JPH0823470B2 - High-purity nitrogen gas production equipment - Google Patents

High-purity nitrogen gas production equipment

Info

Publication number
JPH0823470B2
JPH0823470B2 JP60299435A JP29943585A JPH0823470B2 JP H0823470 B2 JPH0823470 B2 JP H0823470B2 JP 60299435 A JP60299435 A JP 60299435A JP 29943585 A JP29943585 A JP 29943585A JP H0823470 B2 JPH0823470 B2 JP H0823470B2
Authority
JP
Japan
Prior art keywords
nitrogen
liquid nitrogen
nitrogen gas
passage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60299435A
Other languages
Japanese (ja)
Other versions
JPS62158976A (en
Inventor
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP60299435A priority Critical patent/JPH0823470B2/en
Publication of JPS62158976A publication Critical patent/JPS62158976A/en
Publication of JPH0823470B2 publication Critical patent/JPH0823470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高純度窒素ガス製造装置に関するもので
ある。
The present invention relates to a high-purity nitrogen gas production apparatus.

〔従来の技術〕[Conventional technology]

従来の窒素ガスの製造装置は、圧縮機で圧縮された圧
縮空気を熱交換するための熱交換器の冷媒の冷却用に、
膨脹タービンを用い、これを精留塔内に溜る液体空気
(深冷液化分離により低沸点の窒素はガスとして取り出
され、残部が酸素リツチな液体空気となつて溜る)から
蒸発したガスの圧力で駆動するようになつている。とこ
ろが、膨脹タービンは回転速度が極めて大(数万回/
分)であり、負荷変動に対する追従運転が困難であり、
特別に養成した運転員が必要である。また、このものは
高速回転するため機械構造上高精度が要求され、かつ高
価であり、機構が複雑なため特別に養成した保全要員が
必要という難点を有している。すなわち、膨脹タービン
は高速回転部を有するため、上記のような諸問題を生じ
るのであり、このような高速回転部を有する膨脹タービ
ンの除去に対して強い要望があつた。
The conventional nitrogen gas manufacturing apparatus, for cooling the refrigerant of the heat exchanger for heat exchange of the compressed air compressed by the compressor,
Using an expansion turbine, the pressure of the gas evaporated from the liquid air that accumulates in the rectification column (nitrogen with a low boiling point is taken out as a gas by deep-chill liquefaction separation, and the rest is stored as oxygen-rich liquid air) It is set to drive. However, the expansion turbine has an extremely high rotational speed (tens of thousands of times /
It is difficult to follow the load fluctuation,
Specially trained operators are required. Further, since this machine rotates at high speed, it requires high precision in terms of mechanical structure, is expensive, and has a complicated mechanism, which requires specially trained maintenance personnel. That is, since the expansion turbine has a high-speed rotating portion, the above-mentioned various problems occur, and there is a strong demand for the removal of the expansion turbine having such a high-speed rotating portion.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような要望に対して、本願発明者は、膨脹タービ
ンの発生寒冷に代え、液体窒素貯蔵タンクから精留塔に
対して液体窒素を寒冷として供給する高純度窒素ガス製
造装置を提案している(特願昭59−4123号)。この装置
は、上記液体窒素貯槽がバツクアツプラインの液体窒素
源ともなつていることから、従来のバツクアツプ源が精
留塔等に対する保全作業の容易化等を考慮して、精留塔
とは別置されているという技術常識に従つて、液体窒素
貯槽を精留塔とは別置にしている。しかし、この装置で
は、液体窒素貯槽に貯留されている液体窒素の気化物が
上記貯槽の上部から大気中に放出されるため、ロスが多
い。また、精留塔に対する真空断熱と、液体窒素貯槽に
対する真空断熱とをそれぞれ分けて行う必要があること
から、設置作業が煩雑になるとともに、設置場所も広く
なるという難点がある。
In response to such a demand, the inventor of the present application has proposed a high-purity nitrogen gas production apparatus that supplies liquid nitrogen as cold to a rectification tower from a liquid nitrogen storage tank instead of generating cold by an expansion turbine. (Japanese Patent Application No. 59-4123). In this device, since the liquid nitrogen storage tank also serves as a liquid nitrogen source for the back-up line, the conventional back-up source is different from the rectification column in consideration of facilitating maintenance work for the rectification column. According to the common general knowledge that they are installed, the liquid nitrogen storage tank is installed separately from the rectification tower. However, in this device, since the vaporized product of liquid nitrogen stored in the liquid nitrogen storage tank is released into the atmosphere from the upper portion of the storage tank, there are many losses. Further, since it is necessary to separately perform vacuum heat insulation for the rectification tower and vacuum heat insulation for the liquid nitrogen storage tank, there is a problem that the installation work becomes complicated and the installation place becomes wide.

この発明は、このような事情に鑑みなされたもので、
精留塔と液体窒素貯槽とは別個に設置されるものという
従来の技術常識を打破し、液体窒素貯槽から排気される
気化窒素ガスの有効利用を実現すると同時に、設置作業
の簡略化および設置スペースの狭小化をその目的とす
る。
The present invention has been made in view of such circumstances,
Breaking down the conventional technical common sense that the rectification tower and the liquid nitrogen storage tank are installed separately, and realizing the effective use of the vaporized nitrogen gas exhausted from the liquid nitrogen storage tank, simplification of the installation work and installation space The purpose is to narrow the.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の高純度窒素ガ
ス製造装置は、外部より取り入れた空気を圧縮する空気
圧縮手段と、この空気圧縮手段によつて圧縮された圧縮
空気中の炭酸ガスと水とを除去する除去手段と、この除
去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、この熱交換手段により超低温に冷却された圧縮空気
の一部を液化して内部に溜め窒素のみを気体として保持
する精留塔と、液体窒素を貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を圧縮空気液化
用の寒冷源として上記精留塔に導く液体窒素導入通路
と、上記精留塔内に保持されている気化窒素を取り出し
上記熱交換手段に案内し上記圧縮空気と熱交換させて昇
温させ製品窒素ガスとする窒素ガス取出通路と、少なく
とも上記精留塔および液体窒素貯蔵手段を相互に隣接し
て収容する真空保冷函と、上記真空保冷函内に設けら
れ、上記液体窒素貯蔵手段の頂部に溜る気化窒素を上記
窒素ガス取出通路に導く気化窒素抜出通路を備えている
という構成をとる。
In order to achieve the above-mentioned object, the high-purity nitrogen gas production apparatus of the present invention comprises an air compression means for compressing air taken in from the outside, carbon dioxide gas and water in compressed air compressed by the air compression means. And a heat exchanging means for cooling the compressed air having passed through the removing means to an ultralow temperature, and a part of the compressed air cooled to an ultralow temperature by the heat exchanging means to be liquefied to store only nitrogen inside. A rectification column for holding as a gas, a liquid nitrogen storage means for storing liquid nitrogen, and a liquid nitrogen introduction passage for guiding the liquid nitrogen in the liquid nitrogen storage means to the rectification column as a cold source for compressed air liquefaction, A nitrogen gas extraction passage for taking out the vaporized nitrogen held in the rectification tower and guiding it to the heat exchange means to exchange heat with the compressed air to raise the temperature to produce product nitrogen gas, and at least the rectification tower and the liquid. A vacuum cold storage box for accommodating the element storage means adjacent to each other, and a vaporized nitrogen extraction passage provided in the vacuum cold storage box for guiding vaporized nitrogen accumulated at the top of the liquid nitrogen storage means to the nitrogen gas extraction passage. Take the configuration of being equipped.

〔作用〕 この発明の高純度窒素ガス製造装置は、上記のよう
に、液体窒素貯槽から精留塔へ寒冷となる液体窒素を供
給し、これを装置全体の寒冷として用いる。したがつ
て、膨脹タービンを使用する必要がなくなり、膨脹ター
ビンの使用に基づく弊害が生じない。またこの発明で
は、上記のように、真空保冷函中に、精留塔および液体
窒素貯蔵手段を相互に隣接して収容している。そのた
め、装置を停止状態からスタートアツプさせる時には、
液体窒素貯槽によつて、精留塔が予冷された状態となつ
ていることから、スタートアツプ時間を短縮することが
できる。また、同一の真空保冷函中に精留塔と液体窒素
貯蔵手段とが収容されていることから、全体の設置スペ
ースが小さくてすむという効果を奏するうえ、各別に断
熱材を用いて保冷するという手間が不要となる。また、
この発明では、液体窒素貯蔵手段から気化窒素を蒸出す
る気化窒素抜き出し路を真空保冷函中に設け、その先端
を製品窒素ガスを取り出す窒素ガス取り出し路に延ばし
ていることから、従来、大気中に排気されていた気化窒
素の有効利用を実現することができる。また、従来、精
留塔と液体窒素貯槽とを連結していた真空断熱配管が不
要となることから、装置全体の構造が簡単となるととも
に、設備費も少なくてすむようになる。
[Operation] As described above, the high-purity nitrogen gas producing apparatus of the present invention supplies liquid nitrogen, which becomes cold, from the liquid nitrogen storage tank to the rectification column, and uses this as cold for the entire apparatus. Therefore, it is not necessary to use the expansion turbine, and there is no harmful effect due to the use of the expansion turbine. Further, in the present invention, as described above, the rectification column and the liquid nitrogen storage means are housed adjacent to each other in the vacuum cool box. Therefore, when starting the device from the stopped state,
Since the rectification column is precooled by the liquid nitrogen storage tank, the start-up time can be shortened. Further, since the rectification column and the liquid nitrogen storage means are housed in the same vacuum cool box, there is an effect that the entire installation space can be small, and in addition, a separate heat insulating material is used to keep cool. No need for labor. Also,
In the present invention, a vaporized nitrogen extraction path for vaporizing vaporized nitrogen from the liquid nitrogen storage means is provided in the vacuum cool box, and its tip is extended to the nitrogen gas extraction path for taking out product nitrogen gas. It is possible to effectively utilize the vaporized nitrogen that has been exhausted to. Further, since the vacuum heat insulating pipe that conventionally connects the rectification column and the liquid nitrogen storage tank is not required, the structure of the entire apparatus is simplified and the equipment cost is reduced.

つぎにこの発明を実施例に基づいて詳しく説明する。 Next, the present invention will be described in detail based on examples.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示している。図におい
て、9は空気圧縮機、10はドレン分離器、11はフロン冷
却器、12は2個1組の吸着筒である。吸着筒12は内部に
モレキユラーシーブが充填されていて空気圧縮機9によ
り圧縮された空気中のH2OおよびCO2を吸着除去する作用
をする。8はH2O,CO2が吸着除去された圧縮空気を送る
圧縮空気供給通路である。13は第1の熱交換器であり、
除去手段(吸着筒)12によりH2OおよびCO2が吸着除去さ
れた圧縮空気が送り込まれる。14は第2の熱交換器であ
り、第1の熱交換器13を経た圧縮空気が送り込まれる。
15は塔頂部が凝縮器21aを有する分縮器部21になつてお
り、それより下が塔部22になつている精留塔であり、第
1および第2の熱交換器13,14により超低温に冷却され
圧縮空気供給通路17を経て送り込まれる圧縮空気をさら
に冷却し、その一部を液化し液体空気18として塔部22の
底部に溜め、窒素のみを気体状態で塔部22の上部天井部
に溜めるようになつている。23は液体窒素貯蔵手段
(槽)であり、内部の液体窒素(高純度品)を、液体窒
素導入通路24aを経由させて精留塔15の塔部22の上部側
に送入し、塔部22内に供給される圧縮空気の寒冷源にす
る。液体窒素貯蔵手段23には通路36から液体窒素の充填
が行われる。精留塔15は熱交換器13,14ならびに液体窒
素貯蔵手段23と共に真空保冷函(第2図参照)37に収容
されている。なお、第2図では図示の都合上、後記の膨
脹弁19a付きの通路19等を省略している。この場合、熱
交換器13,14は真空保冷函37外に配置することも可能で
ある。また精留塔15は仕切板20によつて分縮器部21と塔
部22とに区切られており、上記分縮器部21内の凝縮器21
aには、塔部22の上部に溜る窒素ガスの一部が第1の還
流液用通路21bを介して送入される。この分縮器部21内
は、塔部22内よりも減圧状態になつており、塔部22の底
部の貯留液体空気(N250〜70%,O230〜50%)18が膨脹
弁19a付き通路19を経て送り込まれ、気化して内部温度
を液体窒素の沸点以下の温度に冷却するようになつてい
る。この冷却により、凝縮器21a内に送入された窒素ガ
スが液化する。25は液面計であり、分縮器部21内の液体
空気の液面に応じてバルブ26を制御し液体窒素貯蔵手段
23からの液体窒素の供給量を制御する。精留塔15の塔部
22の上部側の部分には、上記分縮器部21の凝縮器21aで
生成した液体窒素が第2の還流液用通路21cを通つて流
下供給されるとともに、液体窒素貯蔵手段23から液体窒
素が液体窒素導入通路24aを経て供給され、これらが液
体窒素溜21dを経て塔部22内を下方に流下し、塔部22の
底部から上昇する圧縮空気と向流的に接触し冷却してそ
の一部を液化するようになつている。この過程で圧縮空
気中の高沸点成分は液化されて塔部22の底部に溜り、低
沸点成分の窒素ガスが塔部22の上部に溜る。27は精留塔
15の塔部22の上部天井部に溜つた窒素ガスを製品窒素ガ
スとして取り出す窒素ガス取出通路で、超低温の窒素ガ
スを第2および第1の熱交換器14,13内に案内し、そこ
に送り込まれる圧縮空気と熱交換させて常温にしメイン
通路28に送り込む作用をする。この場合、精留塔15の塔
部22内における最上部には、窒素ガスとともに、沸点の
低いHe(−269℃),H2(−253℃)等が溜りやすいた
め、窒素ガス取出通路27は、塔部22の最上部よりかなり
下側に開口しており、He,H2の混在しない純窒素ガスの
みを製品窒素ガスとして取り出すようになつている。液
体窒素貯蔵手段23の頂部は圧力調整弁38付きの気化窒素
抜出通路39により窒素ガス取出通路27に接続され、かつ
凝縮器21aは上記He,H2等を外気へ逃がすためのガス抜き
通路40を備えている。29は分縮器部21内の気化液体空気
を第2および第1の熱交換器14,13に送り込む通路、29a
はその保圧弁である。30はバツクアツプ通路であり、精
留塔15からメイン通路28に流れる製品窒素ガスの不足分
を補うべく、液体窒素貯蔵手段23内の液体窒素を蒸発器
31により蒸発させてメイン通路28に常時一定量供給させ
る機能と、空気圧縮系ラインが故障したとき、消費窒素
ガスの全量を供給させる機能とを備えている。この場
合、バツクアツプ通路30の流量調整は、蒸発器31の下流
部に配置された圧力調整弁35のそれにより行われる。32
は不純物分析計であり、メイン通路28に送り出される製
品窒素ガスの純度を分析し、純度の低いときは、弁34,3
4aを作動させて製品窒素ガスを矢印Bのように外部に逃
気する作用をする。
FIG. 1 shows an embodiment of the present invention. In the figure, 9 is an air compressor, 10 is a drain separator, 11 is a Freon cooler, and 12 is a set of two adsorption tubes. The adsorption column 12 is filled with a molecular sieve and serves to adsorb and remove H 2 O and CO 2 in the air compressed by the air compressor 9. Reference numeral 8 is a compressed air supply passage for sending compressed air from which H 2 O and CO 2 have been adsorbed and removed. 13 is the first heat exchanger,
Compressed air from which H 2 O and CO 2 have been adsorbed and removed by the removing means (adsorption cylinder) 12 is fed. Reference numeral 14 is a second heat exchanger, into which the compressed air that has passed through the first heat exchanger 13 is fed.
Reference numeral 15 is a rectification column in which the tower top is connected to the dephlegmator section 21 having the condenser 21a, and the column section 22 is located below the condenser section 21a by the first and second heat exchangers 13 and 14. The compressed air that has been cooled to an ultra-low temperature and is sent through the compressed air supply passage 17 is further cooled, and a part of it is liquefied and stored as liquid air 18 at the bottom of the tower section 22, and only nitrogen in a gaseous state is provided on the upper ceiling of the tower section 22. It is supposed to be stored in the department. Reference numeral 23 is a liquid nitrogen storage means (tank), which feeds the internal liquid nitrogen (high-purity product) to the upper side of the tower portion 22 of the rectification tower 15 via the liquid nitrogen introduction passage 24a, Use as a cold source for the compressed air supplied to the inside. The liquid nitrogen storage means 23 is filled with liquid nitrogen through the passage 36. The rectification column 15 is housed in a vacuum cool box (see FIG. 2) 37 together with the heat exchangers 13 and 14 and the liquid nitrogen storage means 23. For convenience of illustration, the passage 19 with an expansion valve 19a, which will be described later, and the like are omitted in FIG. In this case, the heat exchangers 13 and 14 can be arranged outside the vacuum cool box 37. Further, the rectification column 15 is divided by a partition plate 20 into a dephlegmator section 21 and a tower section 22, and the condenser 21 in the dephlegmator section 21 is divided.
Part of the nitrogen gas accumulated in the upper part of the tower portion 22 is fed into a through the first reflux liquid passage 21b. The inside of the dephlegmator section 21 is in a reduced pressure state as compared with the inside of the tower section 22, and the stored liquid air (N 2 50 to 70%, O 2 30 to 50%) 18 at the bottom of the tower section 22 is an expansion valve. It is sent through a passage 19 with a 19a, vaporized and cooled to an internal temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 21a is liquefied. A liquid level gauge 25 controls the valve 26 according to the liquid level of the liquid air in the dephlegmator section 21 to store liquid nitrogen.
Controls the supply of liquid nitrogen from 23. Fraction of rectification tower 15
The liquid nitrogen generated in the condenser 21a of the dephlegmator section 21 is supplied to the upper portion of 22 through the second reflux liquid passage 21c while being supplied from the liquid nitrogen storage means 23. Are supplied through the liquid nitrogen introducing passage 24a, and these flow downward in the tower portion 22 via the liquid nitrogen reservoir 21d, and come into contact with the compressed air rising from the bottom of the tower portion 22 countercurrently to cool it. It is designed to partially liquefy. In this process, the high boiling point component in the compressed air is liquefied and accumulated at the bottom of the tower part 22, and the nitrogen gas of the low boiling point component accumulates at the top of the tower part 22. 27 is a rectification tower
In the nitrogen gas take-out passage for taking out the nitrogen gas accumulated in the upper ceiling part of the tower part 22 of 15 as product nitrogen gas, the ultra-low temperature nitrogen gas is guided into the second and first heat exchangers 14, 13 and there It exchanges heat with the compressed air that is sent to bring it to room temperature and sends it to the main passage 28. In this case, at the uppermost portion in the column portion 22 of the rectification column 15, since He (−269 ° C.), H 2 (−253 ° C.), etc., which have a low boiling point, are likely to accumulate together with the nitrogen gas, the nitrogen gas extraction passage 27 Has an opening considerably lower than the uppermost part of the tower section 22 so that only pure nitrogen gas in which He and H 2 are not mixed is taken out as product nitrogen gas. The top of the liquid nitrogen storage means 23 is connected to the nitrogen gas extraction passage 27 by a vaporized nitrogen extraction passage 39 with a pressure adjusting valve 38, and the condenser 21a is a gas release passage for letting He, H 2 and the like escape to the outside air. Equipped with 40. 29 is a passage for sending the vaporized liquid air in the dephlegmator section 21 to the second and first heat exchangers 14 and 13, and 29a
Is the pressure-holding valve. Reference numeral 30 denotes a back-up passage, which vaporizes the liquid nitrogen in the liquid nitrogen storage means 23 in order to make up for the shortage of the product nitrogen gas flowing from the rectification tower 15 to the main passage 28.
It has a function of evaporating by 31 and constantly supplying a constant amount to the main passage 28, and a function of supplying the entire amount of nitrogen gas consumed when the air compression system line fails. In this case, the flow rate of the back-up passage 30 is adjusted by that of the pressure adjusting valve 35 arranged in the downstream portion of the evaporator 31. 32
Is an impurity analyzer for analyzing the purity of the product nitrogen gas sent to the main passage 28, and when the purity is low, the valves 34,3
4a is actuated to release the product nitrogen gas to the outside as shown by arrow B.

この装置は、つぎのようにして製品窒素ガスを製造す
る。すなわち、空気圧縮機9により空気を圧縮し、ドレ
ン分離器10により圧縮された空気中の水分を除去してフ
ロン冷却器11により冷却し、その状態で吸着筒12に送り
込み、空気中のH2OおよびCO2を吸着除去する。ついで、
H2O,CO2が吸着除去された圧縮空気を、精留塔15から窒
素ガス取出通路27を経て送り込まれる製品窒素ガス等に
よつて冷やされている第1,第2の熱交換器13,14に送り
込んで超低温に冷却し、その状態で精留塔15の塔部22の
下部内に投入する。ついで、この投入圧縮空気を、液体
窒素貯蔵手段23から液体窒素導入通路24aを経由して精
留塔15の塔部22内に送り込まれた液体窒素および液体窒
素溜め21dからの溢流液体窒素と接触させて冷却し、一
部を液化して塔部22の底部に液体空気18として溜める。
この過程において、窒素と酸素の沸点の差(酸素の沸点
−183℃,窒素の沸点−196℃)により、圧縮空気中の高
沸点成分である酸素が液化し、窒素が気体のまま残る。
ついで、この気体のまま残つた窒素を窒素ガス取出通路
27から取り出し、冷媒として第2および第1の熱交換器
14,13に送り込み、熱交換器14,13内を通る圧縮空気と熱
交換させて常温近くまで昇温させメイン通路28から製品
窒素ガスとして送り出す。この場合、精留塔15の塔部22
内は、空気圧縮機9の圧縮力および液体窒素の蒸気圧に
より高圧になつているため、窒素ガス取出通路27から取
り出される製品窒素ガスの圧力も高い。したがつて、こ
の製品窒素ガスをパージ用ガス等として用いるようなと
きには有利となる。また、圧力がこのように高いため、
同一径のパイプでは多量のガスを輸送できるようになる
し、輸送量を一定にしたときには小径のパイプを用いる
ことができるようになり設備費の節約を実現しうるよう
になる。他方、精留塔15の塔部22の下部に溜つた液体空
気18については、これを分縮器部21内に送り込み凝縮機
21aを冷却させる。この冷却により、精留塔15の塔部22
の上部から第1の還流液用通路21bを通つて凝縮器21aに
送入された窒素ガスが液化して精留塔塔部22内の還流液
となり、第2の還流液用通路21cを経て精留塔15の塔部2
2に戻る。そして、凝縮器21aを冷却し終えた液体空気18
は、気化し通路29により第2および第1の熱交換器14,1
3に送られその熱交換器14,13を冷やしたのち、空中に放
出される。なお、液体窒素貯蔵手段23から液体窒素導入
通路24aを経由して精留塔15の塔部22内に送り込まれた
液体窒素は、圧縮空気液化用の寒冷源として作用し、そ
れ自身は気化して窒素ガス取出通路27から製品窒素ガス
の一部として取り出される。このように、液体窒素貯蔵
手段23の液体窒素は、圧縮空気液化用の寒冷源としての
作用を終えたのち、廃棄されるのではなく、圧縮空気を
原料とする高純度窒素ガスと合体して製品化されるので
あり、無駄なく利用される。また液体窒素貯蔵手段23の
頂部に溜る気化窒素は気化窒素抜出通路39から窒素ガス
取出通路27に導かれるので、エネルギの無駄な消費が防
止される。
This apparatus produces product nitrogen gas as follows. That is, the air is compressed by the air compressor 9, the water in the air compressed by the drain separator 10 is removed, and it is cooled by the Freon cooler 11, and then sent to the adsorption cylinder 12 in that state, and the H 2 in the air is reduced. Adsorbs and removes O and CO 2 . Then,
Compressed air from which H 2 O and CO 2 have been adsorbed and removed is cooled by the product nitrogen gas or the like fed from the rectification column 15 through the nitrogen gas extraction passage 27. The first and second heat exchangers 13 Then, it is sent to 14, 14 to be cooled to an ultra-low temperature, and then charged into the lower part of the tower section 22 of the rectification tower 15 in that state. Then, the input compressed air, the liquid nitrogen sent from the liquid nitrogen storage means 23 into the tower portion 22 of the rectification tower 15 via the liquid nitrogen introduction passage 24a and the liquid nitrogen overflowed from the liquid nitrogen reservoir 21d. They are brought into contact with each other and cooled, and a part thereof is liquefied and stored as liquid air 18 at the bottom of the tower section 22.
In this process, due to the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-183 ° C, boiling point of nitrogen-196 ° C), oxygen, which is a high-boiling point component in the compressed air, is liquefied and nitrogen remains as a gas.
Then, the nitrogen remaining in this gas is removed from the nitrogen gas discharge passage.
2nd and 1st heat exchangers taken out from 27 as a refrigerant
It is sent to 14, 13 and heat-exchanged with the compressed air passing through the heat exchangers 14, 13 to raise the temperature to near room temperature and send it out from the main passage 28 as product nitrogen gas. In this case, the tower section 22 of the rectification tower 15
Since the inside has a high pressure due to the compression force of the air compressor 9 and the vapor pressure of liquid nitrogen, the pressure of the product nitrogen gas taken out from the nitrogen gas taking-out passage 27 is also high. Therefore, it is advantageous when this product nitrogen gas is used as a purging gas or the like. Also, because the pressure is so high,
A large amount of gas can be transported with a pipe having the same diameter, and a pipe with a small diameter can be used when the transport amount is constant, so that the facility cost can be saved. On the other hand, for the liquid air 18 accumulated in the lower part of the tower section 22 of the rectification tower 15, this is sent into the dephlegmator section 21 and the condenser
Allow 21a to cool. By this cooling, the tower section 22 of the rectification tower 15
The nitrogen gas sent from the upper part of the column to the condenser 21a through the first reflux liquid passage 21b is liquefied to become the reflux liquid in the rectification column section 22, and passes through the second reflux liquid passage 21c. Tower part 2 of rectification tower 15
Return to 2. Then, the liquid air 18 that has finished cooling the condenser 21a
Is vaporized by the passage 29 to the second and first heat exchangers 14,1.
After being sent to 3, the heat exchangers 14 and 13 are cooled, and then discharged into the air. The liquid nitrogen sent from the liquid nitrogen storage means 23 into the tower portion 22 of the rectification column 15 via the liquid nitrogen introduction passage 24a acts as a cold source for liquefying compressed air, and vaporizes itself. And is taken out as a part of the product nitrogen gas from the nitrogen gas taking-out passage 27. In this way, the liquid nitrogen of the liquid nitrogen storage means 23 is not discarded after finishing the action as a cold source for liquefying compressed air, but is combined with high-purity nitrogen gas using compressed air as a raw material. It is commercialized and used without waste. Further, since the vaporized nitrogen accumulated on the top of the liquid nitrogen storage means 23 is guided from the vaporized nitrogen extraction passage 39 to the nitrogen gas extraction passage 27, wasteful consumption of energy is prevented.

〔発明の効果〕 この発明の高純度窒素ガス製造装置は、膨脹タービン
を用いず、それに代えて何ら回転部をもたない液体窒素
貯槽のような液体窒素貯蔵手段を用いるため、装置全体
として回転部がなくなり故障が全く生じないうえ、膨脹
タービンの使用時の弊害(製品窒素ガスの取り出し量の
変化に応じて迅速に寒冷量を制御できない)が生じず、
純度の高い製品窒素ガスを製造することができるように
なる。そのうえ、この発明の高純度窒素ガス製造装置
は、上記のように、液体窒素貯槽から精留塔へ寒冷とな
る液体窒素を供給し、これを装置全体の寒冷として用い
る。したがつて、膨脹タービンを使用する必要がなくな
り、膨脹タービンの使用に基づく弊害が生じない。また
この発明では、上記のように、真空保冷函中に、精留塔
および液体窒素貯蔵手段を相互に隣接して収容してい
る。そのため、装置を停止状態からスタートアツプさせ
る時には、液体窒素貯槽によつて、精留塔が予冷された
状態となつていることから、スタートアツプ時間を短縮
することができる。また、同一の真空保冷函中に精留塔
と液体窒素貯蔵手段とが収容されていることから、全体
の設置スペースが小さくてすむという効果を奏するう
え、各別に断熱材を用いて保冷するという手間が不要と
なる。また、この発明では、液体窒素貯蔵手段から気化
窒素を蒸出する気化窒素抜き出し路を真空保冷函中に設
け、その先端を製品窒素ガスを取り出す窒素ガス取り出
し路に延ばしていることから、従来、大気中に排気され
ていた気化窒素の有効利用を実現することができる。ま
た、従来、精留塔と液体窒素貯槽とを連結していた真空
断熱配管が不要となることから、装置全体の構造が簡単
となるとともに、設備費も少なくてすむようになる。
[Advantages of the Invention] The high-purity nitrogen gas production apparatus of the present invention does not use an expansion turbine, but instead uses liquid nitrogen storage means such as a liquid nitrogen storage tank having no rotating part, so that the entire apparatus is rotated. Since there is no part and no failure occurs, there is no adverse effect when using the expansion turbine (it is not possible to quickly control the amount of cold according to the change in the amount of product nitrogen gas taken out),
It becomes possible to produce high-purity product nitrogen gas. In addition, the high-purity nitrogen gas producing apparatus of the present invention supplies liquid nitrogen, which becomes cold, from the liquid nitrogen storage tank to the rectification column as described above, and uses this as cold for the entire apparatus. Therefore, it is not necessary to use the expansion turbine, and there is no harmful effect due to the use of the expansion turbine. Further, in the present invention, as described above, the rectification column and the liquid nitrogen storage means are housed adjacent to each other in the vacuum cool box. Therefore, when the apparatus is started up from the stopped state, the liquid nitrogen storage tank keeps the rectification column in a pre-cooled state, so that the start-up time can be shortened. Further, since the rectification column and the liquid nitrogen storage means are housed in the same vacuum cool box, there is an effect that the entire installation space can be small, and in addition, a separate heat insulating material is used to keep cool. No need for labor. Further, in the present invention, a vaporized nitrogen withdrawal path for vaporizing vaporized nitrogen from the liquid nitrogen storage means is provided in the vacuum cool box, and the tip thereof is extended to the nitrogen gas withdrawal path for taking out product nitrogen gas. It is possible to realize effective utilization of vaporized nitrogen that has been exhausted to the atmosphere. Further, since the vacuum heat insulating pipe that conventionally connects the rectification column and the liquid nitrogen storage tank is not required, the structure of the entire apparatus is simplified and the equipment cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の構成図、第2図は精留塔
および液体窒素貯蔵手段を真空保冷函に収容した部分の
構成図である。 9……空気圧縮機、12……除去手段、13,14……熱交換
器、15……精留塔、19……液体空気取入通路、19a……
膨脹弁、21……分縮器部、21a……凝縮器、21b……第1
の還流液用通路、21c……第2の還流液用通路、22……
塔部、23……液体窒素貯蔵手段、24a……液体窒素導入
通路、27……窒素ガス取出通路、37……真空保冷函、39
……気化窒素抜出通路
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of a portion in which a rectification column and liquid nitrogen storage means are housed in a vacuum cool box. 9 ... Air compressor, 12 ... Removal means, 13,14 ... Heat exchanger, 15 ... Fractionation tower, 19 ... Liquid air intake passage, 19a ...
Expansion valve, 21 ... decompressor section, 21a ... condenser, 21b ... first
Reflux liquid passage, 21c ... second reflux liquid passage, 22 ...
Tower, 23 ... Liquid nitrogen storage means, 24a ... Liquid nitrogen introduction passage, 27 ... Nitrogen gas extraction passage, 37 ... Vacuum cool box, 39
...... Vacuum nitrogen extraction passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】外部より取り入れた空気を圧縮する空気圧
縮手段と、この空気圧縮手段によつて圧縮された圧縮空
気中の炭酸ガスと水とを除去する除去手段と、この除去
手段を経た圧縮空気を超低温に冷却する熱交換手段と、
この熱交換手段により超低温に冷却された圧縮空気の一
部を液化して内部に溜め窒素のみを気体として保持する
精留塔と、液体窒素を貯蔵する液体窒素貯蔵手段と、こ
の液体窒素貯蔵手段内の液体窒素を圧縮空気液化用の寒
冷源として上記精留塔に導く液体窒素導入通路と、上記
精留塔内に保持されている気化窒素を取り出し上記熱交
換手段に案内し上記圧縮空気と熱交換させて昇温させ製
品窒素ガスとする窒素ガス取出通路と、少なくとも上記
精留塔および液体窒素貯蔵手段を相互に隣接して収容す
る真空保冷函と、上記真空保冷函内に設けられ、上記液
体窒素貯蔵手段の頂部に溜る気化窒素を上記窒素ガス取
出通路に導く気化窒素抜出通路を備えていることを特徴
とする高純度窒素ガス製造装置。
1. An air compression means for compressing air taken from the outside, a removal means for removing carbon dioxide gas and water in the compressed air compressed by the air compression means, and a compression through this removal means. Heat exchange means for cooling the air to an ultra-low temperature,
A rectification column that liquefies a part of the compressed air cooled to ultra-low temperature by this heat exchange means and stores it inside to hold only nitrogen as a gas, liquid nitrogen storage means for storing liquid nitrogen, and this liquid nitrogen storage means Liquid nitrogen in the liquid nitrogen introduction passage as a cold source for liquefaction of compressed air to the rectification tower, and the vaporized nitrogen held in the rectification tower is taken out and guided to the heat exchange means and the compressed air. A nitrogen gas extraction passage that heats and raises the temperature to produce product nitrogen gas, a vacuum cold insulation box for accommodating at least the rectification column and liquid nitrogen storage means adjacent to each other, and provided in the vacuum cold insulation box, A high-purity nitrogen gas production apparatus comprising a vaporized nitrogen withdrawal passage for guiding vaporized nitrogen accumulated at the top of the liquid nitrogen storage means to the nitrogen gas withdrawal passage.
JP60299435A 1985-12-28 1985-12-28 High-purity nitrogen gas production equipment Expired - Fee Related JPH0823470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299435A JPH0823470B2 (en) 1985-12-28 1985-12-28 High-purity nitrogen gas production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299435A JPH0823470B2 (en) 1985-12-28 1985-12-28 High-purity nitrogen gas production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7014413A Division JP2686050B2 (en) 1995-01-31 1995-01-31 High-purity nitrogen gas production equipment

Publications (2)

Publication Number Publication Date
JPS62158976A JPS62158976A (en) 1987-07-14
JPH0823470B2 true JPH0823470B2 (en) 1996-03-06

Family

ID=17872535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299435A Expired - Fee Related JPH0823470B2 (en) 1985-12-28 1985-12-28 High-purity nitrogen gas production equipment

Country Status (1)

Country Link
JP (1) JPH0823470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686050B2 (en) * 1995-01-31 1997-12-08 大同ほくさん株式会社 High-purity nitrogen gas production equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas

Also Published As

Publication number Publication date
JPS62158976A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
KR900005985B1 (en) High- purity nitrogen gas production equipment
WO1985004466A1 (en) Apparatus for producing high-purity nitrogen gas
JPS6158747B2 (en)
JP5005894B2 (en) Nitrogen generation method and apparatus used therefor
JPH0823470B2 (en) High-purity nitrogen gas production equipment
JP2686050B2 (en) High-purity nitrogen gas production equipment
JPS6119902B2 (en)
JPH09105579A (en) High purity nitrogen gas manufacturing apparatus
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JPH0719725A (en) High purity nitrogen gas preparing apparatus
JP2773878B2 (en) High-purity nitrogen gas production equipment
JP2672250B2 (en) High-purity nitrogen gas production equipment
JP3021389B2 (en) High-purity nitrogen gas production equipment
JPH10325674A (en) Air liquefying and separating device
JPH0611255A (en) High purity nitrogen gas preparing device
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
JPH0665947B2 (en) High-purity nitrogen gas production equipment
JPH0587447A (en) Producing apparatus for nitrogen gas
JPS6244190B2 (en)
JPS63148079A (en) Production unit for high-purity nitrogen gas
JPH04158187A (en) Device for manufacturing ultra high purity nitrogen
JPH0731000B2 (en) Ultra high purity nitrogen gas production equipment
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPH0417346B2 (en)
JPH0719724A (en) High purity nitrogen gas preparing apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees