JPH08236108A - Manufacture of nickel positive electrode for alkaline storage battery - Google Patents

Manufacture of nickel positive electrode for alkaline storage battery

Info

Publication number
JPH08236108A
JPH08236108A JP7040853A JP4085395A JPH08236108A JP H08236108 A JPH08236108 A JP H08236108A JP 7040853 A JP7040853 A JP 7040853A JP 4085395 A JP4085395 A JP 4085395A JP H08236108 A JPH08236108 A JP H08236108A
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
hydroxide
slurry
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7040853A
Other languages
Japanese (ja)
Other versions
JP3287165B2 (en
Inventor
Hideji Asano
秀二 淺野
Kenichi Aoki
健一 青木
Hitoshi Mikuriya
仁 三栗谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04085395A priority Critical patent/JP3287165B2/en
Publication of JPH08236108A publication Critical patent/JPH08236108A/en
Application granted granted Critical
Publication of JP3287165B2 publication Critical patent/JP3287165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To manufacture a nickel positive electrode for an alkaline storage battery with low cost, high productivity, and high performance by forming cobalt hydroxide on the surface layer of a nickel hydroxide particle by neutralizing a cobalt salt, then filling it in a conductive substrate. CONSTITUTION: An NiSO4 aqueous solution 3 to which NH4 OH is added and an NaOH aqueous solution 4 are supplied to a reaction bath 1 in which a double separating wall 2 is arranged, and they are stirred and reacted about pH 11 and at around 40 deg.C. Ni(OH)2 particles produced are transferred to a tank 10, and fed to a circulation type filtration and washing device 13 with a pump 5 after pure water is added. The particles are continuously filtered, washed, and dehydrated to obtain slurry containing about 25% water, then the slurry is supplied to an auxiliary tank 15. The Ni(OH)2 slurry is put into a reaction bath 16, and a CoSO4 aqueous solution 17 is added in the bath 16, and while they are stirred, the solution is controlled to about pH 11 with an NaOH aqueous solution 4, and reaction is performed at around 40 deg.C. Co(OH)2 is formed on the surface layer of the Ni(OH)2 , then this slurry is filled in or applied to a conductive substrate as a main active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
蓄電池等に用いられるアルカリ蓄電池用ニッケル正極の
製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nickel positive electrode for an alkaline storage battery used in a nickel-cadmium storage battery or the like.

【0002】[0002]

【従来の技術】近年、ポータブル機器などの軽量化に伴
い、その電源であるニッケル−カドミウム蓄電池、ニッ
ケル−水素蓄電池などの二次電池の高エネルギー密度化
が要望されている。従来のアルカリ蓄電池の電極は、焼
結式が主流であるがエネルギー密度に限界があり、焼結
体の製造、活物質の充填において工程が複雑であること
から焼結式に代わって多孔度の大きいスポンジ状金属多
孔体を活物質支持体として用い、これにペースト状にし
た水酸化ニッケルを主体とする活物質を直接充填する方
法が開発された。
2. Description of the Related Art In recent years, along with the weight reduction of portable devices and the like, there has been a demand for higher energy density of secondary batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries which are power sources thereof. Sintering method is the mainstream for the electrodes of conventional alkaline storage batteries, but the energy density is limited, and the process of manufacturing sintered bodies and filling active materials is complicated. A method has been developed in which a large sponge-like metal porous body is used as an active material support and a paste-like active material mainly composed of nickel hydroxide is directly filled therein.

【0003】この方法において使用される水酸化ニッケ
ルの製造法に関しては、特公昭63−16555号公
報、特公平2−6340号公報に見られるように連続的
な製造法が提案されている。また、このペースト式極板
においては、基板の細孔径が大きいために、焼結式極板
の基板よりも活物質に対する集電性が乏しいので、ペー
スト式極板の活物質利用率は焼結式と比較し大幅に低い
という欠点がある。このような問題を解決するために特
公昭62−234867号公報、特公昭63−1528
66号公報に見られるように水酸化ニッケルの表面に水
酸化コバルトの被覆層を形成させることにより、活物質
の利用率を向上させるという方法が提案されている。
As a method for producing nickel hydroxide used in this method, a continuous production method has been proposed as shown in Japanese Patent Publication No. 63-16555 and Japanese Patent Publication No. 2-6340. Also, in this paste type electrode plate, since the pore size of the substrate is large, the current collecting ability of the paste type electrode plate for the active material is poorer than that of the substrate. It has the disadvantage of being significantly lower than the formula. In order to solve such a problem, Japanese Examined Patent Publication No. 62-234867 and Japanese Examined Patent Publication No. 63-1528.
As disclosed in Japanese Patent Publication No. 66, a method has been proposed in which a coating layer of cobalt hydroxide is formed on the surface of nickel hydroxide to improve the utilization rate of the active material.

【0004】[0004]

【発明が解決しようとする課題】しかし、水酸化ニッケ
ルの製造を連続的に行っても、活物質としてはその利用
率向上のために水酸化ニッケル以外にコバルトまたはコ
バルト化合物などの粉末を相当量添加する必要がある。
従来のニッケル正極用活物質の製造工程では図2に示す
ように水酸化ニッケル、水酸化コバルトなどの粉末に関
してそれぞれ水洗、および乾燥してから水を添加して練
合する工程を行っており、活物質当たりの生産エネルギ
ーコストが高く、反面生産性が低いという欠点を有して
いる。
However, even if nickel hydroxide is continuously produced, a considerable amount of powder of cobalt or cobalt compound other than nickel hydroxide is used as the active material in order to improve the utilization rate thereof. Need to be added.
In the conventional manufacturing process of the active material for a nickel positive electrode, as shown in FIG. 2, powders of nickel hydroxide, cobalt hydroxide and the like are respectively washed with water, dried, and then added with water and kneaded. The production energy cost per active material is high and, on the other hand, the productivity is low.

【0005】また、水酸化ニッケルの表面に水酸化コバ
ルトの被覆層を形成させる方法にしても活物質利用率は
向上するが、同じく図2に示すように水酸化ニッケル粉
末生成過程における水洗、および乾燥という工程と表面
に被覆層を形成後乾燥工程を行っている。この乾燥は一
連のニッケル極製造工程において最もエネルギーを消費
する工程であり、全体の工程を煩雑にし、製造コストの
著しい上昇を来すものである。
The utilization rate of the active material is also improved by forming a coating layer of cobalt hydroxide on the surface of nickel hydroxide, but as shown in FIG. The step of drying and the step of drying after forming the coating layer on the surface are performed. This drying is the most energy consuming process in a series of nickel electrode manufacturing processes, complicates the whole process, and significantly increases the manufacturing cost.

【0006】本発明は、上記の問題を解決するもので、
充填に至るまでの乾燥工程を不要とし、さらにその表面
層に水酸化コバルトを生成した水酸化ニッケルを連続的
に製造し、低エネルギーコストで生産性の高い、高性能
のアルカリ蓄電池用ニッケル正極の製造法を提供するこ
とを目的とする。
The present invention solves the above problems,
A nickel positive electrode for a high-performance alkaline storage battery that does not require a drying step up to filling and continuously produces nickel hydroxide that has produced cobalt hydroxide on its surface layer and has high productivity at low energy cost. The purpose is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記のような目的を達成
するために本発明では、次のようにアルカリ蓄電池用ニ
ッケル正極を製造するものである。第一の工程ではニッ
ケル塩の水溶液にアンモニウムイオンを混入した混合溶
液に、アルカリ金属水酸化物水溶液を連続的に反応させ
るように供給し、生成した水酸化ニッケルを連続的に取
り出して、これをろ過及び水洗する。第二の工程では第
一の工程で得られた水酸化ニッケルのスラリーにコバル
ト塩の水溶液、アルカリ金属水酸化物水溶液を連続的に
供給し、ろ過及び水洗を行うことにより、水酸化コバル
トを表面層に生成させた水酸化ニッケルを連続的に得
る。さらに第三の工程では第二の工程で得られたスラリ
ーを主体としこれに添加物を混練したペーストを金属基
板または支持体内部に充填または塗着する。
In order to achieve the above object, the present invention is to produce a nickel positive electrode for an alkaline storage battery as follows. In the first step, a mixed solution prepared by mixing ammonium ions in an aqueous solution of a nickel salt is supplied so as to continuously react an aqueous solution of an alkali metal hydroxide, and the produced nickel hydroxide is continuously taken out. Filter and wash with water. In the second step, the cobalt hydroxide aqueous solution and the alkali metal hydroxide aqueous solution are continuously supplied to the nickel hydroxide slurry obtained in the first step, and the cobalt hydroxide is surface-treated by filtering and washing with water. The nickel hydroxide formed in the layer is continuously obtained. Furthermore, in the third step, the paste obtained by mainly kneading the slurry obtained in the second step with additives is filled or applied inside the metal substrate or the support.

【0008】[0008]

【作用】この製造方法によれば、表面層に水酸化コバル
トを生成した水酸化ニッケルを連続的に製造し、それを
導電性基板に充填または塗着する工程において、水酸化
ニッケル粉末製造工程における乾燥、及び水酸化コバル
ト被覆層を形成した水酸化ニッケル粉末製造工程におけ
る乾燥という二つの乾燥工程を省くことができる。
According to this manufacturing method, in the step of continuously manufacturing nickel hydroxide in which cobalt hydroxide is generated in the surface layer and filling or coating the conductive layer with the conductive substrate, in the nickel hydroxide powder manufacturing step. It is possible to omit the two drying steps of drying and drying in the nickel hydroxide powder manufacturing step in which the cobalt hydroxide coating layer is formed.

【0009】このことにより、生産時のエネルギーコス
トが低減でき、生産性の高いアルカリ蓄電池用正極が得
られる。
As a result, the energy cost during production can be reduced and a highly productive positive electrode for an alkaline storage battery can be obtained.

【0010】[0010]

【実施例】【Example】

(実施例1)以下、本発明の実施例について図1を参照
しながら説明する。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described with reference to FIG.

【0011】図中1は反応槽であり、ここでは二重隔壁
を有する100lのタンクである。ニッケル塩、アルカ
リ金属水酸化物、及びアンモニウムイオン供給体として
は、それぞれ濃度180g/lの硫酸ニッケル水溶液、
20重量%の水酸化ナトリウム水溶液、及び18重量%
のアンモニア水を用いた。この反応槽1内へ硫酸ニッケ
ル水溶液を1.5l/hr、アンモニア水を0.21l
/hrの流量となるようパイプライン3で供給する。一
方定量ポンプ5によりノズル内で十分混合しながらpH
11.5±0.3、槽内温度を40±2℃の一定に保持
しつつ、水酸化ナトリウムをパイプライン4より反応槽
1の内側に供給し、槽内にセンサをもったpHコントロ
ーラと連動させて前記pHを保持するように撹拌機9で
撹拌しつつ水酸化ナトリウムを間欠的に反応液に添加し
て水酸化ニッケルを生成させた。7は槽内にセンサをも
った温度コントローラである。生成した水酸化ニッケル
は二重隔壁外部にオーバーフローさせてパイプライン8
で吸引してタンク10に取り出した。これに純水12を
連続的に供給してパイプ11でロータリーフィルター1
3に送り、ここで循環式ろ過水洗と脱水を行い、含水率
25%のスラリーに調整して、予備タンク15に供給す
る。反応槽1と同様なタンクである反応槽16のタンク
内へ前記の水酸化ニッケルのスラリーを予備タンク15
から50l供給した後、12重量%の硫酸コバルト水溶
液を1.0l/hrの一定速度で定量ポンプ5によりp
H11.5±0.3、槽内温度を40±2℃の一定に保
持した十分撹拌されている槽内に添加し、pHコントロ
ーラと連動させて設定されたpHを保持するように20
重量%の水酸化ナトリウム水溶液を間欠的に添加した。
硫酸コバルト水溶液が30l入った時点で、硫酸コバル
ト水溶液と水酸化ナトリウムの供給を止めて生成物を取
り出した。
In the figure, reference numeral 1 is a reaction tank, here a 100 l tank having a double partition wall. The nickel salt, the alkali metal hydroxide, and the ammonium ion supplier are nickel sulfate aqueous solution having a concentration of 180 g / l,
20% by weight aqueous sodium hydroxide solution, and 18% by weight
Of ammonia water was used. 1.5 l / hr of nickel sulfate aqueous solution and 0.21 l of ammonia water were put into this reaction tank 1.
It is supplied by the pipeline 3 so that the flow rate becomes / hr. On the other hand, the metering pump 5 mixes the pH well in the nozzle
11.5 ± 0.3, while keeping the temperature inside the tank constant at 40 ± 2 ° C, sodium hydroxide was supplied to the inside of the reaction tank 1 through the pipeline 4, and a pH controller with a sensor inside the tank was used. Sodium hydroxide was intermittently added to the reaction liquid while stirring with a stirrer 9 so as to keep the pH in a coordinated manner to generate nickel hydroxide. Reference numeral 7 is a temperature controller having a sensor in the tank. The generated nickel hydroxide overflows to the outside of the double partition and is pipeline 8
It was sucked in and taken out to the tank 10. Pure water 12 is continuously supplied to the rotary filter 1 with a pipe 11.
3, the circulating filtration water washing and dehydration are performed here, the slurry having a water content of 25% is adjusted, and the slurry is supplied to the spare tank 15. The above nickel hydroxide slurry is stored in a preliminary tank 15 in a reaction tank 16 which is the same tank as the reaction tank 1.
After supplying 50 liters from the above, a 12 wt% cobalt sulfate aqueous solution was added by a metering pump 5 at a constant rate of 1.0 liter / hr.
Add H11.5 ± 0.3 into the well-stirred tank with the tank temperature kept constant at 40 ± 2 ° C, and maintain the set pH in conjunction with the pH controller.
A wt% aqueous sodium hydroxide solution was added intermittently.
When 30 l of the cobalt sulfate aqueous solution had been added, the supply of the cobalt sulfate aqueous solution and sodium hydroxide was stopped and the product was taken out.

【0012】これを連続的にロータリーフィルターで循
環ろ過水洗を行い、さらに脱水により含水率25%のス
ラリーに調整した後、これに金属コバルトの粉末を前記
スラリーにおける水酸化ニッケル100g当たり5g混
合し、水を加えて含水率を27%にした活物質スラリー
をよく撹拌し、発泡状ニッケル多孔体(多孔度95%)
に充填した。
This was continuously circulated and filtered with a rotary filter, washed with water, adjusted to a slurry having a water content of 25% by dehydration, and 5 g of metallic cobalt powder was mixed with 100 g of nickel hydroxide in the slurry, A foamed nickel porous body (porosity 95%) was obtained by thoroughly stirring the active material slurry in which water was added to make the water content 27%.
Was filled.

【0013】こうして得られたニッケル正極を乾燥した
後、一定の条件で加圧プレス後40×55mmに裁断
し、本発明の実施例によるニッケル正極Aを得た。この
正極を用いて、負極として公知のカドミウム負極と組み
合わせて、本発明の実施例である公称容量700mAh
のAAサイズの密閉型ニッケルカドミウム蓄電池Aを作
製した。
The nickel positive electrode thus obtained was dried, pressed under a certain condition, and then cut into 40 × 55 mm to obtain a nickel positive electrode A according to an embodiment of the present invention. Using this positive electrode, in combination with a known negative electrode of cadmium as a negative electrode, a nominal capacity of 700 mAh, which is an example of the present invention, was obtained.
AA size sealed nickel cadmium storage battery A was manufactured.

【0014】比較例として、実施例と同様に反応槽1で
の工程、つまり水酸化ニッケルの製造を行い、これをろ
過水洗を行った後、乾燥を行い水酸化ニッケル粉末を得
た。この水酸化ニッケル粉末に金属コバルト粉末を水酸
化ニッケル粉末100g当たり5gと、水酸化コバルト
粉末を図1の反応槽16での反応により生成する水酸化
コバルトと水酸化ニッケル粉末当たりで等量添加し、水
を加えて含水率を27%にしたものを充填して得た正極
を比較例によるニッケル正極Bとし、実施例と同様にし
てAAサイズの密閉型ニッケルカドミウム蓄電池Bを作
製した。
As a comparative example, nickel hydroxide powder was obtained by carrying out the process in the reaction vessel 1 in the same manner as in the example, that is, producing nickel hydroxide, filtering and washing it, and then drying. To this nickel hydroxide powder, 5 g of metallic cobalt powder was added per 100 g of nickel hydroxide powder, and an equal amount of cobalt hydroxide powder was added per cobalt hydroxide and nickel hydroxide powder produced by the reaction in the reaction vessel 16 of FIG. Then, the positive electrode obtained by filling the one with water added to have a water content of 27% was used as a nickel positive electrode B according to a comparative example, and an AA size sealed nickel cadmium storage battery B was produced in the same manner as in the example.

【0015】また、実施例と同様にして第二工程のろ過
及び水洗まで同様にして行った後、乾燥して表面に水酸
化コバルトを有する水酸化ニッケル粉末を得た。この粉
末100gに対して金属コバルトを5g混合し、水を加
えてペースト状にし、発泡状ニッケル多孔体に充填し、
乾燥後一定条件で加圧プレス後上記寸法に裁断を行い、
比較によるニッケル正極Cを得た。この正極を用いて実
施例と同様にしてAAサイズの密閉型ニッケルカドミウ
ム蓄電池を作製し、比較例による電池Cを得た。
Further, the second step of filtration and washing with water were carried out in the same manner as in the example, and then dried to obtain a nickel hydroxide powder having cobalt hydroxide on the surface. To 100 g of this powder, 5 g of metallic cobalt was mixed, water was added to form a paste, and the foamed nickel porous body was filled.
After drying, pressurizing and pressing under certain conditions and then cutting to the above dimensions,
A nickel positive electrode C for comparison was obtained. Using this positive electrode, an AA size sealed nickel-cadmium storage battery was produced in the same manner as in the example, and a battery C according to a comparative example was obtained.

【0016】これらの電池を作製するに当たり、用いた
ニッケル正極を作製するのに要する1Ah当たりの消費
エネルギーを(表1)に示す。
The energy consumption per 1 Ah required for producing the nickel positive electrode used for producing these batteries is shown in (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】(表1)から明らかなように表面層に水酸
化コバルトを生成した水酸化ニッケルを製造する工程に
おいて、乾燥を省略してスラリーのまま充填工程を行う
だけでも、消費エネルギーにして20%程度低く抑える
ことができ、低エネルギーコストで生産性の高い正極が
得られる。
As is clear from (Table 1), in the process of producing nickel hydroxide in which cobalt hydroxide is produced in the surface layer, even if the drying process is omitted and only the filling process is performed as a slurry, the energy consumption is reduced to 20. %, It is possible to obtain a positive electrode having high productivity with low energy cost.

【0019】また、これらの電池を20℃の一定温度で
0.1Cで15時間充電し、0.2Cで1.0V迄放電
するサイクルを繰り返し、2サイクル目の放電容量で電
池特性を評価した。これらの結果も(表1)に示す。
(表1)より明らかなように、電池Aでは水酸化コバル
トを水酸化ニッケル表面層に形成させたことにより、水
酸化コバルト粉末を単独で添加した比較例電池Bよりも
利用率が高い。これは、水酸化ニッケル表面層に水酸化
コバルトを形成させることにより、活物質粉末にコバル
ト粉末を単独で添加した場合よりも、コバルトと水酸化
ニッケルとの接触面積が大きく、コバルト添加による活
物質の利用率の向上が極めて大きくなるためと考えられ
る。なお、本実施例では導電性基板として発泡状ニッケ
ル多孔体を用いたが、パンチングメタルにニッケルをメ
ッキしたものに塗着した場合でも同様の効果が得られる
ことはいうまでもない。
Further, these batteries were charged at 0.1 ° C. for 15 hours at a constant temperature of 20 ° C., and the cycle of discharging at 0.2 C to 1.0 V was repeated, and the battery characteristics were evaluated by the discharge capacity at the second cycle. . These results are also shown in (Table 1).
As is clear from (Table 1), in Battery A, since cobalt hydroxide was formed on the nickel hydroxide surface layer, the utilization rate was higher than that of Comparative Battery B in which cobalt hydroxide powder was added alone. This is because by forming cobalt hydroxide on the nickel hydroxide surface layer, the contact area between cobalt and nickel hydroxide is larger than when cobalt powder is added alone to the active material powder. It is considered that the improvement of the utilization rate of is extremely large. Although the foamed nickel porous body is used as the conductive substrate in this embodiment, it is needless to say that the same effect can be obtained even when the punched metal is coated with nickel.

【0020】[0020]

【発明の効果】以上のように本発明は、基板への充填ま
たは塗着に至るまでに乾燥工程を不要とし、さらにその
表面層に水酸化コバルトを生成した水酸化ニッケルを連
続的に製造し、低エネルギーコストで生産性が高く高性
能のアルカリ蓄電池用ニッケル正極の製造法を提供する
ことができる。
INDUSTRIAL APPLICABILITY As described above, the present invention does not require a drying step until filling or coating on a substrate, and further continuously produces nickel hydroxide having cobalt hydroxide formed on its surface layer. It is possible to provide a method for producing a nickel positive electrode for an alkaline storage battery, which has low energy cost, high productivity, and high performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用する反応装置の一例を示すフロー
チャート
FIG. 1 is a flowchart showing an example of a reaction apparatus used in the present invention.

【図2】従来のニッケル極製造工程を示すフローチャー
FIG. 2 is a flowchart showing a conventional nickel electrode manufacturing process.

【符号の説明】[Explanation of symbols]

1 反応槽 2 二重隔壁 3 アンモニウムイオン混合ニッケル塩水溶液供給ライ
ン 4 アルカリ金属水酸化物水溶液供給ライン 5 定量ポンプ 6 pHコントローラ 7 温度コントローラ 8 水酸化ニッケル粒子含有液取り出しライン 9 撹拌機 10 水酸化ニッケル粒子含有液用タンク 11 水酸化ニッケル粒子含有液供給ライン 12 純水供給ライン 13 循環ろ過水洗装置 14 ろ液排出ライン 15 脱水後水酸化ニッケル粒子含有液用タンク 16 反応槽 17 コバルト塩水溶液供給ライン 18 脱水後水酸化ニッケル粒子含有液供給ライン 19 反応生成物取り出しライン
1 Reaction Tank 2 Double Partition 3 Ammonium Ion Mixed Nickel Salt Aqueous Solution Supply Line 4 Alkali Metal Hydroxide Aqueous Solution Supply Line 5 Metering Pump 6 pH Controller 7 Temperature Controller 8 Nickel Hydroxide Particle-Containing Liquid Extraction Line 9 Stirrer 10 Nickel Hydroxide Particle-containing liquid tank 11 Nickel hydroxide particle-containing liquid supply line 12 Pure water supply line 13 Circulating filtration water washing device 14 Filtrate discharge line 15 Dehydrated nickel hydroxide particle-containing liquid tank 16 Reaction tank 17 Cobalt salt aqueous solution supply line 18 Liquid supply line containing nickel hydroxide particles after dehydration 19 Reaction product take-out line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ニッケル塩水溶液にアンモニウムイオンを
混合した水溶液に、アルカリ金属水酸化物水溶液を連続
的に供給し、生成した水酸化ニッケル粒子を連続的に取
り出し、ろ過及び水洗を連続的に行う第1の工程と、第
1の工程で得られた水酸化ニッケルのスラリーにコバル
ト塩水溶液、アルカリ金属水酸化物水溶液を連続的に供
給して、前記水酸化ニッケルの表面層に水酸化コバルト
を生成したスラリーを連続的にろ過及び水洗する第2の
工程と、第2の工程で得られたスラリーを主体とする活
物質を導電性基板に充填または塗着する第3の工程とか
らなるアルカリ蓄電池用ニッケル正極の製造法。
1. An alkali metal hydroxide aqueous solution is continuously supplied to an aqueous solution of a nickel salt aqueous solution mixed with ammonium ions, the nickel hydroxide particles produced are continuously taken out, and filtration and washing are continuously performed. A cobalt salt aqueous solution and an alkali metal hydroxide aqueous solution are continuously supplied to the first step and the nickel hydroxide slurry obtained in the first step to add cobalt hydroxide to the surface layer of the nickel hydroxide. Alkali comprising a second step of continuously filtering and washing the produced slurry and water, and a third step of filling or coating the conductive substrate with the active material mainly containing the slurry obtained in the second step Manufacturing method of nickel positive electrode for storage battery.
JP04085395A 1995-02-28 1995-02-28 Manufacturing method of nickel positive electrode for alkaline storage battery Expired - Fee Related JP3287165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04085395A JP3287165B2 (en) 1995-02-28 1995-02-28 Manufacturing method of nickel positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04085395A JP3287165B2 (en) 1995-02-28 1995-02-28 Manufacturing method of nickel positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH08236108A true JPH08236108A (en) 1996-09-13
JP3287165B2 JP3287165B2 (en) 2002-05-27

Family

ID=12592130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04085395A Expired - Fee Related JP3287165B2 (en) 1995-02-28 1995-02-28 Manufacturing method of nickel positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3287165B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129902A (en) * 1997-02-03 2000-10-10 Matsushita Electric Industrial Co., Ltd. Manufacturing method of active materials for the positive electrode in alkaline storage batteries
CN1333480C (en) * 2005-10-26 2007-08-22 浙江工业大学 Positive electrode material of metal hydride-nickel battery and its preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129902A (en) * 1997-02-03 2000-10-10 Matsushita Electric Industrial Co., Ltd. Manufacturing method of active materials for the positive electrode in alkaline storage batteries
US6284215B1 (en) 1997-02-03 2001-09-04 Matsushita Electric Industrial Co., Ltd. Manufacturing method of active materials for the positive electrode in alkaline storage batteries
CN1333480C (en) * 2005-10-26 2007-08-22 浙江工业大学 Positive electrode material of metal hydride-nickel battery and its preparation method

Also Published As

Publication number Publication date
JP3287165B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
US3214355A (en) Process for the filling of pores of metallic or metallic coated frames with metallic hydroxides and products thereof
JP2023507209A (en) Method for preparing high-density aluminum-doped cobalt oxide
CN110518235B (en) Self-supporting trinickel disulfide electrode and preparation method and application thereof
CN111943278B (en) Preparation method of ternary precursor with narrow particle size distribution
EP1207576B1 (en) Cobalt compound for use in alkaline storage battery, method for manufacturing the same, and positive electrode plate of alkaline storage battery employing the same
JPH10228907A (en) Manufacture of positive electrode active material for alkaline secondary battery, paste nickel electrode, alkaline secondary battery and manufacture thereof
JPH08236108A (en) Manufacture of nickel positive electrode for alkaline storage battery
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JPH0221098B2 (en)
JPH0494058A (en) Non-sintering type nickel positive electrode plate for alkaline storage battery
JP2000223116A (en) Electrode for alkaline battery
JP2002029755A (en) Method for manufacturing nickel hydroxide powder for alkali secondary cell
JPH1012236A (en) Alpha-cobalt hydroxide layer-coated nickel hydroxide for alkaline storage battery and manufacture thereof
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11260364A (en) Manganese-containing composite nickel hydroxide active material and manufacture thereof
JPH0794182A (en) Paste type cathode plate for alkaline storage battery
JPS62222566A (en) Nickel electrode for alkaline battery
JP3541584B2 (en) Method for producing active material for nickel electrode of alkaline storage battery
JPS61181074A (en) Manufacture of alkaline battery positive electrode
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
KR0140909B1 (en) Manufacturing method of high density nickel hydroxide for alkaline battery
CN115819072A (en) Ternary cathode material and preparation method and application thereof
JPH041992B2 (en)
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery
JPH08203522A (en) Nickel active substance for alkaline battery and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees