JP3095237B2 - Ultra high purity nitrogen production equipment - Google Patents

Ultra high purity nitrogen production equipment

Info

Publication number
JP3095237B2
JP3095237B2 JP02286610A JP28661090A JP3095237B2 JP 3095237 B2 JP3095237 B2 JP 3095237B2 JP 02286610 A JP02286610 A JP 02286610A JP 28661090 A JP28661090 A JP 28661090A JP 3095237 B2 JP3095237 B2 JP 3095237B2
Authority
JP
Japan
Prior art keywords
condenser
liquid
rectification column
pipe
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02286610A
Other languages
Japanese (ja)
Other versions
JPH04158185A (en
Inventor
明 吉野
鼎士 渡部
洋実 木山
耕治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP02286610A priority Critical patent/JP3095237B2/en
Publication of JPH04158185A publication Critical patent/JPH04158185A/en
Application granted granted Critical
Publication of JP3095237B2 publication Critical patent/JP3095237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/32Neon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超高純度窒素製造装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an apparatus for producing ultra-high purity nitrogen.

〔従来の技術〕[Conventional technology]

従来の高純度窒素、例えば高純度窒素ガスの製造装置
は、原料空気を圧縮器で圧縮し、これを熱交換器を通し
て冷却して精留塔内に送り込み、ここで原料空気を深冷
液化分離して窒素ガスをつくり、これを精製器で高純度
化するようになつている。この種の窒素ガス製造装置で
は、熱交換器を通る圧縮空気の冷却のために、精留塔内
で副生する酸素リツチな排ガスを駆動源とする膨脹ター
ビンを用い、そこで発生する寒冷を利用している。上記
膨脹タービンは高速回転機器(数万回/分)であること
から、製品窒素ガスの需要量の増大等の負荷変動に対す
る速やかな追従運転が困難である。したがつて、製品窒
素ガスの需要量の大幅な増加に対して寒冷生成量の増加
が遅れ、その間、不純窒素ガスが製造されるという大き
な問題を有している。また、上記膨脹タービンは、先に
述べたように、高速回転するため、機械構造上高精度が
要求されて高価であり、また、特別に養成した要員が必
要という難点も有している。すなわち、膨脹タービンは
高速機器であることから上記のような問題を生じるので
あり、この膨脹タービンの除去に対して強い要望があつ
た。
Conventional production equipment for high-purity nitrogen, for example, high-purity nitrogen gas, compresses raw air with a compressor, cools it through a heat exchanger and sends it into a rectification column, where the raw air is cryogenically liquefied and separated. To produce nitrogen gas, which is refined with a purifier. This type of nitrogen gas production equipment uses an expansion turbine driven by oxygen-rich exhaust gas by-produced in the rectification tower to cool compressed air passing through the heat exchanger, and utilizes the cold generated there. doing. Since the expansion turbine is a high-speed rotating device (several tens of thousands of revolutions / minute), it is difficult to quickly follow a load fluctuation such as an increase in demand for product nitrogen gas. Therefore, the increase in the amount of cold generated is delayed in response to a large increase in the demand for the product nitrogen gas, and during that time, there is a major problem that impure nitrogen gas is produced. Further, as described above, since the expansion turbine rotates at high speed, high precision is required in terms of the mechanical structure, which is expensive, and has the disadvantage that specially trained personnel are required. That is, since the expansion turbine is a high-speed device, the above-described problems occur, and there has been a strong demand for removing the expansion turbine.

このため、本発明者らは、膨脹タービンを除去し、そ
れに代えて液体窒素を精留塔に寒冷として供給し、空気
を深冷液化分離して窒素ガスを製造するという装置を開
発し、すでに出願(特願昭59−146332号)し公告(特公
昭61−46747号)を受けている。この装置(以下「提案
装置」という)は、半導体製造工場等の敷地内に、直接
据え置かれ、液体窒素製造工場(大型の深冷分離装置を
有している)で製造され、タンクローリー輸送されたも
のを貯蔵タンクに貯蔵しておき、これを寒冷として使用
するものである。この装置では、重量比で、ローリー輸
送された寒冷液体窒素1当り、10の高純度製品窒素ガス
を製造することができる。しかも、得られる製品は高純
度であることから、従来のような精製器も不要となる。
そのうえ、負荷変動に対する追従運転に関しては、液体
窒素の供給量を制御することにより迅速に対応できるこ
とから、負荷変動時の製品純度の低下も招かない。
For this reason, the present inventors have developed an apparatus that removes the expansion turbine, replaces it with liquid nitrogen and supplies it to the rectification tower in a cold state, and liquefies and separates the air to produce nitrogen gas. We have filed an application (Japanese Patent Application No. 59-146332) and received a public notice (Japanese Patent Application No. 61-46747). This device (hereinafter referred to as the “proposed device”) was directly installed on the premises of a semiconductor manufacturing plant or the like, manufactured at a liquid nitrogen manufacturing plant (having a large cryogenic separator), and transported by tank lorry. Things are stored in storage tanks and used as cold. This apparatus can produce, by weight, 10 high-purity product nitrogen gases per cold liquid nitrogen transported by lorry. In addition, since the obtained product has high purity, a conventional purifier is not required.
In addition, the operation following the load fluctuation can be promptly dealt with by controlling the supply amount of the liquid nitrogen, so that the product purity at the time of the load fluctuation does not decrease.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、電子工業では、半導体製造技術が飛躍的に
進歩しており、それに使用する窒素ガスとしても極めて
高純度な窒素ガスが要求されている。例えば、上記提案
装置において、不純分であるO2は0.05ppm程度に抑制す
ることができ、またCO2やCH4等の不純分も0.01ppm程度
に抑えることができる。しかしながら、H2やHeに関して
は抑制することができず、これは0.2ppm程度残存してい
る。ところが、このようなH2,He、なかでもH2の存在
は、半導体製造技術が飛躍的に進歩した今日では、半導
体製造に多大な悪影響を及ぼすようになつている。
However, in the electronics industry, semiconductor manufacturing technology has been dramatically advanced, and nitrogen gas of extremely high purity is required as a nitrogen gas used for the technology. For example, in the above proposed apparatus, the impurity O 2 can be suppressed to about 0.05 ppm, and the impurity such as CO 2 and CH 4 can be suppressed to about 0.01 ppm. However, H 2 and He cannot be suppressed, and about 0.2 ppm remains. However, the existence of such H 2 , He, especially H 2 , has a great adverse effect on semiconductor manufacturing today, when semiconductor manufacturing technology has advanced dramatically.

この発明は、このような事情に鑑みなされたもので、
O2やCO2,CH4のみならずH2やHe等の不純分も極めて少な
い超高純度の窒素を製造しうる製造装置の提供をその目
的とする。
The present invention has been made in view of such circumstances,
An object of the present invention is to provide a production apparatus capable of producing not only O 2 , CO 2 , and CH 4 but also ultra-high-purity nitrogen having extremely small amounts of impurities such as H 2 and He.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明は、原料空気を
超低温に冷却する熱交換器と、この超低温に冷却された
圧縮空気の一部を液化して底部に溜め窒素ガスを上部か
ら取り出す第1の精留塔と、この第1の精留塔の上部に
設けられた凝縮器内蔵型の分縮器と、第1の精留塔の底
部の貯溜液体空気を凝縮器冷却用寒冷として上記分縮器
に導く液空パイプと、上記分縮器中で生じた気化ガスを
外部に放出する第1の放出パイプと、上記第1の精留塔
内で生成した窒素ガスの一部を上記凝縮器内に案内する
第1の還流液パイプと、上記凝縮器内で生成した液体窒
素を還流液として第1の精留塔内に戻す第2の還流液パ
イプと、当該装置外から寒冷液体の供給を受けこれを貯
蔵するタンクとを備えた装置において、上記タンクの寒
冷液体を冷熱発生用膨脹器の発生冷熱に代え凝縮器冷却
用の寒冷として上記分縮器に供給する供給パイプと、上
記凝縮器内において窒素ガスの液化の過程で分離された
低沸点不純成分ガスを取り出し外部へ放出する放出パイ
プと、沸点の差により低沸点不純成分を気化して液体窒
素中から分離除去する第2の精留塔と、前記第1の精留
塔内の液体窒素を上記第2の精留塔に導入する導入パイ
プと、上記第2の精留塔内から気化した低沸点不純成分
を放出する第2の放出パイプと、上記第2の精留塔内の
低沸点不純成分除去済の液体窒素を製品として取り出す
製品液体窒素取出パイプと、上記第2の精留塔内の低沸
点不純成分除去済の液体窒素の一部を気化させ製品窒素
ガスとして取り出す製品窒素ガス取出パイプと、上記製
品液体窒素取出パイプから分岐して上記凝縮器に延びこ
の凝縮器を通過したのち上記第2の精留塔に延びる分岐
パイプを設けた超高純度窒素製造装置を第1の要旨と
し、寒冷として液体窒素を用い、これを精留塔に供給す
る以外は上記第1の要旨の装置と同様の構成の超高純度
窒素製造装置を第2の要旨とする。
In order to achieve the above object, the present invention provides a heat exchanger for cooling raw air to an ultra-low temperature, and a first heat exchanger for liquefying a part of the compressed air cooled to an ultra-low temperature, storing the compressed air at the bottom and extracting nitrogen gas from the top. Rectifier, a condenser built-in type decompressor provided above the first rectifier, and the liquid air stored at the bottom of the first rectifier as cold for cooling the condenser. A liquid empty pipe leading to the condensing device, a first discharging pipe for discharging the vaporized gas generated in the decomposing device to the outside, and a part of the nitrogen gas generated in the first rectifying column, A first reflux liquid pipe for guiding into the vessel, a second reflux liquid pipe for returning the liquid nitrogen generated in the condenser to the first rectification column as a reflux liquid, and a cooling liquid for cooling liquid from outside the apparatus. And a tank for receiving and storing the supply of the cold liquid in the tank for generating cold heat. A supply pipe to supply the above-mentioned decompressor as cold for condenser cooling in place of the cold generated by the expander, and a low-boiling-point impure component gas separated in the process of liquefaction of nitrogen gas in the above-mentioned condenser and taken out. Discharge pipe, a second rectification column for vaporizing low-boiling impurities due to a difference in boiling point and separating and removing the low-impure components from liquid nitrogen, and a second rectification of the liquid nitrogen in the first rectification column. An introduction pipe for introducing into the column, a second discharge pipe for discharging the vaporized low-boiling impurity components from inside the second rectification column, and a liquid from which the low-boiling impurity components have been removed in the second rectification column A product liquid nitrogen take-out pipe for taking out nitrogen as a product, a product nitrogen gas take-out pipe for vaporizing a portion of liquid nitrogen from which low-boiling impurities have been removed in the second rectification column and taking out the product nitrogen gas, Branch from liquid nitrogen extraction pipe A first aspect is an ultrahigh-purity nitrogen production apparatus provided with a branch pipe extending to a condenser and passing through the condenser and then extending to the second rectification column. A second aspect is an ultra-high-purity nitrogen production apparatus having the same configuration as that of the apparatus of the first aspect except that the apparatus is supplied to the first aspect.

〔作用〕[Action]

この発明の装置において、原料空気は熱交換器で冷却
されて超低温になり、その状態で第1の精留塔の底部に
入りその一部が液化され液体空気となつて溜まる。この
液体空気は、分縮器に送られ分縮器内の凝縮器の冷却用
に用いられる。この分縮器または精留塔には、他の深冷
分離装置でつくられタンクローリー等で運ばれ当該装置
のタンクに貯蔵されている液体窒素等の寒冷が同時に供
給され、凝縮器冷却作用をする。上記凝縮器には、第1
の精留塔の精留作用により第1の精留塔の上部に溜まる
窒素ガスが導入され、上記寒冷の冷却作用を受けて液化
される。そして、その液化成分は第1の精留塔内に還流
液として戻される。この戻された液体窒素(精留塔内で
生成した液体窒素も含む)は、第2の精留塔に送られ、
そこで窒素よりも低沸点の水素,ヘリウムのような低沸
点不純成分が気化によつて除去され超高純度品となり取
り出される。また、前記提案装置によれば、窒素よりも
低沸点のHe等の除去が困難であつたところ、この発明の
装置は、第2の精留塔および凝縮器から延びる放出パイ
プでこれを除去すること、および製品液体窒素取出パイ
プから取り出した液体窒素の一部を凝縮器によりガス化
して第2の精留塔に戻すことから、極めて高純度、例え
ばO2が0.001ppm、COが0.01ppm、CO2が0.001ppm、CH4
0.0005ppm、H2が0.005ppm以下という超高純度窒素が得
られるようになる。
In the apparatus of the present invention, the raw material air is cooled to a very low temperature by the heat exchanger, and in that state, it enters the bottom of the first rectification column and a part thereof is liquefied and accumulated as liquid air. The liquid air is sent to the condenser and used for cooling the condenser in the condenser. This condensator or rectification column is simultaneously supplied with cold such as liquid nitrogen and the like, which is produced by another cryogenic separation device and transported by a tank lorry and stored in the tank of the device, thereby performing a condenser cooling operation. . The condenser has a first
Nitrogen gas collected in the upper part of the first rectification column is introduced by the rectification operation of the rectification column, and is liquefied by the cold cooling operation. Then, the liquefied component is returned as a reflux liquid into the first rectification column. The returned liquid nitrogen (including the liquid nitrogen generated in the rectification column) is sent to the second rectification column,
Therefore, low-boiling impurities such as hydrogen and helium having a boiling point lower than that of nitrogen are removed by vaporization to obtain an ultra-high-purity product. Further, according to the proposed apparatus, it was difficult to remove He and the like having a boiling point lower than that of nitrogen. However, the apparatus of the present invention removes the He by a discharge pipe extending from the second rectification column and the condenser. it, and a portion of the liquid nitrogen taken out of the product liquid nitrogen takeout pipe from returning to the second rectification column to the gas by a condenser, very high purity, for example, O 2 is 0.001 ppm, CO is 0.01 ppm, 0.002 ppm of CO 2 and CH 4
0.0005 ppm, H 2 comes to ultra-high purity nitrogen can be obtained that less 0.005 ppm.

つぎに実施例について説明する。 Next, examples will be described.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示している。図におい
て1は空気圧縮機、2はドレン分離器、3はフロン冷却
器、4は2個一組の吸着塔である。吸着塔4内には内部
にモレキユラーシーブが充填されており、空気圧縮機に
より圧縮された空気中のH2OおよびCO2を吸着除去する。
5はH2O,CO2が吸着除去された圧縮空気を送る圧縮空気
供給パイプである。6は主熱交換器であり吸着塔4によ
りH2OおよびCO2が吸着除去された圧縮空気が送り込まれ
る。7は圧縮空気送出パイプであり、主熱交換器6で超
低温に冷却された圧縮空気が送られる。8は第1の精留
塔であり、主熱交換器6により超低温に冷却された圧縮
空気が底部に送り込まれる。この第1の精留塔8内で上
記圧縮空気の一部が液化して液体空気9として底部に溜
められ、窒素がガス状態で上部に溜められる。この上部
に溜められる窒素ガスは、第1の精留塔8内の多数の精
留棚(図示せず)を通過上昇する過程で精留され高純度
品になつている。10は第1の精留塔8の上部に設けられ
た第1の分縮器であり、内部の凝縮器11の上部に上記第
1の精留塔8の上部から第1の還流液パイプ12が延びて
いる。この第1の還流液パイプ12を通じて精留塔8の上
部の窒素ガスが凝縮器11内に導入され液化される。13は
第2の還流液パイプであり、上記凝縮器11内で液化生成
された液体窒素を還流液として第1の精留塔8の上部の
還流液溜め14に導入する。13aは凝縮器11に導入された
窒素ガス中の、H2,He等の窒素よりも低沸点不純成分を
ガス状態で放出する第1の放出パイプで凝縮器11の上部
から主熱交換器6を通つて外へ延び、H2,Heを外部に放
出する。15は液空パイプで、上記凝縮器11を冷却し内部
を通る窒素ガス液化用の寒冷として精留塔底部の液体空
気9を第1の分縮器10内に導入する。16は寒冷となる液
体窒素を収容する液体窒素タンクであり、他の深冷分離
装置で製造されタンクローリー等で運ばれた液体窒素を
貯蔵する。図示の都合上上記タンク16を図面の上部に描
いているが、タンク16は地上に設置される。17はこの液
体窒素タンク16から第1の分縮器10に延びる供給パイプ
であり、液体窒素の冷熱で凝縮器11を冷却させる。第1
の分縮器10内ではこの液体窒素と精留塔8の底部から供
給された液体空気とが混合状態で存在している。18は第
1の分縮器10の上部から主熱交換器6を通つて延びる放
出パイプであり、第1の分縮器10内において冷却作用を
発揮しそれ自身は気化した、液体空気と液体窒素の混合
ガスを、主熱交換器6を経由させ排ガスとして外部に放
出する。18aは廃液パイプであり蒸発器18bを通つて外部
へ延びていて、第1の分縮器10の最底部に溜まる混合液
(凝縮の繰返しによりCH4等が濃縮されて混入してい
る)をガス化して放出するようになつている。上記蒸発
器18bには、圧縮空気供給パイプ5から分岐した分岐パ
イプ5aが延びており、圧縮空気の一部を上記蒸発器18b
で熱交換させて冷却する。19は第2の精留塔である。20
は第1の精留塔8の上部の液体窒素溜め20aから第2の
精留塔19に延びる導入パイプであり、第1の精留塔8の
上部に溜まる液体窒素(還流液+精留塔の精留作用で生
成した液体窒素)を第2の精留塔19内に導く。第2の精
留塔19は上記導入パイプ20で送り込まれた液体窒素中よ
り、窒素よりも低沸点のH2,Heのような不純成分を気化
させ除去する。21は第2の精留塔19の上部から延びる第
2の放出パイプで、気化したHe等の低沸点不純成分を凝
縮器21aに送り、上記低沸点不純成分に帯同する窒素ガ
スを液化させる。21bはその液化窒素を第2の精留塔19
に戻す戻しパイプである。21gは凝縮器21aの上部から主
熱交換器6を通つて延びるパイプで、上記低沸点不純成
分を、熱交換により常温にして外部へ放出する。21cは
上記凝縮器21aを内蔵する第2の分縮器で、この分縮器2
1cには、第1の精留塔8の中央部から延びるパイプ21e
により、第1の精留塔8の中央部の液溜めの液体窒素
(不純分が充分除去されていない)が供給される。この
液体窒素は凝縮器21aの寒冷用に利用される。21fは廃窒
素パイプで、上記凝縮器21aで熱交換し気化した廃液体
窒素を主熱交換器6を経由させて外部に放出する。上記
第2の精留塔19において、その底部には、H2,He等の低
沸点不純成分が除去され超高純度化された液体窒素が貯
溜される。この第2の精留塔19の底部から、超高純度な
製品液体窒素を取り出すための製品液体窒素取出パイプ
24が延び、このパイプ24によつて超高純度液体窒素が需
要に供される。25は、上記パイプ24から分岐した分岐パ
イプで、凝縮器11の底部から上部に通り抜けて第2の精
留塔19に延びており、製品液体窒素の冷熱で凝縮器11を
冷却し、その過程で気化した液体窒素を第2の精留塔19
の中段の下方に戻す作用をする。26は製品窒素ガス取出
パイプで、第2の精留塔19の中段から主熱交換器6を通
つて延びており、第2の精留塔19の底部において、貯溜
液体窒素の気化により生じた窒素ガスおよび上記凝縮器
11で生じた窒素ガスを常温の超高純度製品窒素ガスとし
て需要に供する。なお、図において、LICはバルブと組
になつた液面計であり、取付場所の液面によりバルブの
開度ないし開閉を制御し、常時取付場所の液面を一定に
制御する。また、一点鎖線は真空保冷函であり、函の内
部を真空保冷する。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an air compressor, 2 is a drain separator, 3 is a CFC cooler, and 4 is a set of two adsorption towers. The inside of the adsorption tower 4 is filled with a molecular sieve, and adsorbs and removes H 2 O and CO 2 in the air compressed by the air compressor.
Reference numeral 5 denotes a compressed air supply pipe for sending compressed air from which H 2 O and CO 2 have been adsorbed and removed. Reference numeral 6 denotes a main heat exchanger to which compressed air from which H 2 O and CO 2 have been adsorbed and removed by the adsorption tower 4 is sent. Reference numeral 7 denotes a compressed air delivery pipe through which compressed air cooled to an extremely low temperature by the main heat exchanger 6 is sent. Reference numeral 8 denotes a first rectification column, into which compressed air cooled to an extremely low temperature by the main heat exchanger 6 is sent to the bottom. In the first rectification column 8, part of the compressed air is liquefied and stored at the bottom as liquid air 9, and nitrogen is stored at the top in a gaseous state. The nitrogen gas stored in the upper portion is rectified in a process of ascending and passing through a number of rectification racks (not shown) in the first rectification column 8 to become high-purity products. Reference numeral 10 denotes a first decomposer provided on the upper part of the first rectification column 8, and a first reflux liquid pipe 12 from the upper part of the first rectification column 8 to the upper part of the internal condenser 11. Is extending. Nitrogen gas at the upper part of the rectification column 8 is introduced into the condenser 11 through the first reflux liquid pipe 12 and liquefied. Reference numeral 13 denotes a second reflux liquid pipe, which introduces the liquid nitrogen liquefied and generated in the condenser 11 as a reflux liquid into a reflux liquid reservoir 14 above the first rectification column 8. Reference numeral 13a denotes a first discharge pipe for releasing gaseous components such as H 2 and He in the nitrogen gas introduced into the condenser 11 which are lower in boiling point than nitrogen. To the outside and release H 2 and He to the outside. Numeral 15 denotes a liquid empty pipe, which cools the condenser 11 and introduces liquid air 9 at the bottom of the rectification column into the first condensing unit 10 as refrigeration for liquefying nitrogen gas passing therethrough. Reference numeral 16 denotes a liquid nitrogen tank for storing liquid nitrogen to be cooled, which stores liquid nitrogen manufactured by another cryogenic separation device and carried by a tank lorry or the like. For convenience of illustration, the tank 16 is illustrated at the top of the drawing, but the tank 16 is installed on the ground. Reference numeral 17 denotes a supply pipe extending from the liquid nitrogen tank 16 to the first decomposer 10, and cools the condenser 11 by the cold heat of the liquid nitrogen. First
The liquid nitrogen and the liquid air supplied from the bottom of the rectification column 8 exist in a mixed state in the separator 10. Reference numeral 18 denotes a discharge pipe extending from the upper part of the first condenser 10 through the main heat exchanger 6, and performs a cooling action in the first condenser 10 and is itself vaporized, which is a liquid air and a liquid. The mixed gas of nitrogen is discharged to the outside as exhaust gas through the main heat exchanger 6. 18a is extend to and evaporator 18b a waste pipe to passing connexion outside, the mixed liquid collects in the bottom-most portion of the first partial condenser 10 (CH 4 or the like is mixed is concentrated by repetition of condensation) It is gasified and released. A branch pipe 5a branched from the compressed air supply pipe 5 extends to the evaporator 18b, and a part of the compressed air is supplied to the evaporator 18b.
Cool by exchanging heat. 19 is a second rectification column. 20
Is an introduction pipe extending from the liquid nitrogen reservoir 20a at the top of the first rectification column 8 to the second rectification column 19, and the liquid nitrogen (reflux liquid + rectification column) collected at the top of the first rectification column 8 (Liquid nitrogen produced by the rectification of the above) is introduced into the second rectification column 19. The second rectification column 19 vaporizes and removes impurities such as H 2 and He having a lower boiling point than nitrogen from the liquid nitrogen fed through the introduction pipe 20. Reference numeral 21 denotes a second discharge pipe extending from the upper part of the second rectification column 19, and sends a low-boiling impure component such as He vaporized to the condenser 21a to liquefy nitrogen gas entrained in the low-boiling impure component. 21b transfers the liquefied nitrogen to the second rectification column 19
Is a return pipe. Reference numeral 21g denotes a pipe extending from the upper part of the condenser 21a through the main heat exchanger 6, and discharges the low-boiling-point impure components to the normal temperature by heat exchange to the outside. 21c is a second decompressor incorporating the condenser 21a.
1c includes a pipe 21e extending from the center of the first rectification column 8.
Thereby, liquid nitrogen (impurities are not sufficiently removed) in the liquid reservoir at the center of the first rectification column 8 is supplied. This liquid nitrogen is used for cooling the condenser 21a. Reference numeral 21f denotes a waste nitrogen pipe for discharging waste liquid nitrogen vaporized by heat exchange in the condenser 21a to the outside via the main heat exchanger 6. In the second rectification column 19, liquid nitrogen that has been purified from ultra-high purity by removing low boiling impurities such as H 2 and He is stored at the bottom thereof. Product liquid nitrogen extraction pipe for extracting ultra-high purity product liquid nitrogen from the bottom of the second rectification column 19
The pipe 24 extends, and the ultra-high purity liquid nitrogen is supplied to the demand by the pipe 24. Reference numeral 25 denotes a branch pipe branched from the pipe 24. The branch pipe extends from the bottom to the top of the condenser 11 and extends to the second rectification column 19, where the condenser 11 is cooled by the cold heat of the product liquid nitrogen. Liquid nitrogen vaporized in the second rectification column 19
It works to return to below the middle stage. Reference numeral 26 denotes a product nitrogen gas extraction pipe extending from the middle stage of the second rectification column 19 through the main heat exchanger 6, and formed at the bottom of the second rectification column 19 by vaporization of the stored liquid nitrogen. Nitrogen gas and the above condenser
The nitrogen gas generated in step 11 is supplied to demand as ultra-high purity product nitrogen gas at room temperature. In the figure, LIC is a liquid level gauge paired with a valve, which controls the opening or opening / closing of the valve according to the liquid level at the mounting location and constantly controls the liquid level at the mounting location. The dashed line indicates a vacuum cool box, and the inside of the box is vacuum-cooled.

この構成において、原料空気は、空気圧縮機1により
圧縮され、ドレン冷却器2により水分が除去され、フロ
ン冷却器3によりさらに冷却され、その状態で吸着塔4
に送り込まれ、H2OおよびCO2を吸着除去される。つい
で、主熱交換器6に送り込まれて超低温に冷却され、気
液混合状態となつて第1の精留塔8の底部に導入され
る。原料空気は、この第1の精留塔8の底部で、さらに
冷却されて気化され、一部が第1の精留塔8の底部に液
体空気として溜まる。残部は、第1の精留塔8内を上昇
し、その過程で精留され、沸点の差により酸素が液化分
離される。これにより、第1の精留塔8の略中央部に酸
素を多量に含む液体窒素(この一部は廃液体窒素として
パイプ21eにより廃液体窒素タンク21cに導入される)が
溜まり、上部に高純度窒素ガスが溜まる。第1の精留塔
8の底部に溜まつた液体空気は、パイプ15を経由して第
1の分縮器10に導入され、そこで凝縮器11を冷却する。
この凝縮器11には、第1の精留塔8の上部に溜まつた窒
素ガスが導入され、上記液体空気の冷熱により冷却され
液化して第1の精留塔8の上部に還流液として流下す
る。また、上記第1の分縮器10には、液体窒素タンク16
から液体窒素が供給され、上記液体空気とともに凝縮器
11を冷却する。この凝縮器11に対する冷却により気化し
た液体空気および液体窒素は、第1の分縮器10の上部か
ら廃ガスとしてパイプ18で取り出され、主熱交換器6で
原料空気を冷却したのち外部へ放出される。一方、第1
の精留塔8の上部に、上記還流液として流下した液体窒
素(これには還流液だけでなく、第1の精留塔8の精留
作用で生成した液体窒素も合わされる)は、パイプ20を
通つて第2の精留塔19に送られ、そこで低沸点不純成分
(ヘリウム,H2)が気化して除去される。これにより、
上記液体窒素は、超高純度化されて第2の精留塔19の底
部に製品として溜まる。この超高純度液体窒素は、一部
がパイプ24を通つて需要に供され、残部が分岐パイプ25
を通つて凝縮器11に送られ、そこで気化し超高純度製品
窒素ガスとして上記第2の精留塔19に戻る。この超高純
度製品窒素ガスは、取り出しパイプ26を経由して主熱交
換器6に送られ、そこで原料空気と熱交換してそれ自身
は常温となり需要に供される。また、第2の精留塔19に
おいて気化除去されたHe等の低沸点不純成分ガスは、凝
縮器21aに送られ、そこで第1の精留塔8の中央部から
導入された廃液体窒素の冷却作用を受け、帯同窒素ガス
を液化除去されたのち、パイプ21gに導入され、主熱交
換器6を経て外部に放出される。
In this configuration, the raw air is compressed by the air compressor 1, the moisture is removed by the drain cooler 2, and further cooled by the Freon cooler 3.
And H 2 O and CO 2 are adsorbed and removed. Then, it is sent to the main heat exchanger 6, cooled to an extremely low temperature, and introduced into the bottom of the first rectification column 8 in a gas-liquid mixed state. The raw material air is further cooled and vaporized at the bottom of the first rectification column 8, and a part of the air is collected as liquid air at the bottom of the first rectification column 8. The remainder rises in the first rectification column 8, is rectified in the process, and oxygen is liquefied and separated by the difference in boiling points. As a result, liquid nitrogen containing a large amount of oxygen (a part of which is introduced as waste liquid nitrogen into the waste liquid nitrogen tank 21c through the pipe 21e) accumulates in a substantially central portion of the first rectification column 8, and a high level is formed in the upper part. Pure nitrogen gas accumulates. The liquid air collected at the bottom of the first rectification column 8 is introduced via a pipe 15 into a first decomposer 10 where the condenser 11 is cooled.
Nitrogen gas collected at the upper part of the first rectification column 8 is introduced into the condenser 11, cooled and liquefied by the cold of the liquid air, and formed as a reflux liquid at the upper part of the first rectification column 8. Flow down. Further, the first decomposer 10 includes a liquid nitrogen tank 16
Liquid nitrogen is supplied from the
Cool 11 The liquid air and liquid nitrogen vaporized by cooling the condenser 11 are taken out of the upper part of the first decomposer 10 as a waste gas by a pipe 18 and discharged to the outside after cooling the raw air by the main heat exchanger 6. Is done. Meanwhile, the first
The liquid nitrogen (as well as the reflux liquid, the liquid nitrogen generated by the rectification operation of the first rectification column 8) which flows down as the above-mentioned reflux liquid is supplied to the upper part of the rectification column 8 by a pipe. After passing through 20, it is sent to a second rectification column 19, where low-boiling impurities (helium, H 2 ) are vaporized and removed. This allows
The liquid nitrogen is ultra-purified and accumulates as a product at the bottom of the second rectification column 19. Part of this ultra-high-purity liquid nitrogen is supplied to demand through a pipe 24, and the rest is branched pipe 25.
Then, the gas is sent to the condenser 11, where it is vaporized and returned to the second rectification column 19 as ultra-high purity product nitrogen gas. This ultrahigh-purity product nitrogen gas is sent to the main heat exchanger 6 via the take-out pipe 26, where it exchanges heat with the raw material air, and is itself brought to room temperature and used for demand. The low-boiling-point impure component gas such as He vaporized and removed in the second rectification column 19 is sent to the condenser 21a, where the waste liquid nitrogen introduced from the central portion of the first rectification column 8 is removed. After being cooled and liquefied and removed from the nitrogen gas, the nitrogen gas is introduced into the pipe 21g and discharged to the outside through the main heat exchanger 6.

なお、装置全体が大形化し、He等の低沸点不純成分ガ
スの生成量が多くなっつたときには、上記He等も製品と
することができる。また、以上の説明では、液体窒素タ
ンク16に液体窒素を貯蔵しこれを第1の分縮器10に供給
しているが、これに代えて液体空気を貯溜しこれを第1
の分縮器10に送るようにしてもよいし、液化プロパンの
ような液化天然ガスを貯蔵しこれを送るようにしても差
し支えはない。
In addition, when the whole apparatus is enlarged and the amount of low-boiling-point impure component gases such as He is increased, the above-mentioned He or the like can be used as a product. In the above description, the liquid nitrogen is stored in the liquid nitrogen tank 16 and supplied to the first decomposer 10, but instead, liquid air is stored and stored in the first
Or a liquefied natural gas such as liquefied propane may be stored and sent.

この装置は、液体窒素のような寒冷を精留塔に導入し
ないことから寒冷中に、例え不純分が混入していても、
それが製品窒素に混入することがないという利点を有す
る。
This device does not introduce cold such as liquid nitrogen into the rectification column, so even if impurities are mixed during the cold,
It has the advantage that it does not mix into the product nitrogen.

第2図は他の実施例を示している。この実施例は、液
体窒素タンク16から第1の精留塔8の中央部に対しても
液体窒素供給パイプ30を延ばしている。それ以外の部文
は第1図と同様である。このようにすることにより、前
記と同様の作用効果が得られるほか、装置全体に対する
寒冷供給量が増大することから、装置を停止し再起動さ
せる際等の所要時間の大幅な短縮を実現できるという効
果が得られるようになる。また、第1図の一点鎖線で囲
んだ部分Xを第3図に示すように変更してもよい。
FIG. 2 shows another embodiment. In this embodiment, the liquid nitrogen supply pipe 30 extends from the liquid nitrogen tank 16 to the center of the first rectification column 8 as well. Other parts are the same as in FIG. By doing so, the same operation and effect as described above can be obtained, and since the amount of cold supply to the entire apparatus is increased, the time required for stopping and restarting the apparatus can be significantly reduced. The effect will be obtained. Further, the portion X surrounded by the dashed line in FIG. 1 may be changed as shown in FIG.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明の超高純度窒素製造装置は、
膨脹タービンを用いず、それに代えて寒冷貯槽を用い、
この寒冷貯槽の寒冷を装置全体の寒冷としている。した
がつて、高速回転機器である膨脹タービンを用いないこ
とから、膨脹タービンの運転要員が不要になるうえ、負
荷変動(製品窒素の取り出し量の変化)に対するきめ細
かな追従運転が可能となり、常時高純度の製品を安定供
給することができる。そのうえ、この発明の装置は、第
2の精留塔を備え、そこに第1の精留塔で得られた液体
窒素を導入し、窒素よりも低沸点のHe等を除去するとと
もに凝縮器から延びる放出パイプでも低沸点のHe等を除
去するため、および製品液体窒素取出パイプから取り出
した液体窒素の一部を凝縮器によりガス化して第2の精
留塔に戻すため、冒頭で述べた提案装置では分離不可能
なHe等も除去することができ、上記提案装置では得られ
ない超高純度の製品窒素を製造することができるように
なる。
As described above, the ultrapure nitrogen production apparatus of the present invention
Without using an expansion turbine, instead using a cold storage tank,
The cold in the cold storage tank is defined as the cold in the entire apparatus. Therefore, since the expansion turbine, which is a high-speed rotating device, is not used, the operation personnel of the expansion turbine is not required, and a fine follow-up operation to load fluctuation (change in the amount of product nitrogen taken out) becomes possible. Purity products can be supplied stably. In addition, the apparatus of the present invention includes a second rectification column, into which the liquid nitrogen obtained in the first rectification column is introduced, to remove He having a boiling point lower than that of nitrogen, and to remove the liquid from the condenser. Proposal mentioned at the beginning to remove low boiling He and the like in the extended discharge pipe, and to gasify a part of the liquid nitrogen taken out from the product liquid nitrogen take-out pipe by the condenser and return it to the second rectification column. He and the like that cannot be separated by the apparatus can also be removed, and it becomes possible to produce ultra-high-purity product nitrogen that cannot be obtained by the above-described proposed apparatus.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の構成図、第2図は他の実
施例の構成図、第3図は第1図の一点鎖線Xで囲われた
部分の変形例の説明図である。 5……圧縮空気供給パイプ、6……主熱交換器、8……
第1の精留塔、9……液体空気、10……第1の分縮器、
11……凝縮器、12……第1の還流液パイプ、13……第2
の還流液パイプ、13a……第1の放出パイプ、15……液
空パイプ、16……液体窒素タンク、17……供給パイプ、
19……第2の精留塔、20……導入路パイプ、21……第2
の放出パイプ、24……製品液体窒素放出パイプ、26……
製品窒素ガス取出パイプ
FIG. 1 is a configuration diagram of one embodiment of the present invention, FIG. 2 is a configuration diagram of another embodiment, and FIG. 3 is an explanatory diagram of a modified example of a portion surrounded by a chain line X in FIG. . 5 ... Compressed air supply pipe, 6 ... Main heat exchanger, 8 ...
1st rectification column, 9 ... liquid air, 10 ... 1st decomposer,
11 ... condenser, 12 ... first reflux liquid pipe, 13 ... second
Reflux liquid pipe, 13a ... first discharge pipe, 15 ... liquid empty pipe, 16 ... liquid nitrogen tank, 17 ... supply pipe,
19 ... second rectification tower, 20 ... introduction pipe, 21 ... second
Discharge pipe, 24 …… Product liquid nitrogen discharge pipe, 26 ……
Product nitrogen gas extraction pipe

フロントページの続き (56)参考文献 特開 平2−68476(JP,A) 特開 昭60−142184(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25J 1/00 - 5/00 Continuation of the front page (56) References JP-A-2-68476 (JP, A) JP-A-60-142184 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25J 1 / 00-5/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を超低温に冷却する熱交換器と、
この超低温に冷却された圧縮空気の一部を液化して底部
に溜め窒素ガスを上部から取り出す第1の精留塔と、こ
の第1の精留塔の上部に設けられた凝縮器内蔵型の分縮
器と、第1の精留塔の底部の貯溜液体空気を凝縮器冷却
用寒冷として上記分縮器に導く液空パイプと、上記分縮
器中で生じた気化ガスを外部に放出する第1の放出パイ
プと、上記第1の精留塔内で生成した窒素ガスの一部を
上記凝縮器内に案内する第1の還流液パイプと、上記凝
縮器内で生成した液体窒素を還流液として第1の精留塔
内に戻す第2の還流液パイプと、当該装置外から寒冷液
体の供給を受けこれを貯蔵するタンクとを備えた装置に
おいて、上記タンクの寒冷液体を冷熱発生用膨脹器の発
生冷熱に代え凝縮器冷却用の寒冷として上記分縮器に供
給する供給パイプと、上記凝縮器内において窒素ガスの
液化の過程で分離された低沸点不純成分ガスを取り出し
外部へ放出する放出パイプと、沸点の差により低沸点不
純成分を気化して液体窒素中から分離除去する第2の精
留塔と、前記第1の精留塔内の液体窒素を上記第2の精
留塔に導入する導入パイプと、上記第2の精留塔内から
気化した低沸点不純成分を放出する第2の放出パイプ
と、上記第2の精留塔内の低沸点不純成分除去済の液体
窒素を製品として取り出す製品液体窒素取出パイプと、
上記第2の精留塔内の低沸点不純成分除去済の液体窒素
の一部を気化させ製品窒素ガスとして取り出す製品窒素
ガス取出パイプと、上記製品液体窒素取出パイプから分
岐して上記凝縮器に延びこの凝縮器を通過したのち上記
第2の精留塔に延びる分岐パイプを設けたことを特徴と
する超高純度窒素製造装置。
1. A heat exchanger for cooling raw air to an extremely low temperature,
A first rectification tower which liquefies a part of the compressed air cooled to an extremely low temperature and accumulates at the bottom to take out nitrogen gas from the top; and a condenser built-in type provided at the top of the first rectification tower A condenser, a liquid empty pipe that guides the stored liquid air at the bottom of the first rectification column to the condenser for cooling the condenser, and discharges vaporized gas generated in the condenser to the outside. A first discharge pipe, a first reflux liquid pipe for guiding a part of the nitrogen gas generated in the first rectification column into the condenser, and a liquid nitrogen reflux in the condenser. In a device comprising a second reflux liquid pipe for returning the liquid as liquid into the first rectification column, and a tank for receiving and storing the cold liquid from outside the device, the cold liquid in the tank is used for generating cold heat. Supply pipe to supply to the above-mentioned decompressor as cold for condenser cooling in place of the cold generated by the expander A discharge pipe for taking out the low-boiling-point impure component gas separated in the process of liquefaction of the nitrogen gas in the condenser, and a discharge pipe for discharging the gas to the outside; A second rectification column, an introduction pipe for introducing liquid nitrogen in the first rectification column to the second rectification column, and a low-boiling impure component vaporized from the second rectification column. A second discharge pipe for discharging, a product liquid nitrogen extraction pipe for extracting liquid nitrogen from which low-boiling impurity components have been removed in the second rectification column as a product,
A product nitrogen gas take-out pipe which vaporizes a part of the liquid nitrogen from which the low boiling point impurities have been removed in the second rectification column and takes out the product nitrogen gas, and a branch from the product liquid nitrogen take-out pipe to the condenser. An ultra-high-purity nitrogen producing apparatus, comprising a branch pipe extending to the second rectification column after passing through the condenser.
【請求項2】原料空気を超低温に冷却する熱交換器と、
この超低温に冷却された圧縮空気の一部を液化して底部
に溜め窒素ガスを上部から取り出す第1の精留塔と、こ
の第1の精留塔の上部に設けられた凝縮器内蔵型の分縮
器と、第1の精留塔の底部の貯溜液体空気を凝縮器冷却
用寒冷として上記分縮器に導く液空パイプと、上記分縮
器中で生じた気化ガスを外部に放出する第1の放出パイ
プと、上記第1の精留塔内で生成した窒素ガスの一部を
上記凝縮器内に案内する第1の還流液パイプと、上記凝
縮器内で生成した液体窒素を還流液として第1の精留塔
内に戻す第2の還流液パイプと、当該装置外から液体窒
素の供給を受けこれを貯蔵するタンクとを備えた装置に
おいて、上記タンクの液体窒素を冷熱発生用膨脹器の発
生冷熱に代え凝縮器冷却用の寒冷として上記第1の精留
塔に供給する供給パイプと、上記凝縮器内において窒素
ガスの液化の過程で分離された低沸点不純成分ガスを取
り出し外部へ放出する放出パイプと、沸点の差により低
沸点不純成分を気化して液体窒素中から分離除去する第
2の精留塔と、前記第1の精留塔内の液体窒素を上記第
2の精留塔に導入する導入パイプと、上記第2の精留塔
内から気化した低沸点不純成分を放出する第2の放出パ
イプと、上記第2の精留塔内の低沸点不純成分除去済の
液体窒素を製品として取り出す製品液体窒素取出パイプ
と、上記第2の精留塔内の低沸点不純成分除去済の液体
窒素の一部を気化させ製品窒素ガスとして取り出す製品
窒素ガス取出パイプと、上記製品液体窒素取出パイプか
ら分岐して上記凝縮器に延びこの凝縮器を通過したのち
上記第2の精留塔に延びる分岐パイプを設けた請求項
(1)記載の超高純度窒素製造装置。
2. A heat exchanger for cooling the raw material air to an extremely low temperature.
A first rectification tower which liquefies a part of the compressed air cooled to an extremely low temperature and accumulates at the bottom to take out nitrogen gas from the top; and a condenser built-in type provided at the top of the first rectification tower A condenser, a liquid empty pipe that guides the stored liquid air at the bottom of the first rectification column to the condenser for cooling the condenser, and discharges vaporized gas generated in the condenser to the outside. A first discharge pipe, a first reflux liquid pipe for guiding a part of the nitrogen gas generated in the first rectification column into the condenser, and a liquid nitrogen reflux in the condenser. In a device provided with a second reflux liquid pipe for returning the liquid as liquid into the first rectification column and a tank for receiving and storing liquid nitrogen from outside the device, the liquid nitrogen in the tank is used for generating cold heat. Supply to the first rectification column as cold for cooling the condenser in place of the cold generated by the expander And a discharge pipe for taking out the low-boiling-point impure component gas separated in the liquefaction process of the nitrogen gas in the condenser, and discharging the gas to the outside, and vaporizing the low-boiling-point impure component due to a difference in boiling point to separate from the liquid nitrogen. A second rectification column to be removed, an introduction pipe for introducing liquid nitrogen in the first rectification column to the second rectification column, and a low-boiling point impurity vaporized from the second rectification column A second discharge pipe for discharging the components, a product liquid nitrogen take-out pipe for taking out liquid nitrogen from the second rectification column from which low-boiling impurity components have been removed, and a low-pressure pipe inside the second rectification column. A product nitrogen gas extraction pipe which vaporizes a part of the liquid nitrogen from which the boiling point impurities have been removed and takes it out as product nitrogen gas, and a branch from the product liquid nitrogen extraction pipe, which extends to the condenser, passes through the condenser, and then passes through the condenser. Branch pie extending to rectification tower 2 The claim (1) ultra-high purity nitrogen producing apparatus according provided.
JP02286610A 1990-10-23 1990-10-23 Ultra high purity nitrogen production equipment Expired - Fee Related JP3095237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02286610A JP3095237B2 (en) 1990-10-23 1990-10-23 Ultra high purity nitrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02286610A JP3095237B2 (en) 1990-10-23 1990-10-23 Ultra high purity nitrogen production equipment

Publications (2)

Publication Number Publication Date
JPH04158185A JPH04158185A (en) 1992-06-01
JP3095237B2 true JP3095237B2 (en) 2000-10-03

Family

ID=17706644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02286610A Expired - Fee Related JP3095237B2 (en) 1990-10-23 1990-10-23 Ultra high purity nitrogen production equipment

Country Status (1)

Country Link
JP (1) JP3095237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205127A (en) * 1990-08-06 1993-04-27 Air Products And Chemicals, Inc. Cryogenic process for producing ultra high purity nitrogen
CN107021459B (en) * 2016-01-29 2019-02-26 鞍钢股份有限公司 A kind of oxygen making unit dirt nitrogen switches pure nitrogen gas device and method

Also Published As

Publication number Publication date
JPH04158185A (en) 1992-06-01

Similar Documents

Publication Publication Date Title
JP2003165712A (en) Method and apparatus for producing krypton and/or xenon by low-temperature air separation
KR900005985B1 (en) High- purity nitrogen gas production equipment
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
US5058387A (en) Process to ultrapurify liquid nitrogen imported as back-up for nitrogen generating plants
TWI417495B (en) Method of generating nitrogen and device used therefor
JP3095237B2 (en) Ultra high purity nitrogen production equipment
JP2721591B2 (en) Ultra high purity nitrogen production equipment
US4530708A (en) Air separation method and apparatus therefor
JPH0217795B2 (en)
JP3095238B2 (en) Ultra high purity nitrogen production equipment
JP2721590B2 (en) Ultra high purity nitrogen production equipment
JP2978231B2 (en) Ultra high purity nitrogen production equipment
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JP2009299930A (en) Air separating method and device used for the same
JP2773878B2 (en) High-purity nitrogen gas production equipment
JP7379764B1 (en) Air separation equipment and air separation method
JP2686050B2 (en) High-purity nitrogen gas production equipment
JP3282040B2 (en) Ultra high purity oxygen sampling method and apparatus
JPH0731000B2 (en) Ultra high purity nitrogen gas production equipment
JP3732774B2 (en) Cryogenic liquefaction separator
JPH06117752A (en) Method and device for liquefaction and separation of air
JP3295816B2 (en) Ultra-high purity nitrogen production method and equipment
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPH0318108B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees