JPH08236121A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH08236121A
JPH08236121A JP7058057A JP5805795A JPH08236121A JP H08236121 A JPH08236121 A JP H08236121A JP 7058057 A JP7058057 A JP 7058057A JP 5805795 A JP5805795 A JP 5805795A JP H08236121 A JPH08236121 A JP H08236121A
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
fuel
electrolyte
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7058057A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwazawa
力 岩澤
Mikiyuki Ono
幹幸 小野
Masakatsu Nagata
雅克 永田
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7058057A priority Critical patent/JPH08236121A/en
Publication of JPH08236121A publication Critical patent/JPH08236121A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a solid electrolyte fuel cell capable of preventing cracks or peeling off of an air electrode by using a lanthanum base composite oxide replaced with a specified element as a material for the air electrode. CONSTITUTION: In a solid electrolyte fuel cell using stabilized zirconia as an electrolyte, arranging an air electrode and a fuel electrode on each side of the electrolyte, and electrochemically reacting oxygen on the air electrode side and a fuel gas on the fuel electrode side to obtain electromotive force, the air electrode is formed with a material having perovskite structure represented by La1-x Srx Alz Mn1-y Cry O3 (0.002<=y<=0.15) obtained by adding Al to a lanthanum base composite oxide represented by La1-x Srx MnO3 and replacing part of Mu of the lanthanum base composite oxide with Cr. The content of Al is about 0.03-0.23. By using this material, the air electrode in which thermal expansion conformity and reactivity with the solid electrolyte are improved can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、安定化ジルコニアを
電解質として燃料ガスと酸素とを反応させることにより
起電力を得る燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which obtains electromotive force by reacting a fuel gas with oxygen using stabilized zirconia as an electrolyte.

【0002】[0002]

【従来の技術】ジルコニアは、酸素イオンの透過性があ
るので、これをイットリアやカルシアによって安定化さ
せるとともに薄膜状に形成して電解質膜とし、その薄膜
を挟んだ両側での酸素濃度の相違に起因して酸素イオン
を透過させ、その酸素イオンと燃料ガスと反応させて起
電力を得る燃料電池が知られている。この種の電解質は
1000℃程度の高温で最も高い酸素イオン透過性を示
し、したがって固体電解質の表面に形成される空気電極
は、このような高温下での酸化雰囲気で安定であること
が必要である。またこれ以外に空気電極は、比抵抗が小
さいこと、電解質との熱膨張係数が等しいこと、電解質
と反応しないこと、酸素の還元能が高いことなどの特性
が要求される。そこで従来では、ペロブスカイト型のラ
ンタン系複合酸化物(La1-x Srx MnO3 )によっ
て空気電極を形成していた。
2. Description of the Related Art Since zirconia has permeability for oxygen ions, it is stabilized by yttria or calcia and formed into a thin film to form an electrolyte membrane, and the oxygen concentration on both sides of the thin film is different. There is known a fuel cell that causes oxygen ions to pass therethrough and reacts the oxygen ions with the fuel gas to obtain an electromotive force. This type of electrolyte exhibits the highest oxygen ion permeability at a high temperature of about 1000 ° C. Therefore, the air electrode formed on the surface of the solid electrolyte needs to be stable in an oxidizing atmosphere at such a high temperature. is there. In addition, the air electrode is required to have characteristics such as a low specific resistance, a coefficient of thermal expansion equal to that of the electrolyte, no reaction with the electrolyte, and high oxygen reducing ability. Therefore, conventionally, the air electrode is formed of a perovskite-type lanthanum-based composite oxide (La 1-x Sr x MnO 3 ).

【0003】[0003]

【発明が解決しようとする課題】従来、空気電極の素材
として使用されているLa1-x Srx MnO3 は、空気
電極に要求される全ての特性を必ずしも満足するもので
はないが、電解質との熱膨張率の整合性や反応性の点で
優れているために、一般に採用されている。しかしなが
ら本発明者等の研究によれば、熱膨張率の整合性と反応
性とは“x”の値の大小によって相反する傾向を示すこ
とが認められた。すなわちx<0.2とした場合には、
熱膨張率が安定化ジルコニア(完全安定化ジルコニア:
8Y−YSZ)の熱膨張率(約10.5×10-6/K)
と近似し、熱応力による亀裂や剥離などの防止に有効に
なるが、反応性が高くなる欠点がある。また反対にx≧
0.2とした場合には、安定化ジルコニアとの反応性が
低下し、また導電率が向上するものの、熱膨張率が安定
化ジルコニアより大きくなって空気電極の亀裂や剥離な
どの不都合を生じる可能性が高くなる。
La 1-x Sr x MnO 3 conventionally used as a material for an air electrode does not necessarily satisfy all the properties required for an air electrode, but it is not suitable for use as an electrolyte. It is generally used because of its excellent thermal expansion coefficient consistency and reactivity. However, according to the research conducted by the present inventors, it was recognized that the consistency and reactivity of the coefficient of thermal expansion tend to contradict each other depending on the magnitude of the value of “x”. That is, when x <0.2,
Zirconia whose coefficient of thermal expansion is stabilized (fully stabilized zirconia:
8Y-YSZ) thermal expansion coefficient (about 10.5 × 10 -6 / K)
Although it is effective in preventing cracks and peeling due to thermal stress, it has a drawback of high reactivity. On the contrary, x ≧
When the ratio is 0.2, the reactivity with the stabilized zirconia is lowered and the electrical conductivity is improved, but the coefficient of thermal expansion is larger than that of the stabilized zirconia, causing inconveniences such as cracking and peeling of the air electrode. More likely.

【0004】この発明は上記の事情を背景としてなされ
たものであって、ランタン系複合酸化物の優れた特性を
保持しつつ、固体電解質との熱膨張整合性および反応性
を共に改善することのできる空気電極を備えた燃料電池
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is possible to improve both thermal expansion compatibility and reactivity with a solid electrolyte while maintaining excellent characteristics of a lanthanum-based composite oxide. An object of the present invention is to provide a fuel cell provided with an air electrode that can be used.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、安定化ジルコニアを電解質としてそ
の両側に空気電極と燃料電極とを設け、空気電極側の酸
素と燃料電極側の燃料ガスとを電気化学的に反応させて
起電力を得る固体電解質型燃料電池において、前記空気
電極が、La1-x Srx MnO3 で表されるランタン系
複合酸化物にAlを添加するとともに、Mnの一部をC
rによって置換したLa1-x Srx Alz Mn1-y Cr
y 3 (0.02≦y≦0.15)で表されるペロブス
カイト構造の材料によって形成されていることを特徴と
するものである。
In order to achieve the above object, the present invention provides a stabilized zirconia as an electrolyte with an air electrode and a fuel electrode on both sides thereof, and oxygen on the air electrode side and oxygen on the fuel electrode side are provided. In a solid oxide fuel cell that electrochemically reacts with a fuel gas to obtain an electromotive force, the air electrode adds Al to a lanthanum-based composite oxide represented by La 1-x Sr x MnO 3 and , Part of Mn is C
La 1-x Sr x Al z Mn 1-y Cr substituted by r
It is characterized by being formed of a material having a perovskite structure represented by y O 3 (0.02 ≦ y ≦ 0.15).

【0006】[0006]

【作用】La1-x Srx MnO3 の熱膨張率は、電解質
を形成する安定化ジルコニアの熱膨張率より大きいが、
Alを添加するとともに、Mnの一部をCrに置換する
ことにより熱膨張率が低下する。また、その場合、導電
率も低下するが、導電率の低下は“x”の値を適宜に設
定することによりある程度補うことができる。なお、A
lが添加されかつMnがCrに置換されても(La1-x
Srx )MnO3の特性は失われないから、高温酸化雰
囲気での安定性や反応性あるいは還元能を良好に維持で
きる。
The thermal expansion coefficient of La 1-x Sr x MnO 3 is larger than that of the stabilized zirconia forming the electrolyte,
By adding Al and replacing a part of Mn with Cr, the coefficient of thermal expansion decreases. Further, in that case, the conductivity also decreases, but the decrease in the conductivity can be compensated to some extent by appropriately setting the value of “x”. Note that A
1 was added and Mn was replaced by Cr (La 1-x
Since the properties of Sr x ) MnO 3 are not lost, the stability, reactivity, or reducing ability in a high temperature oxidizing atmosphere can be favorably maintained.

【0007】ここで、CrもAl同様に熱膨張率の低下
に有効な元素であるが、その置換する割合いが2%未満
であれば効果が殆どあらわれず、一方、15%で充分な
効果が得られる。また、15%を超えると導電率の低下
が顕著になるから、この発明ではCrによるMnの置換
量を2〜15%にした。
Here, Cr is also an element effective for lowering the coefficient of thermal expansion like Al, but if the substitution ratio is less than 2%, almost no effect appears, while 15% is a sufficient effect. Is obtained. Further, if it exceeds 15%, the decrease in conductivity becomes remarkable, so in the present invention, the substitution amount of Mn by Cr is set to 2 to 15%.

【0008】[0008]

【実施例】この発明で対象とする燃料電池は、安定化ジ
ルコニアからなる固体電解質を挟んで空気電極と燃料電
極とを設け、空気電極側に空気あるいは酸素ガスを流す
とともに燃料電極側に水素ガスなどの燃料ガスを流し、
酸素がイオン化して固体電解質を透過して燃料ガスと反
応することによって起電力を得るものである。その安定
化ジルコニアとしては、イットリアあるいはカルシアに
よって安定化したものが用いられ、好ましくは完全安定
化ジルコニア(8Y−YSZ)が用いられる。
EXAMPLE A fuel cell targeted by the present invention is provided with an air electrode and a fuel electrode with a solid electrolyte made of stabilized zirconia sandwiched between them, and air or oxygen gas is caused to flow to the air electrode side and hydrogen gas to the fuel electrode side. Fuel gas such as
Oxygen is ionized, permeates the solid electrolyte, and reacts with the fuel gas to obtain an electromotive force. As the stabilized zirconia, those stabilized by yttria or calcia are used, and preferably completely stabilized zirconia (8Y-YSZ) is used.

【0009】また、空気電極はペロブスカイト構造のL
1-x Srx Alz Mn1-y Cry3 によって形成さ
れる。これは、La1-x Srx MnO3 に、例えば水酸
化アルミニウムやアルミニウムアルコキシドの状態でA
lを添加し、かつMnの一部を酸化クロムもしくはクロ
ム酸塩の状態でCrにより置換した多孔構造の薄膜状の
ものであり、従来一般に知られている溶射やスラリーの
塗布・焼結などの方法によって形成される。
Further, the air electrode is an L of perovskite structure.
It is formed by a 1-x Sr x Al z Mn 1-y Cr y O 3. This is a mixture of La 1-x Sr x MnO 3 in the form of aluminum hydroxide or aluminum alkoxide.
It is a thin film having a porous structure in which 1 is added and a part of Mn is replaced by Cr in the state of chromium oxide or chromate. Formed by the method.

【0010】ここで、Alの添加量は、La1-x Srx
MnO3 を“1”とした場合に、“0.03”〜“0.
25”である。他方、Crの置換量は、Mnを“1”と
した場合に、“0.02”〜“0.2”である。また、
“0.05”<x<“0.3”である。Alの添加量お
よびCrの置換量は、空気電極の熱膨張率および導電率
に影響を及ぼし、Crの置換量と熱膨張率と導電率との
関係を図示すれば、図1のとおりである。なお、この図
1は、x=0.2とした場合の測定結果を示しており、
また各図の横軸はLa0.8 Sr0.2 MnO3 を“1”と
した場合のCrの置換量をそれぞれ示している。なお、
Alの添加量は、0.05%の一定量としている。
Here, the amount of Al added is La 1-x Sr x
When MnO 3 is “1”, “0.03” to “0.
On the other hand, the substitution amount of Cr is "0.02" to "0.2" when Mn is "1".
“0.05” <x <“0.3”. The addition amount of Al and the substitution amount of Cr influence the thermal expansion coefficient and the electrical conductivity of the air electrode, and the relationship between the substitution amount of Cr and the thermal expansion coefficient and the electrical conductivity is illustrated in FIG. . In addition, FIG. 1 shows the measurement result when x = 0.2,
The abscissa of each figure shows the amount of substitution of Cr when La 0.8 Sr 0.2 MnO 3 is set to "1". In addition,
The amount of Al added is fixed at 0.05%.

【0011】La0.8 Sr0.2 MnO3 としての熱膨張
率は、約12.5×10-6/Kであって、電解質(熱膨
張率約10.5×10-6/K)に対して大きいが、Mn
の一部をCrによって置換することで熱膨張率が低下す
る。
The coefficient of thermal expansion of La 0.8 Sr 0.2 MnO 3 is about 12.5 × 10 -6 / K, which is larger than that of the electrolyte (coefficient of thermal expansion about 10.5 × 10 -6 / K). But Mn
The coefficient of thermal expansion decreases by substituting a part of Cr with Cr.

【0012】La0.8 Sr0.2 MnO3 におけるMn
(熱膨張率約“21.6”×10-6/K)のCrによる
置換量が“0.02”程度になると熱膨張率の低下が認
められる。
Mn in La 0.8 Sr 0.2 MnO 3
When the substitution amount of Cr (coefficient of thermal expansion of about “21.6” × 10 −6 / K) is about “0.02”, the coefficient of thermal expansion decreases.

【0013】一方、導電率は、Crの置換量が0.0
5”を越えると低下傾向を示し、“0.3”程度になる
と半減する。
On the other hand, the conductivity is 0.0 when the substitution amount of Cr is 0.0.
When it exceeds 5 ", it tends to decrease, and when it becomes about" 0.3 ", it decreases to half.

【0014】したがって、この発明ではCrの置換量を
Mnの“1”に対して“0.02〜0.15”すなわち
2〜15%に設定した。なお、La0.8 Sr0.2 MnO
3 の導電率は、前述したように“x”の値を大きくする
ことにより増大するので、Alの添加量およびCrの置
換量の増大による導電率の低下は“x”の値を大きくす
ることによってある程度補うことができる。また、ラン
タン系複合酸化物の特性は、Alの添加あるいはCrに
よる置換を行っても完全に失われる訳ではなく、したが
って、上記空気電極は安定性や酸素の還元能が良好であ
り、また安定化ジルコニアと特に反応することもない。
Therefore, in the present invention, the substitution amount of Cr is set to "0.02 to 0.15", that is, 2 to 15% with respect to "1" of Mn. La 0.8 Sr 0.2 MnO
Since the conductivity of 3 increases as the value of "x" is increased as described above, the decrease in conductivity due to the increase of the amount of Al added and the amount of substitution of Cr should be increased by increasing the value of "x". Can be compensated to some extent. Further, the characteristics of the lanthanum-based composite oxide are not completely lost even when Al is added or substitution with Cr is performed. Therefore, the air electrode has good stability and oxygen reducing ability, and is stable. It does not react particularly with zirconia oxide.

【0015】さらに燃料電極について説明すると、この
発明における燃料電池の燃料電極は従来のものと同一構
造であってよく、Ni あるいはNi とYSZとのサーメ
ットなどからなる多孔質薄膜とすることができる。
Explaining the fuel electrode further, the fuel electrode of the fuel cell of the present invention may have the same structure as the conventional one, and may be a porous thin film made of Ni or a cermet of Ni and YSZ.

【0016】この発明による燃料電池も約1000℃に
昇温させた状態で空気電極側に空気を流すとともに、燃
料電極側に燃料ガスとして水素ガスを流し、空気中の酸
素がイオン化して電解質を透過するとともに燃料電極側
で水素ガスと反応することによって起電力が得られる。
その場合、空気電極は加熱されて熱膨張するが、Mnの
一部をCrによって置換して熱膨張率が電解質とほぼ等
しくなっているから、両者の間の熱応力が小さく、した
がって亀裂や剥離が生じることはない。
Also in the fuel cell according to the present invention, air is caused to flow to the air electrode side while being heated to about 1000 ° C., and hydrogen gas is caused to flow as fuel gas to the fuel electrode side so that oxygen in the air is ionized to form an electrolyte. An electromotive force is obtained by permeating and reacting with hydrogen gas on the fuel electrode side.
In that case, the air electrode is heated and thermally expands, but since a part of Mn is replaced by Cr and the coefficient of thermal expansion is almost equal to that of the electrolyte, the thermal stress between the two is small, and therefore cracks and peeling are caused. Does not occur.

【0017】また、Crによる置換量を“0.02”〜
“0.15”の範囲に抑えており、かつAlの添加量を
“0.03”〜“0.23”に設定しているから、導電
率は充分実用に耐え得る程度に高く、発電効率が過度に
悪化することはない。
Further, the amount of substitution with Cr is from "0.02" to
Since it is controlled within the range of "0.15" and the amount of Al added is set between "0.03" and "0.23", the conductivity is high enough to withstand practical use and the power generation efficiency is high. Does not get too bad.

【0018】ここで、Alの添加量を0.03〜0.2
3(3%〜23%)としたのは、3%未満では熱膨張率
の低下が少なく、23%を越えると熱膨張率低下の効果
がほぼ飽和するからである。さらにLa0.8 Sr0.2
nO3 を主体としているから、酸化雰囲気での安定性が
あり、かつ安定化ジルコニアとの反応性が低いことによ
り空気電極の劣化が殆どなく、したがって安定した出力
特性を得ることができる。
Here, the added amount of Al is 0.03 to 0.2.
The reason for setting 3 (3% to 23%) is that if it is less than 3%, the decrease in the coefficient of thermal expansion is small, and if it exceeds 23%, the effect of decreasing the coefficient of thermal expansion is almost saturated. Furthermore, La 0.8 Sr 0.2 M
Since nO 3 is the main component, it has stability in an oxidizing atmosphere and its reactivity with the stabilized zirconia is low, so there is almost no deterioration of the air electrode, and therefore stable output characteristics can be obtained.

【0019】なお、上記の実施例では電極の形成方法と
して溶射法やスラリー法を例示したが、この発明では従
来知られた他の形成方法すなわち押出法やプレス法ある
いはテープキャスト法、ドクターブレード法等を採用す
ることもできる。
In the above embodiments, the spraying method and the slurry method are exemplified as the method for forming the electrodes, but in the present invention, other conventionally known forming methods such as the extrusion method, the pressing method, the tape casting method and the doctor blade method are used. Etc. can also be adopted.

【0020】[0020]

【発明の効果】以上説明したようにこの発明によれば、
La1-x Srx MnO3 で表されるランタン系複合酸化
物にAlを添加し、Mnの一部をCrによって置換し、
かつその置換量をMnの2〜15%としたペロブスカイ
ト構造の材料によって空気電極が形成されているので、
空気電極の導電率や安定性あるいは反応性が特に悪化す
ることなく空気電極と電解質との熱膨張整合性が向上
し、その結果、発電中の空気電極の亀裂や剥離などを未
然に防止し、安定した出力特性を得ることができる。
As described above, according to the present invention,
Al is added to the lanthanum-based composite oxide represented by La 1-x Sr x MnO 3 , and a part of Mn is replaced by Cr,
Moreover, since the air electrode is formed of a material having a perovskite structure in which the substitution amount is 2 to 15% of Mn,
The thermal expansion matching of the air electrode and the electrolyte is improved without particularly deteriorating the conductivity or stability or reactivity of the air electrode, and as a result, the air electrode is prevented from cracking or peeling during power generation. It is possible to obtain stable output characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はLa0.8 Sr0.2 MnO3 に対するC
rの置換量と熱膨張率との関係を示す図、(B)はLa
0.8 Sr0.2 MnO3 に対するCrの置換量と導電率と
の関係を示す図である。
FIG. 1 (A) is C for La 0.8 Sr 0.2 MnO 3 .
The figure which shows the relationship between the substitution amount of r, and a thermal expansion coefficient, (B) is La.
For 0.8 Sr 0.2 MnO 3 is a diagram showing the relationship between the substitution amount and the conductivity of the Cr.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Yamaoka 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 安定化ジルコニアを電解質としてその両
側に空気電極と燃料電極とを設け、空気電極側の酸素と
燃料電極側の燃料ガスとを電気化学的に反応させて起電
力を得る固体電解質型燃料電池において、 前記空気電極が、La1-x Srx MnO3 で表されるラ
ンタン系複合酸化物にAlを添加するとともに、Mnの
一部をCrによって置換したLa1-x Srx Alz Mn
1-y Cry 3 (0.02≦y≦0.15)で表される
ペロブスカイト構造の材料によって形成されていること
を特徴とする固体電解質型燃料電池。
1. A solid electrolyte which uses stabilized zirconia as an electrolyte and is provided with an air electrode and a fuel electrode on both sides thereof to electrochemically react oxygen on the air electrode side with fuel gas on the fuel electrode side to obtain an electromotive force. In the fuel cell of the fuel cell, the air electrode comprises La 1-x Sr x MnO 3 in which Al is added to the lanthanum-based composite oxide and La 1-x Sr x Al in which a part of Mn is replaced by Cr. z Mn
1-y Cr y O 3 solid oxide fuel cell characterized by being formed by the material of the perovskite structure represented by a (0.02 ≦ y ≦ 0.15).
JP7058057A 1995-02-22 1995-02-22 Solid electrolyte fuel cell Pending JPH08236121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7058057A JPH08236121A (en) 1995-02-22 1995-02-22 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7058057A JPH08236121A (en) 1995-02-22 1995-02-22 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH08236121A true JPH08236121A (en) 1996-09-13

Family

ID=13073291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7058057A Pending JPH08236121A (en) 1995-02-22 1995-02-22 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH08236121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046708A (en) * 2017-09-05 2019-03-22 株式会社デンソー Fuel battery cell stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046708A (en) * 2017-09-05 2019-03-22 株式会社デンソー Fuel battery cell stack

Similar Documents

Publication Publication Date Title
US6099985A (en) SOFC anode for enhanced performance stability and method for manufacturing same
US6635376B2 (en) Solid oxide fuel cell having composition gradient between electrode and electrolyte
US6004688A (en) Solid oxide fuel cell and doped perovskite lanthanum gallate electrolyte therefor
JP3460727B2 (en) Oxygen ion conductor and solid fuel cell
JPH11335164A (en) Oxide ionic conductor and use thereof
JPH04341765A (en) Manufacture of lanthanum chromite film and interconnector for solid electrolyte fuel cell
US6844098B1 (en) Oxide-ion conductor and use thereof
US5279906A (en) Interconnection material for solid oxide fuel cell
JP2002503872A (en) Improved lanthanum manganite based air electrode for solid oxide fuel cells
JP2001527277A (en) Air electrode composition for solid oxide fuel cell
US7297436B2 (en) Fuel cell
JP3330198B2 (en) Solid oxide fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JPH08236121A (en) Solid electrolyte fuel cell
JP2003263996A (en) Solid oxide fuel cell
JPH08227717A (en) Solid electrolytic fuel cell
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JPH08227718A (en) Solid electrolytic fuel cell
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JPH08180880A (en) Solid electrolytic fuel cell
JPH07226209A (en) Air electrode material for solid fuel cell and solid fuel cell
JPH10177862A (en) Manufacture of high temperature solid electrolyte fuel cell
JPH0773886A (en) Solid electrolyte type fuel cell
JPH076768A (en) Nickel-scandium stabilized zirconia group cermet fuel electrode for solid electrolyte fuel cell
JPH076774A (en) Scandium stabilized zirconia group solid electrolyte fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413