accessory component, 0.015% by weight of silicon dioxide (SiO 2
2 ), 0.050 wt% calcium oxide (CaO), and 0.040 wt% niobium pentoxide (Nb 2 O 5 ).
Containing 050 wt% vanadium pentoxide (V 2 O 5 ),
These are mixed, pre-fired and granulated. The granulated powder was molded into a ring shape having an outer diameter of 30 mm, an inner diameter of 18 mm and a height of 7 mm, and was sintered at an oxygen concentration of 1 at% and a temperature of 1300 ° C. The switching temperature to 100% nitrogen was set to 1150 ° C,
Temperature decrease rate from 1300 ℃ to 1150 ℃ is 250 ℃ /
Shows the temperature and power loss values that minimize power loss when changed to hours, 150 ° C / hour, 100 ° C / hour, 50 ° C / hour, 25 ° C / hour, 15 ° C / hour, 5 ° C / hour. 1
It was shown to.

【0009】[0009]

【表1】 [Table 1]

【0010】降温速度が遅くなるにつれて、電力損失が
最小となる温度は高温側へ移動し、なおかつその値も小
さくなっている。又図1に、降温速度250℃/時間、
100℃/時間、15℃/時間の場合の電力損失の温度
特性を示す。以上のことから、降温温度が遅くなるにつ
れて最小となる温度が高温側へ移動し、同時にその値も
低くなっていくことがわかる。なお、降温速度が250
℃/時間を越えると、電力損失の最小値の値が大きくな
り好ましくない。次に表2に前述の焼結条件について降
温速度を15℃/時間とした時の第2成分添加量と電力
損失PBの値を示した。
As the cooling rate becomes slower, the temperature at which the power loss becomes the minimum shifts to the high temperature side, and the value also becomes smaller. Moreover, in FIG. 1, the temperature decreasing rate is 250 ° C./hour,
The temperature characteristics of power loss at 100 ° C./hour and 15 ° C./hour are shown. From the above, it can be seen that the minimum temperature moves to the higher temperature side as the temperature lowering temperature becomes slower, and at the same time, the value also decreases. The cooling rate is 250
If it exceeds ° C / hour, the minimum value of power loss becomes large, which is not preferable. Next, Table 2 shows the values of the second component addition amount and the power loss P B when the temperature lowering rate was 15 ° C./hour under the above-mentioned sintering conditions.

【0011】[0011]

【表2】 [Table 2]

【0012】五酸化バナジウム(V25)と五酸化ニオ
ブ(Nb25)を複合添加した材料は、本焼結条件によ
り電力損失PBの最小となる温度は100℃となり、最
適添加量(No4)においては従来材(No1)に対し
約40%電力損失を低減可能である。五酸化バナジウム
(V25)0.3重量%(No6)、五酸化ニオブ(N
25)0.4重量%(No8)においては結晶粒内に
これらの成分を主としたアモルファス、多結晶体等の異
相が発生し、電力損失が大きくなっている。
For the material in which vanadium pentoxide (V 2 O 5 ) and niobium pentoxide (Nb 2 O 5 ) are added in combination, the temperature at which the power loss P B becomes the minimum is 100 ° C. under the main sintering conditions, and the optimum addition is made. In the amount (No4), the power loss can be reduced by about 40% compared with the conventional material (No1). Vanadium pentoxide (V 2 O 5 ) 0.3 wt% (No 6), niobium pentoxide (N
In the case of 0.4 wt% of b 2 O 5 (No. 8), different phases such as amorphous or polycrystal mainly composed of these components are generated in the crystal grains, resulting in a large power loss.

【0013】尚、五酸化バナジウム(V25)と五酸化
ニオブ(Nb25)を最適添加した試料(No4)の諸
特性を従来例(No1)と比較したものを表3に示す。
[0013] Incidentally, shows a comparison with five vanadium oxide (V 2 O 5) and five conventional example and various properties of the niobium oxide (Nb 2 O 5) The optimum addition samples (No4) (No1) Table 3 .

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【発明の効果】以上の説明に示すように、副成分として
二酸化ケイ素(SiO2)、酸化カルシウム(CaO)
以外に五酸化バナジウム(V25)、五酸化ニオブ(N
25)を含有した材料を保持温度から窒素100%に
切り替える温度までの範囲で、降温速度を変えることに
より、電力損失の最小値の値を20〜120℃の範囲内
で高温側へ変化させると同時に電力損失PBの小さい材
料が得られ、変圧器の小型化、軽量化を計ることが出来
る。
As described above, silicon dioxide (SiO 2 ) and calcium oxide (CaO) are used as auxiliary components.
Besides, vanadium pentoxide (V 2 O 5 ) and niobium pentoxide (N
In the range of the material containing b 2 O 5) from the holding temperature to a temperature of switching to 100% nitrogen, by changing the cooling rate, the value of the minimum value of the power loss in the range of 20 to 120 ° C. to the high temperature side A material with a small power loss P B can be obtained at the same time as the change, and the size and weight of the transformer can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】降温速度が250℃/時間、100℃/時間、
15℃/時間の場合の電力損失PBの温度特性を示すグ
ラフである。
FIG. 1 is a temperature decreasing rate of 250 ° C./hour, 100 ° C./hour,
For 15 ° C. / time is a graph showing the temperature characteristics of the power loss P B of.

【符号の説明】[Explanation of symbols]

A 保持温度から窒素100%の雰囲気温度までの温度
範囲における降温速度が250℃/時間の場合。 C 保持温度から窒素100%の雰囲気温度までの温度
範囲における降温速度が100℃/時間の場合。 F 保持温度から窒素100%の雰囲気温度までの温度
範囲における降温速度が15℃/時間の場合。
A When the temperature decrease rate is 250 ° C./hour in the temperature range from the holding temperature to the atmospheric temperature of 100% nitrogen. C When the temperature decrease rate in the temperature range from the holding temperature to the atmospheric temperature of 100% nitrogen is 100 ° C / hour. When the rate of temperature decrease is 15 ° C./hour in the temperature range from the F 2 holding temperature to the atmospheric temperature of 100% nitrogen.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主成分として30〜42モル%の一酸化
マンガン(MnO)、4〜19モル%の酸化亜鉛(Zn
O)、及び残部として酸化第二鉄(Fe23)を含み副
成分として0.02〜0.15重量%の酸化カルシウム
(CaO)と0.005〜0.10重量%の二酸化ケイ
素(SiO2)とを含み、更に副成分として0.3重量
%以下(0を含まず)の五酸化ニオブ(Nb25)およ
び0.2重量%以下(0を含まず)の五酸化バナジウム
(V25)を含む酸化物磁性材料に於て、焼結過程にお
ける降温速度を保持温度から窒素100%の雰囲気へ切
替える温度までの温度範囲内で250℃/時間以下(0
を含まず)で制御することにより、電力損失PBの最小
値となる温度を20℃〜120℃の範囲で自由に選択が
出来、なおかつ電力損失PBの値を改善できることを特
徴とする低損失酸化物磁性材料の製造方法。
1. A main component of 30 to 42 mol% of manganese monoxide (MnO) and 4 to 19 mol% of zinc oxide (Zn).
O), and ferric oxide (Fe 2 O 3 ) as the balance, 0.02 to 0.15% by weight of calcium oxide (CaO) and 0.005 to 0.10% by weight of silicon dioxide ( SiO 2 ), and as an auxiliary component, 0.3% by weight or less (not including 0) of niobium pentoxide (Nb 2 O 5 ) and 0.2% by weight or less (not including 0) of vanadium pentoxide. In the oxide magnetic material containing (V 2 O 5 ), 250 ° C./hour or less (0) within the temperature range from the holding temperature to the temperature at which the atmosphere is changed to 100% nitrogen in the sintering process.
By controlling at not included), the temperature at which the minimum value of the power loss P B freely can be selected in the range of 20 ° C. to 120 ° C., characterized by an ability to yet improve the value of the power loss P B low Method for producing lossy oxide magnetic material.
JP4129640A 1992-04-21 1992-04-21 Manufacturing method for low loss oxide magnetic material Pending JPH05299230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129640A JPH05299230A (en) 1992-04-21 1992-04-21 Manufacturing method for low loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129640A JPH05299230A (en) 1992-04-21 1992-04-21 Manufacturing method for low loss oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH05299230A true JPH05299230A (en) 1993-11-12

Family

ID=15014509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129640A Pending JPH05299230A (en) 1992-04-21 1992-04-21 Manufacturing method for low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH05299230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206064A (en) * 2009-03-05 2010-09-16 Tdk Corp Radio wave absorber and method of manufacturing the same
JP2012111675A (en) * 2010-11-01 2012-06-14 Tdk Corp Ferrite composition and electronic component
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206064A (en) * 2009-03-05 2010-09-16 Tdk Corp Radio wave absorber and method of manufacturing the same
JP2012111675A (en) * 2010-11-01 2012-06-14 Tdk Corp Ferrite composition and electronic component
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component

Similar Documents

Publication Publication Date Title
JP2000286119A (en) Ferrite
WO2004028997A1 (en) Ferrite material
JP3607203B2 (en) Manufacturing method of MnZn ferrite, MnZn ferrite, and ferrite core for power supply
WO2000014752A1 (en) Manganese-zinc ferrite and method for producing the same
WO1998040325A1 (en) Manganese-zinc-base ferrite
JPH06290925A (en) High frequency low loss ferrite for power supply
JPH06140231A (en) Ferrite and magnetic core for power source
JPH05299230A (en) Manufacturing method for low loss oxide magnetic material
US3492236A (en) Ferromagnetic core and process for its production
JP3597665B2 (en) Mn-Ni ferrite material
JP3790606B2 (en) Mn-Co ferrite material
JP4299390B2 (en) Manganese ferrite, transformer and choke coil using the same
JPH065411A (en) Manufacturing method of low loss oxide magnetic material
JPH05267040A (en) Low-loss mn-zn ferrite
JPH08236336A (en) Low-loss oxide magnetic material
EP0460215B1 (en) Low-loss oxide magnetic material
JPH0555463B2 (en)
JP3454472B2 (en) Manganese-zinc ferrite and method for producing the same
JP2003257724A (en) Mn-Zn-BASED FERRITE
JP3499283B2 (en) High permeability oxide magnetic material
JPH06314608A (en) Low loss oxide magnetic material
JP3472880B2 (en) Low loss oxide magnetic material
JPH08236335A (en) Low-loss oxide magnetic material
JPH10177912A (en) Low-loss oxide magnetic material and manufacture thereof
JPS6314406A (en) Oxide magnetic material