JPH0731000B2 - Ultra high purity nitrogen gas production equipment - Google Patents

Ultra high purity nitrogen gas production equipment

Info

Publication number
JPH0731000B2
JPH0731000B2 JP60299436A JP29943685A JPH0731000B2 JP H0731000 B2 JPH0731000 B2 JP H0731000B2 JP 60299436 A JP60299436 A JP 60299436A JP 29943685 A JP29943685 A JP 29943685A JP H0731000 B2 JPH0731000 B2 JP H0731000B2
Authority
JP
Japan
Prior art keywords
nitrogen
nitrogen gas
passage
liquid
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60299436A
Other languages
Japanese (ja)
Other versions
JPS62158977A (en
Inventor
明 吉野
Original Assignee
大同ほくさん株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社 filed Critical 大同ほくさん株式会社
Priority to JP60299436A priority Critical patent/JPH0731000B2/en
Publication of JPS62158977A publication Critical patent/JPS62158977A/en
Publication of JPH0731000B2 publication Critical patent/JPH0731000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超高純度窒素ガス製造装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to an ultrahigh-purity nitrogen gas production apparatus.

〔従来の技術〕[Conventional technology]

従来の窒素ガス製造装置は、圧縮機で圧縮された圧縮空
気を熱交換するための熱交換器の冷媒の冷却用に、膨脹
タービンを用い、これを精留塔内に溜る液体空気(深冷
液化分離により低沸点の窒素はガスとして取り出され、
残部が酸素リツチな液体空気となつて溜る)から蒸発し
たガスの圧力で駆動するようになつている。ところが、
膨脹タービンは回転速度が極めて大(数万回/分)であ
り、負荷変動に対する追従運転が困難であり、特別に養
成した運転員が必要である。また、このものは高速回転
するため機械構造上高精度が要求され、かつ高価であ
り、機構が複雑なため特別に養成した保全要員が必要と
いう難点を有している。すなわち、膨脹タービンは高速
回転部を有するため、上記のような諸問題を生じるので
あり、このような高速回転部を有する膨脹タービンの除
去に対して強い要望があつた。
A conventional nitrogen gas production apparatus uses an expansion turbine for cooling the refrigerant of a heat exchanger for heat exchange of compressed air compressed by a compressor, and uses the expansion turbine to collect liquid air (deep cooling) in the rectification tower. By the liquefaction separation, low boiling point nitrogen is taken out as a gas,
The rest is stored as oxygen-rich liquid air) and is driven by the pressure of the gas evaporated from it. However,
The expansion turbine has an extremely high rotation speed (tens of thousands of times / minute), and it is difficult to follow the load fluctuation, and thus a specially trained operator is required. Further, since this machine rotates at high speed, it requires high precision in terms of mechanical structure, is expensive, and has a complicated mechanism, which requires specially trained maintenance personnel. That is, since the expansion turbine has a high-speed rotating portion, the above-mentioned various problems occur, and there is a strong demand for the removal of the expansion turbine having such a high-speed rotating portion.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者は、このような要望に応える目的で、膨脹ター
ビンに代えて、液体窒素を貯蔵する液体窒素貯槽を設
け、この液体窒素貯槽から精留塔に対し、液体窒素を寒
冷とて供給するという高純度窒素ガス製造装置を提案
し、すでに特許出願している(特願昭59−4123号)。そ
の装置は、膨脹タービンを有しないため、膨脹タービン
の有する前記弊害を全て解決することができる。しかし
ながら、上記提案装置においては、精留塔内で生成し、
製品窒素ガス取り出し路から取り出される製品窒素ガス
に、場合によりヘリウム,水素等の不純分となるガスが
混入し、それによつて、製品窒素ガスの純度が低下する
という難点を生じていた。
In order to meet such a demand, the present inventor provides a liquid nitrogen storage tank for storing liquid nitrogen in place of the expansion turbine, and supplies the liquid nitrogen as cold from the liquid nitrogen storage tank to the rectification column. We have proposed a high-purity nitrogen gas production device called "Patent application No. 59-4123". Since the device does not have an expansion turbine, it is possible to solve all the above-mentioned problems that the expansion turbine has. However, in the above-mentioned proposed apparatus, it is generated in the rectification tower,
In some cases, the product nitrogen gas taken out from the product nitrogen gas take-out path is mixed with an impurity gas such as helium and hydrogen, which causes a problem that the purity of the product nitrogen gas is lowered.

この発明は、このような事情に鑑みなされたもので、膨
脹タービンを用いず、しかも製品窒素ガス中にヘリウ
ム,水素等の不純分となるガスの混入することのない超
高純度窒素ガス製造装置の提供をその目的とする。
The present invention has been made in view of the above circumstances, and an ultrahigh-purity nitrogen gas production apparatus that does not use an expansion turbine and does not mix impurities such as helium and hydrogen into product nitrogen gas. The purpose is to provide.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するため、この発明の超高純度窒素ガ
ス製造装置は、外部より取り入れた空気を圧縮する空気
圧縮手段と、この空気圧縮手段によつて圧縮された圧縮
空気中の炭酸ガスと水とを除去する除去手段と、この除
去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、この熱交換手段により超低温に冷却された圧縮空気
の一部を液化して内部に溜め窒素のみを気体として保持
する精留塔と、液体窒素を貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を圧縮空気液化
用の寒冷源として上記精留塔に導く液体窒素導入通路
と、上記精留塔内に保持されている気化窒素を取り出す
窒素ガス取出通路を備え、上記精留塔が還流液製造用の
凝縮器を内蔵する分縮器部を有し、その凝縮器の入口お
よび出口が第1,第2の還流液用通路を介して上記精留塔
の上部と連通し、上記第1の還流液用通路の入口より低
い位置に上記窒素ガス取出通路の入口を位置決めし、上
記両入口間の連絡距離を長くする延長手段を上記精留塔
内に設けたという構成をとる。
In order to achieve the above-mentioned object, the ultrahigh-purity nitrogen gas production apparatus of the present invention comprises an air compression means for compressing air taken in from the outside, and carbon dioxide gas in compressed air compressed by this air compression means. Removal means for removing water and heat, heat exchange means for cooling the compressed air that has passed through this removal means to an ultralow temperature, and a part of the compressed air cooled to an ultralow temperature by this heat exchange means to liquefy and store only nitrogen inside. , A liquid nitrogen storage means for storing liquid nitrogen, and a liquid nitrogen introduction passage for guiding the liquid nitrogen in the liquid nitrogen storage means to the rectification tower as a cold source for compressed air liquefaction, , A nitrogen gas extraction passage for taking out the vaporized nitrogen held in the rectification tower, the rectification tower has a dephlegmator section containing a condenser for producing a reflux liquid, and an inlet of the condenser And the exit is the first and second return It communicates with the upper part of the rectification column through a liquid passage, and the inlet of the nitrogen gas extraction passage is positioned at a position lower than the inlet of the first reflux liquid passage, so that the communication distance between both inlets is increased. The extension means is provided in the rectification column.

〔作用〕[Action]

この発明は、精留塔内において、ヘリウム,水素等の不
純ガスが溜まる塔頂部に、第一の還流液用通路の入口を
位置決めし、その通路の入口よりも低い位置に窒素ガス
取り出し路の取り出し通路の入口を位置決めし、しかも
両入口間の連絡距離を長くする延長手段を設けている。
そのため、精留の過程において生じ、精留塔の塔頂部に
順次蓄積滞留するヘリウム,水素等の不純ガスが、第一
の還流液用通路の入口から取り出されて、凝縮器内に導
入され、その凝縮器内において、沸点の低いヘリウム,
水素等は気化の状態を保ち、窒素のみが液化する。そし
て、上記気体のヘリウム,水素等の不純ガスは、凝縮器
から延びる排気路によつて外部の大気中に投棄される。
このように、この発明では、窒素ガス取り出し通路の入
口が上記還流液用通路の入口より低い位置に位置決めさ
れていることから、精留塔の塔頂部に蓄積滞留するヘリ
ウム,水素等の不純ガスが製品窒素ガス中に混入しにく
くなる。特に、この発明では、還流液用通路の入口と、
製品窒素ガス取り出し路の入口との間の連絡距離を長く
するため、遮蔽板等の延長手段を設けていることから、
製品窒素ガス取り出し通路から取り出される製品窒素ガ
スの取り出し量が多くなり、その取り出しガスに吸引さ
れて精留塔の塔頂に蓄積滞留しているヘリウム,水素等
の不純ガスが製品窒素ガス中に混入しようとしても、遮
蔽板等の延長手段により、その混入が阻止される。した
がつて、製品窒素ガス中にヘリウム,水素のような不純
ガスが全く混入しなくなり、製品窒素ガスが超高純度の
ものとなる。
This invention locates the inlet of the first reflux liquid passage at the top of the column where impure gas such as helium and hydrogen accumulates in the rectification column, and places the nitrogen gas removal passage at a position lower than the inlet of the passage. An extension means is provided for positioning the entrance of the take-out passage and for increasing the communication distance between the entrances.
Therefore, impure gases such as helium and hydrogen that are generated in the process of rectification and accumulated and accumulated in the column top of the rectification column are taken out from the inlet of the first reflux liquid passage and introduced into the condenser, Helium, which has a low boiling point in the condenser,
Hydrogen and the like remain vaporized, and only nitrogen is liquefied. Then, the above-mentioned impure gases such as helium and hydrogen are dumped into the outside atmosphere through the exhaust passage extending from the condenser.
As described above, in the present invention, since the inlet of the nitrogen gas extraction passage is positioned at a position lower than the inlet of the reflux liquid passage, impure gas such as helium and hydrogen accumulated and accumulated in the top of the rectification column is retained. Becomes difficult to mix in product nitrogen gas. In particular, in the present invention, the inlet of the reflux liquid passage,
In order to lengthen the communication distance with the inlet of the product nitrogen gas take-out path, since an extension means such as a shielding plate is provided,
The amount of product nitrogen gas taken out from the product nitrogen gas take-out passage increases, and impure gases such as helium and hydrogen that are sucked by the taken-out gas and accumulate and accumulate at the top of the rectification tower enter the product nitrogen gas. Even if an attempt is made to mix, the mixing is prevented by an extension means such as a shielding plate. Therefore, the impure gas such as helium and hydrogen is not mixed in the product nitrogen gas at all, and the product nitrogen gas becomes ultra-high purity.

つぎに、この発明を実施例にもとづいて詳しく説明す
る。
Next, the present invention will be described in detail based on examples.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示している。図におい
て、9は空気圧縮機、10はドレン分離器、11はフロン冷
却器、12は2個1組の吸着筒である。吸着筒12は内部に
モレキユラーシーブが充填されていて空気圧縮機9によ
り圧縮された空気中のH2OおよびCO2を吸着除去する作用
をする。8はH2O,CO2が吸着除去された圧縮空気を送る
圧縮空気供給パイプである。13は第1の熱交換器であ
り、除去手段(吸着筒)12によりH2OおよびCO2が吸着除
去された圧縮空気が送り込まれる。14は第2の熱交換器
であり、第1の熱交換器13を経た圧縮空気が送り込まれ
る。15は塔頂部が凝縮器21aを有する分縮器部21になつ
ており、それより下が塔部22になつている精留塔であ
り、第1および第2の熱交換器13,14により超低温に冷
却され圧縮空気供給通路17を経て送り込まれる圧縮空気
をさらに冷却し、その一部を液化し液体空気18として塔
部22の底部に溜め、窒素のみを気体状態で塔部22の上部
天井部に溜めるようになつている。23は液体窒素貯蔵手
段(槽)であり、内部の液体窒素(高純度品)を、液体
窒素導入通路24aを経由させて精留塔15の塔部22の上部
側に送入し、塔部22内に供給される圧縮空気の寒冷源に
する。ここで前記精留塔15についてより詳しく説明する
と、上記精留塔15は分縮器部21と塔部22とに区切られて
おり、上記分縮器部21内の凝縮器21aには、塔部22の上
部に溜る窒素ガスの一部が第1の還流液用通路21bを介
して送入される。この分縮器部21内は、塔部22内よりも
減圧状態になつており、塔部22の底部の貯留液体空気
(N250〜70%,O230〜50%)18が膨脹弁19a付きパイプ19
を経て送り込まれ、気化して内部温度を液体窒素の沸点
以下の温度に冷却するようになつている。この冷却によ
り、凝縮器21a内に送入された窒素ガスが液化する。25
は液面計であり、分縮器部21内の液体空気の液面に応じ
てバルブ26を制御し液体窒素貯蔵手段23からの液体窒素
の供給量を制御する。精留塔15の塔部22の上部側の部分
には、上記分縮器部21の凝縮器21aで生成した液体窒素
が第2の還流液用通路21cを通つて流下供給されるとと
もに、液体窒素貯蔵手段23から液体窒素が液体窒素導入
通路24aを経て供給され、これらが液体窒素溜め21dを経
て塔部22内を下方に流下し、塔部22の底部から上昇する
圧縮空気と向流的に接触し冷却してその一部を液化する
ようになつている。この過程で圧縮空気中の高沸点成分
は液化されて塔部22の底部に溜り、低沸点成分の窒素ガ
スが塔部22の上部に溜る。27は精留塔15の塔部22の上部
天井部に溜つた窒素ガスを製品窒素ガスとして取り出す
窒素ガス取出通路で、超低温の窒素ガスを第2および第
1の熱交換器14,13内に案内し、そこに送り込まれる圧
縮空気と熱交換させて常温にしメイン通路28に送り込む
作用をする。この場合、精留塔15の塔部22内における最
上部には、窒素ガスとともに、沸点の低いHe(−269
℃),H2(−253℃)等が溜るため、第2図のように、第
1の還流液用通路21bの入口21eより低い位置に窒素ガス
取出通路27の入口27aが開口して、HeおよびH2等の混在
しない超高純度窒素ガスのみを製品窒素ガスとして取り
出すようになつている。これを助長するため、根元部に
液滴下孔を有する遮蔽板(延長手段)21fが、第1の還
流液用通路21bの入口下部から斜め上方に突設され、窒
素ガス取り出し入口27aと、第一の還流液用通路21bの入
口との連絡距離を長くし、それによつて、製品窒素ガス
が通路27内へ流入するとき生じる気流によつて、He,H2
等の混在する窒素ガスが製品窒素ガスに混入しないよう
にしている。上記遮蔽板21fの液滴下孔は、遮蔽板21fの
上部空間で液化した窒素ガス分を流下させる作用をす
る。また凝縮器21aの上部からは上記He,H2等を外気に逃
すためのガス抜き通路21gが上方に延びている。29は分
縮器部21内の気化液体空気を第2および第1の熱交換器
14,13に送り込んで冷却するための通路、29aはその保圧
弁である。30はバツクアツプ系ラインであり、精留塔15
からメイン通路28に流れる製品窒素ガスの不足を補うべ
く、液体窒素貯蔵手段23内の液体窒素を蒸発器31により
蒸発させてメイン通路28に常時一定量供給させる機能
と、空気圧縮系ラインが故障したとき、消費窒素ガスの
全量を供給させる機能とを備えている。この場合、バツ
クアツプ系ライン30の流量調整は、蒸発器31の下流部に
配置された圧力調整弁35により行われる。32は不純物分
析計であり、メイン通路28に送り出される製品窒素ガス
の純度を分析し、純度の低いときは、弁34,34aを作動さ
せて製品窒素ガスを矢印Bのように外部に逃気する作用
をする。二点鎖線は、真空断熱保冷函である。
FIG. 1 shows an embodiment of the present invention. In the figure, 9 is an air compressor, 10 is a drain separator, 11 is a Freon cooler, and 12 is a set of two adsorption tubes. The adsorption column 12 is filled with a molecular sieve and serves to adsorb and remove H 2 O and CO 2 in the air compressed by the air compressor 9. Reference numeral 8 is a compressed air supply pipe for sending compressed air from which H 2 O and CO 2 have been adsorbed and removed. Reference numeral 13 is a first heat exchanger, into which compressed air from which H 2 O and CO 2 have been adsorbed and removed by the removing means (adsorption cylinder) 12 is fed. Reference numeral 14 is a second heat exchanger, into which the compressed air that has passed through the first heat exchanger 13 is fed. Reference numeral 15 is a rectification column in which the tower top is connected to the dephlegmator section 21 having the condenser 21a, and the column section 22 is located below the condenser section 21a by the first and second heat exchangers 13 and 14. The compressed air that has been cooled to an ultra-low temperature and is sent through the compressed air supply passage 17 is further cooled, and a part of it is liquefied and stored as liquid air 18 at the bottom of the tower section 22, and only nitrogen in a gaseous state is provided on the upper ceiling of the tower section 22. It is supposed to be stored in the department. Reference numeral 23 is a liquid nitrogen storage means (tank), which feeds the internal liquid nitrogen (high-purity product) to the upper side of the tower portion 22 of the rectification tower 15 via the liquid nitrogen introduction passage 24a, Use as a cold source for the compressed air supplied to the inside. Explaining the rectification column 15 in more detail here, the rectification column 15 is divided into a dephlegmator section 21 and a tower section 22, and the condenser 21a in the dephlegmator section 21 has a column. A part of the nitrogen gas accumulated in the upper part of the portion 22 is sent in through the first reflux liquid passage 21b. The inside of the dephlegmator section 21 is in a reduced pressure state as compared with the inside of the tower section 22, and the stored liquid air (N 2 50 to 70%, O 2 30 to 50%) 18 at the bottom of the tower section 22 is an expansion valve. 19a with pipe 19
It is then sent through and vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 21a is liquefied. twenty five
Is a liquid level gauge, which controls the valve 26 according to the liquid level of the liquid air in the partial condenser 21 to control the supply amount of the liquid nitrogen from the liquid nitrogen storage means 23. The liquid nitrogen produced in the condenser 21a of the dephlegmator 21 is supplied to the upper part of the column part 22 of the rectification column 15 through the second reflux liquid passage 21c, and the liquid nitrogen is supplied. Liquid nitrogen is supplied from the nitrogen storage means 23 through the liquid nitrogen introduction passage 24a, and these flow downward in the tower portion 22 through the liquid nitrogen reservoir 21d, and in countercurrent with the compressed air rising from the bottom of the tower portion 22. It comes into contact with and is cooled to liquefy a part of it. In this process, the high boiling point component in the compressed air is liquefied and accumulated at the bottom of the tower part 22, and the nitrogen gas of the low boiling point component accumulates at the top of the tower part 22. 27 is a nitrogen gas take-out passage for taking out the nitrogen gas accumulated in the upper ceiling part of the tower part 22 of the rectification tower 15 as product nitrogen gas. Ultra-low temperature nitrogen gas is introduced into the second and first heat exchangers 14 and 13. It guides and heat-exchanges with the compressed air sent into it to bring it to room temperature and sends it to the main passage 28. In this case, at the uppermost part in the column part 22 of the rectification column 15, together with nitrogen gas, He (−269
° C.), since the H 2 (-253 ° C.) or the like is accumulated, as in FIG. 2, the inlet 27a of the nitrogen gas takeout path 27 lower than the inlet 21e of the first reflux liquid passage 21b position is open, Only ultra-high-purity nitrogen gas that does not contain He and H 2 etc. is taken out as product nitrogen gas. In order to promote this, a shielding plate (extending means) 21f having a droplet lower hole at the base is projected obliquely upward from the lower part of the inlet of the first reflux liquid passage 21b, and the nitrogen gas take-out inlet 27a and the first The communication distance with the inlet of the first reflux liquid passage 21b is lengthened, and thereby, due to the air flow generated when the product nitrogen gas flows into the passage 27, He, H 2
The mixed nitrogen gas is prevented from mixing with the product nitrogen gas. The droplet drop hole of the shielding plate 21f has a function of flowing down the liquefied nitrogen gas component in the upper space of the shielding plate 21f. Also from the top of the condenser 21a above He, a gas vent passage 21g for escape of H 2 or the like to the outside air and extends upward. 29 is a second and first heat exchanger for the vaporized liquid air in the dephlegmator 21.
A passage for feeding and cooling 14 and 13, 29a is a pressure holding valve. 30 is a backup system line, and a rectification tower 15
In order to make up for the shortage of product nitrogen gas flowing from the main passage 28 to the main passage 28, the liquid nitrogen in the liquid nitrogen storage means 23 is vaporized by the evaporator 31 so that a constant amount is constantly supplied to the main passage 28, and the air compression system line fails. When this is done, it has the function of supplying the entire amount of nitrogen gas consumed. In this case, the flow rate of the backup system line 30 is adjusted by the pressure adjusting valve 35 arranged at the downstream of the evaporator 31. An impurity analyzer 32 analyzes the purity of the product nitrogen gas sent to the main passage 28. When the purity is low, the valves 34 and 34a are operated to escape the product nitrogen gas to the outside as shown by arrow B. To act. The chain double-dashed line is a vacuum insulation box.

この装置は、つぎのようにして製品窒素ガスを製造す
る。すなわち、空気圧縮機9により空気を圧縮し、ドレ
ン分離器10により圧縮された空気中の水分を除去してフ
ロン冷却器11により冷却し、その状態で吸着筒12に送り
込み、空気中のH2OおよびCO2を吸着除去する。ついで、
H2O,CO2が吸着除去された圧縮空気を、精留塔15から窒
素ガス取出通路27を経て送り込まれる製品窒素ガス等に
よつて冷やされている第1,第2の熱交換器13,14に送り
込んで超低温に冷却し、その状態で精留塔15の塔部22の
下部内に投入する。ついで、この投入圧縮空気を、液体
窒素貯蔵手段23から液体窒素導入通路24aを経由して精
留塔15の塔部22内に送り込まれた液体窒素および液体窒
素溜め21dからの溢流液体窒素と接触させて冷却し、一
部を液化して塔部22の底部に液体空気18として溜める。
この過程において、窒素と酸素の沸点の差(酸素の沸点
−183℃,窒素の沸点−196℃)により、圧縮空気中の高
沸点成分である酸素が液化し、窒素が気体のまま残る。
ついで、この気体のまま残つた窒素を窒素ガス取出通路
27から取り出して第2および第1の熱交換器14,13に送
り込み、常温近くまで昇温させメイン通路28から製品窒
素ガスとして送り出す。この場合、精留塔15の塔部22内
は、空気圧縮機9の圧縮力および液体窒素の蒸気圧によ
り高圧になつているため、窒素ガス取出通路27から取り
出される製品窒素ガスの圧力も高い。したがつて、この
製品窒素ガスをパージ用ガス等として用いるようなとき
には有利となる。また、圧力がこのように高いため、同
一径のパイプでは多量のガスを輸送できるようになる
し、輸送量を一定にしたときは小径のパイプを用いるこ
とができるようになり設備費の節約を実現しうるように
なる。また、塔部22の頂部にはH2およびHe等、窒素ガス
よりも沸点の低いガスを含んだ窒素ガスが溜る。このガ
スは不純なガスとして窒素ガスの一部と共に第1の還流
液用通路21bから凝縮器21aへ流入して、ここで液化する
窒素ガスから分離してガス抜き通路21gより外気へ逃げ
る。その際、第1の還流液用通路21bの入口21eが窒素ガ
ス取出通路27の入口27aより高い位置(塔部22の頂部
側)にあることから上記頂部に溜るH2およびHe等の不純
なガスが第1の還流液用通路21bに入りやすく、しかも
入口21eの下部から斜め上方に突出した遮蔽板21fにより
上記頂部が遮蔽され、窒素ガス取出通路27へ流入する製
品窒素ガスに引かれて上記不純なガスが混入するという
ことが防止される。その結果、窒素ガス取出通路27から
取り出される製品窒素ガスの純度は超高純度になる。な
お、上記遮蔽板21fの上面で凝縮して液化した液体窒素
は、遮蔽板21fの根元の液滴下孔から下部の精留棚21hに
滴下して回収される。他方、精留塔15の塔部22の下部に
溜つた液体空気18については、これを分縮器部21内に送
り込み凝縮器21aを冷却させる。この冷却により、精留
塔15の塔部22の上部から凝縮器21aに送入された窒素ガ
スが液化して精留塔塔部22内の還流液となり、第2の還
流液用通路21cを経て精留塔15の塔部22に戻る。そし
て、凝縮器21aを冷却し終えた液体空気18は、気化し、
通路29により第2および第1の熱交換器14,13に送られ
その熱交換器14,13を冷やしたのち、空中に放出され
る。なお、液体窒素貯蔵手段23から液体窒素導入通路24
aを経由して精留塔15の塔部22内に送り込まれた液体窒
素は、圧縮空気液化用の寒冷源として作用し、それ自身
は気化して窒素ガス取出通路27から製品窒素ガスの一部
として取り出される。このように、液体窒素貯蔵手段23
の液体窒素は、圧縮空気液化用の寒冷源としての作用を
終えたのち、廃棄されるのではなく、圧縮空気を原料と
する高純度窒素ガスと合体して製品化されるのであり、
無駄なく利用される。
This apparatus produces product nitrogen gas as follows. That is, the air is compressed by the air compressor 9, the water in the air compressed by the drain separator 10 is removed, and it is cooled by the Freon cooler 11, and then sent to the adsorption cylinder 12 in that state, and the H 2 in the air is reduced. Adsorbs and removes O and CO 2 . Then,
Compressed air from which H 2 O and CO 2 have been adsorbed and removed is cooled by the product nitrogen gas or the like fed from the rectification column 15 through the nitrogen gas extraction passage 27. The first and second heat exchangers 13 Then, it is sent to 14, 14 to be cooled to an ultra-low temperature, and then charged into the lower part of the tower section 22 of the rectification tower 15 in that state. Then, the input compressed air, the liquid nitrogen sent from the liquid nitrogen storage means 23 into the tower portion 22 of the rectification tower 15 via the liquid nitrogen introduction passage 24a and the liquid nitrogen overflowed from the liquid nitrogen reservoir 21d. They are brought into contact with each other and cooled, and a part thereof is liquefied and stored as liquid air 18 at the bottom of the tower section 22.
In this process, due to the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-183 ° C, boiling point of nitrogen-196 ° C), oxygen, which is a high-boiling point component in the compressed air, is liquefied and nitrogen remains as a gas.
Then, the nitrogen remaining in this gas is removed from the nitrogen gas discharge passage.
It is taken out from 27 and sent to the second and first heat exchangers 14 and 13, where it is heated to near room temperature and sent out from the main passage 28 as product nitrogen gas. In this case, since the inside of the column section 22 of the rectification column 15 is at a high pressure due to the compression force of the air compressor 9 and the vapor pressure of liquid nitrogen, the pressure of the product nitrogen gas taken out from the nitrogen gas take-out passage 27 is also high. . Therefore, it is advantageous when this product nitrogen gas is used as a purging gas or the like. Also, since the pressure is so high, a large amount of gas can be transported with a pipe of the same diameter, and when the transport amount is constant, it is possible to use a pipe with a small diameter, which saves equipment costs. It will be possible. Further, nitrogen gas containing a gas having a lower boiling point than nitrogen gas, such as H 2 and He, accumulates at the top of the tower section 22. This gas flows as an impure gas together with a part of the nitrogen gas into the condenser 21a from the first reflux liquid passage 21b, separates from the liquefied nitrogen gas there, and escapes from the degassing passage 21g to the outside air. At that time, since the inlet 21e of the first reflux liquid passage 21b is located at a position higher than the inlet 27a of the nitrogen gas extraction passage 27 (top side of the tower portion 22), impurities such as H 2 and He accumulated at the top are impure. The gas is likely to enter the first reflux liquid passage 21b, and the top portion is shielded by the shielding plate 21f projecting obliquely upward from the lower portion of the inlet 21e, and is drawn by the product nitrogen gas flowing into the nitrogen gas extraction passage 27. It is possible to prevent the impure gas from being mixed. As a result, the purity of the product nitrogen gas taken out from the nitrogen gas take-out passage 27 becomes extremely high. The liquid nitrogen condensed and liquefied on the upper surface of the shielding plate 21f is dripped into the lower rectification shelf 21h from the droplet lower hole at the base of the shielding plate 21f and collected. On the other hand, the liquid air 18 accumulated in the lower part of the tower section 22 of the rectification tower 15 is sent into the dephlegmator section 21 to cool the condenser 21a. By this cooling, the nitrogen gas fed into the condenser 21a from the upper part of the column part 22 of the rectification column 15 is liquefied to become the reflux liquid in the rectification column part 22, and the second reflux liquid passage 21c is formed. After that, it returns to the tower section 22 of the rectification tower 15. Then, the liquid air 18 that has finished cooling the condenser 21a is vaporized,
After being sent to the second and first heat exchangers 14 and 13 through the passage 29 to cool the heat exchangers 14 and 13, they are discharged into the air. The liquid nitrogen storage means 23 to the liquid nitrogen introduction passage 24
The liquid nitrogen fed into the tower section 22 of the rectification column 15 via a acts as a cold source for liquefying compressed air, and is itself vaporized to remove one of the product nitrogen gases from the nitrogen gas extraction passage 27. Taken out as a part. Thus, the liquid nitrogen storage means 23
The liquid nitrogen of is not discarded after it has finished its function as a cold source for liquefying compressed air, but is commercialized by being combined with high-purity nitrogen gas that uses compressed air as a raw material.
Used without waste.

第3図は、延長手段がパイプ21iにより形成された例を
示す。このパイプ21iは、第一の還流液用通路21bの入口
21eから塔部22内の頂部に向かつて斜め上方に突出して
いる。そのため、パイプ21iの入口21eは、製品窒素ガス
取出通路27の入口27aからの連絡距離が充分に取れるよ
うになる。そのため、塔頂部に溜るH2,He等の不純なガ
スを効果的に凝縮器21aに導くことができる。
FIG. 3 shows an example in which the extension means is formed by a pipe 21i. This pipe 21i is the inlet of the first reflux liquid passage 21b.
It projects obliquely upward from 21e toward the top of the tower 22. Therefore, the inlet 21e of the pipe 21i can have a sufficient communication distance from the inlet 27a of the product nitrogen gas outlet passage 27. Therefore, the impure gas such as H 2 and He accumulated at the top of the tower can be effectively guided to the condenser 21a.

第4図は第1図の第2の還流液用通路21cの出口に設け
られた還流液溜21dから3〜5段下に位置する精留棚21h
の下に、液体窒素導入通路24aからの液体窒素を溜める
液体窒素溜21kを配置した例を示す。この構成では、液
体窒素貯蔵手段23内の液体窒素に不純分が混じつていて
も、この液体窒素は精留棚21hを2〜3段上昇して通過
する過程で充分に整流され、純度が向上する。例えば、
O2が2ppmの純度の液体窒素はO2が0.2ppm以下の高純度に
なる。
FIG. 4 shows a rectification shelf 21h located 3 to 5 steps below the reflux liquid reservoir 21d provided at the outlet of the second reflux liquid passage 21c shown in FIG.
An example in which a liquid nitrogen reservoir 21k for accumulating the liquid nitrogen from the liquid nitrogen introducing passage 24a is arranged below is shown. In this configuration, even if impurities are mixed in the liquid nitrogen in the liquid nitrogen storage means 23, the liquid nitrogen is sufficiently rectified in the process of passing through the rectification shelf 21h by 2 to 3 stages and has a purity. improves. For example,
Liquid nitrogen having a purity of O 2 of 2 ppm has a high purity of O 2 of 0.2 ppm or less.

第5図は第1図の塔部22の天井部の中央を上方に突出さ
せてここにH2やHe等に混じつた窒素ガスを滞留させるよ
うにした例を示す。この構成では、H2,Heの混じつた窒
素が、製品窒素の取り出しに全く影響しないという効果
が得られるようになる。
FIG. 5 shows an example in which the center of the ceiling portion of the tower portion 22 in FIG. 1 is projected upward so that the nitrogen gas mixed with H 2 and He is retained therein. With this configuration, it is possible to obtain the effect that nitrogen mixed with H 2 and He has no influence on the removal of product nitrogen.

〔発明の効果〕 この発明の超高純度窒素ガス製造装置は、膨脹タービン
を用いず、それに代えて何ら回転部をもたない液体窒素
貯槽のような液体窒素貯蔵手段を用いるため、装置全体
として回転部がなくなり故障が生じない。しかも液体窒
素貯槽は、安価であることから、装置全体のコストも安
くなり、また液体窒素の供給量の制御は、瞬時に行える
ことから、膨脹タービンによる寒冷の供給量の制御(膨
脹タービンによる寒冷の制御には、時間遅れが生じる)
に比べて、製品窒素ガスの純度が安定となる。そのう
え、この発明の装置では、精留塔内において、ヘリウ
ム,水素等の不純ガスが溜まる塔頂部に、第一の還流液
用通路の入口を位置決めし、その通路の入口よりも低い
位置に窒素ガス取り出し路の取り出し通路の入口を位置
決めし、しかも両入口間の連絡距離を長くする延長手段
を設けている。そのため、精留の過程において生じ、精
留塔の塔頂部に順次蓄積滞留するヘリウム,水素等の不
純ガスが、第一の還流液用通路の入口から取り出され
て、凝縮器内に導入され、その凝縮器内において、沸点
の低いヘリウム,水素等は気化の状態を保ち、窒素のみ
が液化する。そして、上記気体のヘリウム,水素等の不
純ガスは、凝縮器から延びる排気路によつて外気の大気
中に投棄される。このように、この発明では、窒素ガス
取り出し通路の入口が上記還流液用通路の入口より低い
位置に位置決めされていることから、精留塔の塔頂部に
蓄積滞留するヘリウム,水素等の不純ガスが製品窒素ガ
ス中に混入しにくくなる。特に、この発明の装置では、
還流液用通路の入口と、製品窒素ガス取り出し路の入口
との間の連絡距離を長くするため、遮蔽板等の延長手段
を設けていることから、製品窒素ガス取り出し通路から
取り出される製品窒素ガスの取り出し量が多くなり、そ
の取り出しガスに吸引されて精留塔の塔頂に蓄積滞留し
ているヘリウム,水素等の不純ガスが製品窒素ガス中に
混入しようとしても、遮蔽板等の延長手段により、その
混入が阻止される。したがつて、製品窒素ガス中にヘリ
ウム,水素のような不純ガスが混入しなくなり、製品窒
素ガスが超高純度のものとなる。
[Advantages of the Invention] The ultrahigh-purity nitrogen gas production apparatus of the present invention does not use an expansion turbine, but instead uses liquid nitrogen storage means such as a liquid nitrogen storage tank having no rotating part, so that the entire apparatus is There is no rotating part and no malfunction occurs. Moreover, since the liquid nitrogen storage tank is inexpensive, the cost of the entire device is also low, and since the supply amount of liquid nitrogen can be controlled instantaneously, the cooling supply amount of cold by the expansion turbine can be controlled (cooling by the expansion turbine). Control will cause a time delay)
Compared with, the purity of the product nitrogen gas becomes stable. Moreover, in the device of the present invention, in the rectification column, the inlet of the first reflux liquid passage is positioned at the top of the column where impure gases such as helium and hydrogen are accumulated, and nitrogen is provided at a position lower than the inlet of the passage. An extension means is provided for positioning the inlet of the take-out passage of the gas take-out passage and for increasing the communication distance between the two inlets. Therefore, impure gases such as helium and hydrogen that are generated in the process of rectification and accumulated and accumulated in the column top of the rectification column are taken out from the inlet of the first reflux liquid passage and introduced into the condenser, In the condenser, helium, hydrogen and the like having a low boiling point are kept in a vaporized state, and only nitrogen is liquefied. Then, the above-mentioned gaseous impurities such as helium and hydrogen are discharged into the atmosphere of the outside air through the exhaust passage extending from the condenser. As described above, in the present invention, since the inlet of the nitrogen gas extraction passage is positioned at a position lower than the inlet of the reflux liquid passage, impure gas such as helium and hydrogen accumulated and accumulated in the top of the rectification column is retained. Becomes difficult to mix in product nitrogen gas. Particularly, in the device of the present invention,
Since an extension means such as a shielding plate is provided to increase the communication distance between the inlet of the reflux liquid passage and the inlet of the product nitrogen gas extraction passage, the product nitrogen gas extracted from the product nitrogen gas extraction passage is provided. Even if an impure gas such as helium or hydrogen that is sucked into the taken-out gas and accumulated and accumulated at the top of the rectification tower is mixed in the product nitrogen gas, a means for extending the shielding plate, etc. Therefore, the mixture is prevented. Therefore, the impure gas such as helium and hydrogen is not mixed in the product nitrogen gas, and the product nitrogen gas becomes ultra-high purity.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1実施例の構成図、第2図および
第3図は塔頂部の変形例を示す構成図、第4図は液体窒
素溜の変形例を示す構成図、第5図は塔頂部に突出部を
設けた変形例の構成図である。 9……空気圧縮機、12……除去手段、13,14……熱交換
器、15……精留塔、19……液体空気取入通路、19a……
膨脹弁、21……分縮器部、21a……凝縮器、21b……第1
の還流液用通路、21c……第2の還流液用通路、21d……
還流液溜、21e……入口、21i……パイプ、21f……整流
板、21h……精留棚、21k……液体窒素溜、22……塔部、
23……液体窒素貯蔵手段、24a……液体窒素導入通路、2
7……窒素ガス取出通路、27a……入口
FIG. 1 is a block diagram of a first embodiment of the present invention, FIGS. 2 and 3 are block diagrams showing a modified example of the column top, and FIG. 4 is a block diagram showing a modified example of a liquid nitrogen reservoir, and FIG. The figure is a configuration diagram of a modified example in which a protrusion is provided at the top of the tower. 9 ... Air compressor, 12 ... Removal means, 13,14 ... Heat exchanger, 15 ... Fractionation tower, 19 ... Liquid air intake passage, 19a ...
Expansion valve, 21 ... decompressor section, 21a ... condenser, 21b ... first
Reflux liquid passage, 21c ... second reflux liquid passage, 21d ...
Reflux liquid reservoir, 21e …… Inlet, 21i …… Pipe, 21f …… Rectifier plate, 21h …… Rectification shelf, 21k …… Liquid nitrogen reservoir, 22 …… Tower section,
23 ... Liquid nitrogen storage means, 24a ... Liquid nitrogen introduction passage, 2
7 …… Nitrogen gas extraction passage, 27a …… Inlet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】外部より取り入れた空気を圧縮する空気圧
縮手段と、この空気圧縮手段によつて圧縮された圧縮空
気中の炭酸ガスと水とを除去する除去手段と、この除去
手段を経た圧縮空気を超低温に冷却する熱交換手段と、
この熱交換手段により超低温に冷却された圧縮空気の一
部を液化して内部に溜め窒素のみを気体として保持する
精留塔と、液体窒素を貯蔵する液体窒素貯蔵手段と、こ
の液体窒素貯蔵手段内の液体窒素を圧縮空気液化用の寒
冷源として上記精留塔に導く液体窒素導入通路と、上記
精留塔内に保持されている気化窒素を取り出す窒素ガス
取出通路を備え、上記精留塔が還流液製造用の凝縮器を
内蔵する分縮器部を有し、その凝縮器の入口および出口
が第1,第2の還流液用通路を介して上記精留塔の上部と
連通し、上記第1の還流液用通路の入口より低い位置に
上記窒素ガス取出通路の入口を位置決めし、上記両入口
間の連絡距離を長くする延長手段を上記精留塔内に設け
たことを特徴とする超高純度窒素ガス製造装置。
1. An air compression means for compressing air taken from the outside, a removal means for removing carbon dioxide gas and water in the compressed air compressed by the air compression means, and a compression through this removal means. Heat exchange means for cooling the air to an ultra-low temperature,
A rectification column that liquefies a part of the compressed air cooled to ultra-low temperature by this heat exchange means and stores it inside to hold only nitrogen as a gas, liquid nitrogen storage means for storing liquid nitrogen, and this liquid nitrogen storage means Liquid nitrogen in the liquid nitrogen introduction passage as a cold source for liquefaction of compressed air to the rectification column, and a nitrogen gas extraction passage for taking out the vaporized nitrogen held in the rectification column, the rectification column Has a condenser part containing a condenser for producing reflux liquid, and the inlet and outlet of the condenser communicate with the upper part of the rectification column through first and second reflux liquid passages, The inlet of the nitrogen gas extraction passage is positioned lower than the inlet of the first reflux liquid passage, and extension means for increasing the communication distance between the inlets is provided in the rectification column. Ultra-high-purity nitrogen gas production equipment.
【請求項2】上記延長手段が、第1の還流液用通路の入
口から上記精留塔内の頂部に向かつて突出するパイプに
より形成されている特許請求の範囲第1項記載の超高純
度窒素ガス製造装置。
2. The ultra-high purity according to claim 1, wherein the extending means is formed by a pipe projecting from the inlet of the first reflux liquid passage toward the top of the rectification column. Nitrogen gas production equipment.
【請求項3】上記延長手段が、上記第1の還流液用通路
の入口下部から入口前方に突出して設けられた液滴下孔
を有する遮蔽板により形成されている特許請求の範囲第
1項記載の超高純度窒素ガス製造装置。
3. The extension means is formed by a shield plate having a droplet lower hole provided so as to project from a lower portion of an inlet of the first reflux liquid passage to a front side of the inlet. Ultra-high purity nitrogen gas production equipment.
【請求項4】上記第2の還流液用通路の出口に設けられ
た還流液溜から複数段下に位置する精留棚の下に、上記
液体窒素導入通路からの液体窒素を溜める液体窒素溜が
配置されている特許請求の範囲第1項記載の超高純度窒
素ガス製造装置。
4. A liquid nitrogen reservoir for accumulating liquid nitrogen from the liquid nitrogen introduction passage under a rectification shelf located at a plurality of stages below the reflux liquid reservoir provided at the outlet of the second reflux liquid passage. The ultra-high-purity nitrogen gas production apparatus according to claim 1, wherein
JP60299436A 1985-12-28 1985-12-28 Ultra high purity nitrogen gas production equipment Expired - Lifetime JPH0731000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299436A JPH0731000B2 (en) 1985-12-28 1985-12-28 Ultra high purity nitrogen gas production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299436A JPH0731000B2 (en) 1985-12-28 1985-12-28 Ultra high purity nitrogen gas production equipment

Publications (2)

Publication Number Publication Date
JPS62158977A JPS62158977A (en) 1987-07-14
JPH0731000B2 true JPH0731000B2 (en) 1995-04-10

Family

ID=17872549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299436A Expired - Lifetime JPH0731000B2 (en) 1985-12-28 1985-12-28 Ultra high purity nitrogen gas production equipment

Country Status (1)

Country Link
JP (1) JPH0731000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773878B2 (en) * 1988-12-12 1998-07-09 大同ほくさん株式会社 High-purity nitrogen gas production equipment
US5058387A (en) * 1989-07-05 1991-10-22 The Boc Group, Inc. Process to ultrapurify liquid nitrogen imported as back-up for nitrogen generating plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas
JPS60142183A (en) * 1983-12-28 1985-07-27 日本酸素株式会社 Method of liquefying and separating air

Also Published As

Publication number Publication date
JPS62158977A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
JPH0313505B2 (en)
WO1984003554A1 (en) Apparatus for producing high-purity nitrogen gas
KR900005985B1 (en) High- purity nitrogen gas production equipment
JPS6148072B2 (en)
JPS6158747B2 (en)
US4530708A (en) Air separation method and apparatus therefor
KR20080036008A (en) Nitrogen generating device and apparatus for use therefor
JPH0731000B2 (en) Ultra high purity nitrogen gas production equipment
KR890001743B1 (en) Highly pure nitrogen gas producing apparatus
JP2773878B2 (en) High-purity nitrogen gas production equipment
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JP2686050B2 (en) High-purity nitrogen gas production equipment
JP3095237B2 (en) Ultra high purity nitrogen production equipment
JPH06281322A (en) Manufacturing apparatus for high purity nitrogen and oxygen gas
JP2721590B2 (en) Ultra high purity nitrogen production equipment
JPH0731001B2 (en) High-purity nitrogen gas production equipment
JP2533262B2 (en) High-purity nitrogen and oxygen gas production equipment
JP3732774B2 (en) Cryogenic liquefaction separator
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
JP2978231B2 (en) Ultra high purity nitrogen production equipment
JPH0665947B2 (en) High-purity nitrogen gas production equipment
JPS6148071B2 (en)
JPS6244190B2 (en)
JPH0823470B2 (en) High-purity nitrogen gas production equipment