JPH0823449B2 - Heat storage type electric hot water / steam generator - Google Patents

Heat storage type electric hot water / steam generator

Info

Publication number
JPH0823449B2
JPH0823449B2 JP1089055A JP8905589A JPH0823449B2 JP H0823449 B2 JPH0823449 B2 JP H0823449B2 JP 1089055 A JP1089055 A JP 1089055A JP 8905589 A JP8905589 A JP 8905589A JP H0823449 B2 JPH0823449 B2 JP H0823449B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat exchange
water pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1089055A
Other languages
Japanese (ja)
Other versions
JPH02267462A (en
Inventor
雅雄 平嶋
勇夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Original Assignee
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd filed Critical Takuma Research and Development Co Ltd
Priority to JP1089055A priority Critical patent/JPH0823449B2/en
Publication of JPH02267462A publication Critical patent/JPH02267462A/en
Publication of JPH0823449B2 publication Critical patent/JPH0823449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • F22B1/282Methods of steam generation characterised by form of heating method in boilers heated electrically with water or steam circulating in tubes or ducts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄熱型電気温水・蒸気発生器の改良に関す
るものである。
TECHNICAL FIELD The present invention relates to an improvement of a heat storage type electric hot water / steam generator.

(従来の技術) 従前の潜熱蓄熱型電気温水・蒸気発生器は、通常第5
図に示す如く、ヒータ等の加熱源Jを設けた熱媒タンク
E内へ溶融塩等の潜熱蓄熱材Aを貯留すると共に、夜間
電力を用いて蓄熱材Aを加熱し、これを溶融状態として
所謂潜熱蓄熱を行ない、熱媒タンクE内に設けた熱交換
器H内へ給水を送ってこれを加熱することにより、温水
又は蒸気を得る様に構成されている。
(Prior Art) The conventional latent heat storage type electric hot water / steam generator is usually the fifth type.
As shown in the figure, a latent heat storage material A such as molten salt is stored in a heat medium tank E provided with a heating source J such as a heater, and the heat storage material A is heated by using nighttime electric power to make it into a molten state. So-called latent heat storage is performed, and hot water or steam is obtained by sending feed water into the heat exchanger H provided in the heat medium tank E and heating it.

しかし、前記第5図の構成の電気温水・蒸気発生器に
は、熱交換管Hの伝熱壁部に於ける熱伝達率が低いた
め、蓄熱材Aから給水への放熱速度が極めて遅くなり、
温水・蒸気発生器の小形化を図り難という基本的な欠点
がある。
However, in the electric hot water / steam generator having the configuration shown in FIG. 5, since the heat transfer coefficient in the heat transfer wall portion of the heat exchange tube H is low, the heat dissipation rate from the heat storage material A to the water supply becomes extremely slow. ,
There is a fundamental drawback that it is difficult to downsize the hot water / steam generator.

例えば、放熱時に於いては、凝固した蓄熱材Aが熱交
換管Hの外表面上に層状に付着し、時間の経過と共にそ
の厚さが順次増大する。ところが、蓄熱材そのものは熱
伝導度が相対的に低いため、前記凝固層の厚みが大きく
なるとその熱抵抗が著しく増大する。その結果給水への
熱伝達が円滑に行なえず、必然的に温水・蒸気発生装置
の大形化を招くことになる。
For example, during heat dissipation, the solidified heat storage material A adheres to the outer surface of the heat exchange tube H in a layered manner, and its thickness gradually increases over time. However, since the heat storage material itself has a relatively low thermal conductivity, the thermal resistance thereof remarkably increases as the thickness of the solidified layer increases. As a result, the heat transfer to the water supply cannot be performed smoothly, which inevitably leads to an increase in the size of the hot water / steam generator.

一方、前述の如き問題を解決するものとして、第6図
の如き蓄熱材循環型の所謂アクティブ熱交換方式を用い
た電気温水・蒸気発生器が開発されている。即ち、熱媒
タンクE内に貯留した溶融塩等の蓄熱材Aを熱媒体と
し、これを循環ポンプFによって熱交換器G内へ送るこ
とにより、熱交換管H内を流通する水を加熱して温水
(又は蒸気)を得るように構成されている。尚、第6図
に於いてIは送水ポンプ、Jはヒータ等の熱媒体加熱源
である。
On the other hand, in order to solve the above problems, an electric hot water / steam generator using a so-called active heat exchange system of a heat storage material circulation type as shown in FIG. 6 has been developed. That is, the heat storage material A such as molten salt stored in the heat medium tank E is used as a heat medium, and this is sent into the heat exchanger G by the circulation pump F to heat the water flowing in the heat exchange pipe H. It is configured to obtain hot water (or steam). In FIG. 6, I is a water feed pump and J is a heat medium heating source such as a heater.

前記蓄熱材循環方式の潜熱蓄熱型電気温水・蒸気発生
器では、蓄熱材Aが一定の流速で循環流動されるため、
熱交換管Hの外表面上には蓄熱材Aの凝固層が固着し難
くなる。その結果、熱伝達特性も蓄熱材Aが静止した状
態の場合に比較して相当改善されることになる。
In the latent heat storage type electric hot water / steam generator of the heat storage material circulation system, since the heat storage material A is circulated and flowed at a constant flow velocity,
It becomes difficult for the solidified layer of the heat storage material A to adhere to the outer surface of the heat exchange tube H. As a result, the heat transfer characteristics are also considerably improved as compared with the case where the heat storage material A is stationary.

しかし、当該蓄熱材循環方式の熱交換に於いても、熱
交換管Hの外表面に於ける蓄熱材の凝固層の固着を皆無
にすることは困難であり、特に熱媒体としての蓄熱材A
の循環流速が低いと、チューブ外表面への凝固層の固着
が著しく増大する。その結果、高い熱伝達特性を保持す
るためには蓄熱材Aの循環流速を相当に高める必要があ
り、蓄熱材である溶融塩がスラリー状であってその流動
性が相対的に低いこととも相俟って、循環ポンプFの動
力費が著しく高騰することになる。
However, even in the heat exchange of the heat storage material circulation system, it is difficult to eliminate the solidified layer of the heat storage material on the outer surface of the heat exchange tube H.
If the circulation flow rate is low, the adherence of the solidified layer to the outer surface of the tube is significantly increased. As a result, in order to maintain high heat transfer characteristics, it is necessary to considerably increase the circulation flow velocity of the heat storage material A, and the molten salt that is the heat storage material is in the form of slurry and its fluidity is relatively low. Therefore, the power cost of the circulation pump F will increase significantly.

また、前記従前の蓄熱型電気温水・蒸気発生器にあっ
ては、万一温水・蒸気負荷が一時的に増大して発生器に
ピーク負荷がかかっても、蓄熱材Aの放熱速度が低いた
めにこれに適格に応答できないうえ、蓄熱材Aの蓄熱量
そのものが不足した場合には、全く負荷要求に対応出来
ないという問題がある。
Further, in the conventional heat storage type electric hot water / steam generator, the heat dissipation rate of the heat storage material A is low even if the hot water / steam load is temporarily increased and a peak load is applied to the generator. In addition, there is a problem that it is not possible to properly respond to this, and when the heat storage amount of the heat storage material A itself is insufficient, it is not possible to meet the load demand at all.

(発明が解決しようとする問題点) 本発明は、従前の蓄熱型電気温水・蒸気発生器に於け
る上述の如き問題、即ち熱交換管Hの熱伝達率が低い
ため、負荷の変動に対する応答性が悪く且つ装置の小形
化が図れないこと、蓄熱材循環式とした場合でも、熱
伝達率が相対的に低いうえ、循環ポンプの動力費が増加
すること、ピーク負荷が発生器にかかった場合でも、
蓄熱材の放熱速度が低いため迅速に応答することが出来
ないこと、及び負荷が万一増大して蓄熱量が不足した
場合には、温水・蒸気発生器が全く使いものにならなく
なること、等の問題を解決せんとするものであり、蓄熱
型温水・蒸気発生器を蓄熱材Aからの放熱による加熱と
電気ヒータによる加熱とを組合せた構成とすると共に、
蓄熱材に全く新規な構成の固液二相熱媒体を用いること
により、ベース負荷並びにピーク負荷の何れにも必要且
つ十分に対応し得るようにした蓄熱型温水・蒸気発生器
を提供するものである。
(Problems to be Solved by the Invention) The present invention has the above-described problem in the conventional heat storage type electric hot water / steam generator, that is, since the heat transfer coefficient of the heat exchange tube H is low, it responds to a change in load. Performance is poor and the device cannot be downsized. Even when the heat storage material circulation type is used, the heat transfer coefficient is relatively low, the power cost of the circulation pump increases, and the peak load is applied to the generator. Even if
Since the heat dissipation rate of the heat storage material is low, it is not possible to respond quickly, and in the unlikely event that the load increases and the amount of heat storage becomes insufficient, the hot water / steam generator becomes completely unusable. The problem is to be solved, and the heat storage type hot water / steam generator is configured to combine heating by heat dissipation from the heat storage material A and heating by an electric heater, and
By providing a solid-liquid two-phase heat medium with a completely new structure as a heat storage material, it is possible to provide a heat storage type hot water / steam generator capable of handling both base load and peak load as necessary and sufficient. is there.

(問題点を解決するための手段) 本件請求項1に記載の発明は、熱媒体加熱用ヒータ2
を備えた蓄熱タンク1と,粒径が1.5〜5mmφの表面架橋
ポリエチレン粒体Kbと熱媒油若しくはエチレングリコー
ルKaとを後者に対する前者の比Kb/Kaが20〜70VoL%の範
囲で混合して成り、前記蓄熱タンク1内に貯留した固液
二相熱媒体Kと,熱交換用水管5aを備え、ピーク負荷時
に流動する固液二相熱媒体Kにより給水を加熱する熱交
換器4aと,定常負荷時に給水を加熱するヒータ10を内部
に設けた熱交換用水管5bを備え、ピーク負荷時に流動す
る固液二相熱媒体Kにより前記給水を加熱する熱交換器
4bと,ピーク負荷時に作動する固液二相熱媒体Kの循環
ポンプ3と,前記熱交換用水管5b又は熱交換用水管5a及
び熱交換用水管5bへ給水する給水ポンプ6と,前記熱交
換用水管5b又は熱交換用水管5a及び熱交換用水管5bから
の加熱給水を受入れするスチームセパレータ7とを発明
の基本構成とするものである。
(Means for Solving the Problems) The invention according to claim 1 of the present application provides a heater 2 for heating a heat medium.
A heat storage tank 1 equipped with the above, a surface cross-linked polyethylene particle Kb having a particle size of 1.5 to 5 mmφ, and a heat transfer oil or ethylene glycol Ka are mixed in the former ratio Kb / Ka to the latter in the range of 20 to 70 VoL%. And a solid-liquid two-phase heat medium K stored in the heat storage tank 1 and a heat exchange water pipe 5a, and a heat exchanger 4a for heating the feed water by the solid-liquid two-phase heat medium K flowing at peak load, A heat exchanger having a heat exchange water pipe 5b provided therein with a heater 10 for heating the feed water at a steady load, and heating the feed water by a solid-liquid two-phase heat medium K flowing at a peak load.
4b, a circulation pump 3 for the solid-liquid two-phase heat medium K that operates at the time of peak load, a water exchange pump 5b or a water exchange pump 5 for supplying water to the heat exchange water pipe 5a and the heat exchange water pipe 5b, and the heat exchange The water supply pipe 5b or the heat exchange water pipe 5a and the steam separator 7 that receives heated water from the heat exchange water pipe 5b are the basic constitution of the invention.

(作用)熱媒体加熱用ヒータで蓄熱タンク又は槽本体内
の固液二相熱媒体を加熱することにより、熱媒体の固相
分を形成する表面架橋ポリエチレン粒体の内部が固相か
ら液相に相転移を起し、潜熱に相当する熱量が粒体内部
に蓄熱される。
(Function) By heating the solid-liquid two-phase heat medium in the heat storage tank or tank main body with the heater for heating the heat medium, the inside of the surface-crosslinked polyethylene granules forming the solid phase of the heat medium changes from the solid phase to the liquid phase. A phase transition occurs in the and the amount of heat equivalent to the latent heat is stored inside the granules.

潜熱蓄熱が行なわれた固液二相熱媒体は、循環ポンプ
により流動若しくは攪拌装置により攪拌流動され、熱交
換用水管を介して保持する熱を給水に与える。
The solid-liquid two-phase heat medium in which the latent heat is stored is flowed by the circulation pump or stirred and flowed by the stirring device, and the heat retained through the heat exchange water pipe is applied to the feed water.

熱媒体内の粒体は、その表面が架橋されているため蓄
熱状態下に於いても保形性があり、元の形状を保持して
いる。
Since the surface of the particles in the heat medium is cross-linked, the particles have a shape-retaining property even in a heat storage state and retain the original shape.

熱交換により、熱媒体内の粒体はその潜熱を放出して
内部の液相状が固相状に相転移すると共に、順次蓄熱タ
ンクへ戻される。
Due to the heat exchange, the particles in the heat medium release their latent heat, the internal liquid phase changes to a solid phase, and the particles are sequentially returned to the heat storage tank.

表面架橋ポリエチレン粒体は、前述の通り、蓄熱状態
下に於いても元の形状を保持しているため、熱交換用水
管の外表面へ固着するようなことは全く起らず、熱伝達
率が著しく改善される。
As mentioned above, the surface-crosslinked polyethylene granules retain their original shape even under heat storage conditions, so that they do not stick to the outer surface of the heat exchange water pipe at all, and the heat transfer coefficient Is significantly improved.

尚、請求項(1)に記載の温水・蒸気発生器に於いて
は、併置した給水加熱用ヒータによる加熱と、蓄熱した
熱媒体による加熱とが温水・蒸気負荷に応じて適宜に作
動され、例えば通常負荷を熱媒体による加熱により、ま
たピーク負荷を給水加熱用ヒータの作動によって分担す
るという様な作動が行なわれる。
In the hot water / steam generator according to claim (1), the heating by the heaters for heating feed water arranged in parallel and the heating by the stored heat medium are appropriately operated according to the hot water / steam load, For example, the normal load is shared by heating with a heating medium, and the peak load is shared by the operation of the feed water heating heater.

また、請求項(2)に記載の温水・蒸気発生器に於い
ても同様であり、熱媒体加熱用ヒータを蓄熱時以外にも
適宜に作動させることにより、ピーク負荷への対応が行
なわれる。
The same applies to the hot water / steam generator according to claim (2), and the peak load is dealt with by appropriately operating the heater for heating the heat medium other than during heat storage.

(実施例) 以下、図面に基づいて本発明の実施例を説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の第1実施例に係る蓄熱型電気温水・
蒸気発生器の系統図であり、第2図は使用する熱交換器
の他の例を示す断面図である。
FIG. 1 is a heat storage type electric hot water according to the first embodiment of the present invention.
FIG. 2 is a system diagram of a steam generator, and FIG. 2 is a cross-sectional view showing another example of the heat exchanger used.

図に於いて、1は蓄熱タンク、2は熱媒体加熱用ヒー
タ、3は熱媒体循環ポンプ、4a・4bは熱交換器、5a・5b
はひれ付熱交換用水管、6は給水ポンプ、7はスチーム
セパレータ、8は管路、9は制御装置、10は給水加熱用
のシーズヒータ、11は圧力調整器、12は給水ゲージ、K
は蓄熱タンク内に貯留した熱媒体である。
In the figure, 1 is a heat storage tank, 2 is a heater for heating a heat medium, 3 is a heat medium circulation pump, 4a and 4b are heat exchangers, and 5a and 5b.
Is a fin heat exchange water pipe, 6 is a water supply pump, 7 is a steam separator, 8 is a pipe line, 9 is a control device, 10 is a sheath heater for heating the water supply, 11 is a pressure regulator, 12 is a water supply gauge, K
Is a heat medium stored in the heat storage tank.

前記熱媒体Kは所謂固液二相流体であって、液相Ka内
に固相Kbが混在した状態で管路8及び熱交換器4a内を流
通する。
The heat medium K is a so-called solid-liquid two-phase fluid, and flows in the pipe 8 and the heat exchanger 4a in a state where the solid phase Kb is mixed in the liquid phase Ka.

前記熱媒体Kの固相分Kbは、ポリエチレンの粒材の表
層部のみを架橋した所謂表面架橋ポリエチレン粒体から
構成されており、本実施例では直径1.5〜5mmφ、比重約
0.9〜1.0、軟化温度約80℃〜200℃、潜熱約50〜80Kcal/
kgの表面架橋ポリエチレンを前記熱媒体の固相分Kbとし
て利用している。より具体的に記述すれば、前記表面架
橋ポリエチレン粒体の粒径は1.5〜3mmφ位が伝熱並びに
熱媒体Kの循環流動という点から最適であり、又、その
軟化温度が約133℃と188℃の二種類のものについて実用
試験を行なった。
The solid phase Kb of the heating medium K is composed of so-called surface-crosslinked polyethylene granules obtained by crosslinking only the surface layer portion of polyethylene granules. In this embodiment, the diameter is 1.5 to 5 mmφ and the specific gravity is about 5.
0.9-1.0, softening temperature about 80 ℃ -200 ℃, latent heat about 50-80Kcal /
kg of surface-crosslinked polyethylene is used as the solid phase Kb of the heat medium. More specifically, the particle size of the surface-crosslinked polyethylene granules is optimally in the range of 1.5 to 3 mmφ in terms of heat transfer and circulation flow of the heat medium K, and its softening temperature is about 133 ° C. and 188 ° C. Practical tests were carried out on two types of materials at temperatures of ° C.

尚、前記ポリエチレン粒体の表面架橋は化学的方法又
は電子線照射法等によって行なわれ、当該表面架橋処理
を行なうことにより、ポリエチレン粒体の表層部のみが
若干硬化する。その結果、粒体内部が加熱下で溶融状態
にあっても、その表層部は固化状のままであり、粒体形
状を保持することになる。又、前記表面架橋処理を施し
ても、ポリエチレンの潜熱が大幅に減少するようなこと
は全く無い。
Surface cross-linking of the polyethylene granules is performed by a chemical method, an electron beam irradiation method, or the like, and the surface cross-linking treatment slightly cures only the surface layer portion of the polyethylene granules. As a result, even if the inside of the granule is in a molten state under heating, the surface layer portion thereof remains in a solidified state and maintains the shape of the granule. Even if the surface cross-linking treatment is applied, the latent heat of polyethylene is not significantly reduced.

一方、前記固液二相熱媒体Kの液相分Kaには、熱媒油
若しくはエチレングリコールの何れかを前記表面架橋ポ
リエチレン粒体の軟化温度に応じて使用している。
On the other hand, for the liquid phase component Ka of the solid-liquid two-phase heating medium K, either heating medium oil or ethylene glycol is used depending on the softening temperature of the surface-crosslinked polyethylene granules.

熱媒体Kの液相分Kaの材質としては、前記固相分Kbが
浮遊し得る比重を有する必要があり、更に、固相分Kbを
形成する表面架橋ポリエチレン粒体の表層部の安定性を
阻害しないことが必要である。加えて、液相分Kaは化学
的安定性や流動性に優れ、熱容量の大きな物質が良い。
これ等の点を勘案し、本実施例では前述の如く、軟化温
度が約133℃の表面架橋ポリエチレン粒体を固相分Kbと
した場合にはエチレングリコールを、また軟化温度が約
188℃の表面架橋ポリエチレン粒体を固相分Kbとした場
合には、熱媒油を、夫々液相分Kaとするようにしてい
る。
The material of the liquid phase component Ka of the heating medium K must have a specific gravity such that the solid phase component Kb can float, and further, the stability of the surface layer portion of the surface-crosslinked polyethylene granules forming the solid phase component Kb can be improved. It is necessary not to block. In addition, the liquid phase component Ka is preferably a substance having excellent chemical stability and fluidity and a large heat capacity.
Taking these points into consideration, in the present embodiment, as described above, when the surface-crosslinked polyethylene granules having a softening temperature of about 133 ° C. are used as the solid phase component Kb, ethylene glycol is added, and the softening temperature is about
When the surface-crosslinked polyethylene granules at 188 ° C. are used as the solid phase component Kb, the heat transfer oil is used as the liquid phase component Ka respectively.

前記固液二相熱媒体Kを構成する液相分Kaと固相分Kb
との混合比率(Kb/Ka)は20〜70VOL%程度であり、50%
程度が伝熱特性等の点から最適である。
The liquid phase component Ka and the solid phase component Kb constituting the solid-liquid two-phase heat medium K
Mixing ratio with (Kb / Ka) is about 20-70 VOL%, 50%
The degree is optimal in terms of heat transfer characteristics.

前記給水加熱用のシーズヒータ10は熱交換器4bのひれ
付熱交換用水管5bを介して給水を直接加熱するものであ
り、本実施例に於いては後述する如く、ヒータ10の作動
によって常用負荷(ベース負荷)を分担すると共に、蓄
熱タンク1内の熱媒体Kの蓄熱量でもってピーク負荷を
分担する構成としている。
The seed heater 10 for heating the feed water directly heats the feed water through the finned heat exchange water pipe 5b of the heat exchanger 4b, and in this embodiment, as described later, the heater 10 is normally used. The load (base load) is shared, and the peak load is also shared by the heat storage amount of the heat medium K in the heat storage tank 1.

尚、本実施例では上述の如くヒータ10によってベース
負荷を分担する構成としているが、熱媒体Kによりベー
ス負荷を分担し、ヒータ10でピーク負荷を分担するよう
にしてもよいことは勿論である また、本実施例では、給水加熱用ヒータ10を備えた熱
交換器4bと、固液二相熱媒体Kが循環する熱交換器4aを
夫々別個に設ける構成としているが、第2図に示す如
く、一本のひれ付熱交換用水管5aの内部へ給水加熱用の
シーズヒータ10を挿着し、ヒータ10と水管5a間の空隙を
給水通路とすることにより、熱交換器を1基にまとめた
構成としてもよい。
In this embodiment, the base load is shared by the heater 10 as described above, but the heat medium K may share the base load and the heater 10 may share the peak load. Further, in the present embodiment, the heat exchanger 4b having the heater 10 for heating the feed water and the heat exchanger 4a in which the solid-liquid two-phase heat medium K circulates are separately provided, respectively, but shown in FIG. As described above, the sheathed heater 10 for heating the feed water is inserted into the inside of the fin-equipped heat exchange water pipe 5a, and the gap between the heater 10 and the water pipe 5a is used as the water supply passage, so that one heat exchanger is provided. It may be a combined configuration.

次に、前記蓄熱型温水・蒸気発生器の作動について説
明する。
Next, the operation of the heat storage type hot water / steam generator will be described.

蓄熱タンク1内に貯留された熱媒体K(固相分Kb・表
架橋ポリエチレン、液相分Kaエチレングリコール等)
は、夜間等の余剰電力を用いてヒータ2により、表面架
橋ポリエチレンの軟化温度約133℃又は約188℃以上の温
度で一定時間加熱される。これにより、表面架橋ポリエ
チレン粒体の内部が溶融状態となり(粒子の外表層は若
干軟化するが、元の形状が保持された状態にある)、潜
熱に相当する熱量が蓄熱されると共に、エチレングリコ
ール等の液相分には所謂顕熱蓄熱が行なわれる。
Heat medium K stored in the heat storage tank 1 (solid phase Kb, surface cross-linked polyethylene, liquid phase Ka ethylene glycol, etc.)
Is heated at a softening temperature of the surface cross-linked polyethylene of about 133 ° C. or about 188 ° C. for a certain period of time by the heater 2 by using surplus power at night. As a result, the inside of the surface-crosslinked polyethylene granules becomes in a molten state (the outer surface layer of the particles is slightly softened, but the original shape is maintained), and the amount of heat corresponding to latent heat is accumulated and the ethylene glycol So-called sensible heat storage is performed in the liquid phase components such as.

昼間に於ける温水(又は蒸気)の発生は給水加熱用ヒ
ータ10の作動によって行なわれ、給水ゲージ12、圧力調
整器11及び制御装置9を介してヒータ10並びに給水ポン
プ6等の制御が行なわれる。
The hot water (or steam) is generated in the daytime by the operation of the heater 10 for heating the water supply, and the heater 10, the water supply pump 6 and the like are controlled via the water supply gauge 12, the pressure regulator 11 and the control device 9. .

一方、蒸気負荷等が急増した場合には、熱媒体循環ポ
ンプ3が駆動され、固液二相熱媒体Kを熱交換器4aへ送
ることにより、ひれ付熱交換用水管5aを介して給水ポン
プ6からの給水が加熱され加熱水がスチームセパレータ
7へ送られる。
On the other hand, when the steam load or the like suddenly increases, the heat medium circulation pump 3 is driven and the solid-liquid two-phase heat medium K is sent to the heat exchanger 4a, so that the water supply pump via the finned heat exchange water pipe 5a. The feed water from 6 is heated and the heated water is sent to the steam separator 7.

熱媒体K内のポリエチレン粒体は、その内部が溶融し
ていても外表層は固化状態にあり、粒体形状を保持して
いる。従って、熱交換用水管5aの外表面に固相分が固着
することは全くない。
Even if the inside of the polyethylene particles in the heating medium K is melted, the outer surface layer is in a solidified state and maintains the particle shape. Therefore, the solid phase does not adhere to the outer surface of the heat exchange water pipe 5a at all.

熱交換により潜熱を放出したポリエチレン粒子は、そ
の内部が固相に相転移し、液相分Ka内に浮遊した状態で
管路8を通して蓄熱タンク1へ戻される。
The polyethylene particles, which have released latent heat by heat exchange, are returned to the heat storage tank 1 through the conduit 8 in a state where the inside thereof undergoes a phase transition to a solid phase and is suspended in the liquid phase component Ka.

第3図及び第4図は、本発明の第2実施例を示す横断
面図及び縦断面図である。
3 and 4 are a horizontal sectional view and a vertical sectional view showing a second embodiment of the present invention.

当該実施例に於いては、蓄熱タンクと熱交換器が一体
的に形成され且つ固液二相熱媒体Kが槽本体13内で攪拌
装置14により、強制攪拌されている。
In this embodiment, the heat storage tank and the heat exchanger are integrally formed, and the solid-liquid two-phase heat medium K is forcibly stirred in the tank body 13 by the stirring device 14.

即ち、槽本体13は水管壁15を備えた密封構造に形成さ
れている。又、水管壁15を形成する各水管15aの上・下
端は、上部ヘッダ16及び下部ヘッダ17へ夫々連結されて
おり、給水ポンプ6から前記下部ヘッダ17へ給水が供給
される。更に、前記槽本体13の内部には複数の熱媒体加
熱用のシーズヒータ2と、攪拌装置14を形成する攪拌羽
根14aが夫々配設されており、夜間電力等によって固液
二相熱媒体Kが攪拌されつつヒータ2によって加熱さ
れ、蓄熱が行なわれる。
That is, the tank body 13 is formed in a sealed structure including the water pipe wall 15. The upper and lower ends of each water pipe 15a forming the water pipe wall 15 are connected to an upper header 16 and a lower header 17, respectively, and water is supplied from the water supply pump 6 to the lower header 17. Further, a plurality of sheath heaters 2 for heating the heat medium and stirring blades 14a forming a stirring device 14 are arranged inside the tank main body 13, respectively, and a solid-liquid two-phase heating medium K is supplied by night power or the like. Is heated by the heater 2 while being stirred, and heat is stored.

尚、前記固液二相熱媒体Kは第1実施例の場合と同様
に表面架橋ポリエチレン粒体と熱媒油又はエチレングリ
コールとの混合体であり、ポリエチレン粒体に潜熱蓄熱
が行なわれる。又、第3図及び第4図に於いて14bは攪
拌装置の駆動用モータ、18は給電線、19は温水・蒸気取
出口、20は断熱材である。
The solid-liquid two-phase heat medium K is a mixture of surface-crosslinked polyethylene particles and heat transfer oil or ethylene glycol as in the case of the first embodiment, and latent heat is stored in the polyethylene particles. Further, in FIG. 3 and FIG. 4, 14b is a drive motor for the stirring device, 18 is a power supply line, 19 is hot water / steam extraction port, and 20 is a heat insulating material.

給水ポンプ6から水管15a内へ供給された給水は、攪
拌により流動する固液二相熱媒体Kとの熱交換によって
加熱され、取出口19から温水(又は蒸気)となって槽外
へ流出する。固液二相熱媒体K内の固相分(ポリエチレ
ン粒体)Kbは、前述の通り蓄熱時に於いてもその外表層
部が固化相のままであり、その結果、水管15aの外表面
へ固着積層するようなことは全く無く、高い熱伝達率で
もって熱交換が行なわれる。
The water supply supplied from the water supply pump 6 into the water pipe 15a is heated by heat exchange with the solid-liquid two-phase heat medium K flowing by stirring, and becomes hot water (or steam) from the outlet 19 and flows out of the tank. . As described above, the solid phase component (polyethylene granules) Kb in the solid-liquid two-phase heat medium K has its outer surface layer portion in the solidified phase even during heat storage, and as a result, adheres to the outer surface of the water pipe 15a. There is no stacking and heat exchange is performed with a high heat transfer coefficient.

尚、熱媒体加熱用ヒータ2への給電は、夜間のみの給
電に限定する必要は無く、蒸気負荷等が急増した場合に
はヒータ1を作動して、攪拌流動する熱媒体Kを介して
給水の加熱を促進することも可能である。
The power supply to the heat medium heating heater 2 does not have to be limited to power supply only at night, and when the steam load or the like rapidly increases, the heater 1 is operated to supply water through the heat medium K that stirs and flows. It is also possible to accelerate the heating of the.

(発明の効果) 本発明に於いては、潜熱蓄熱による給水の加熱と、電
気ヒータによる給水の加熱とが併用自在な構成となって
いるため、ピーク負荷に対しても迅速に応答することが
出来ると共に、蓄熱量の不足による様々な不都合を全て
回避することが出来る。
(Effects of the Invention) In the present invention, the heating of the feed water by latent heat storage and the heating of the feed water by the electric heater can be used together, so that a quick response to a peak load can be achieved. In addition to being able to do so, it is possible to avoid all the various inconveniences due to insufficient heat storage.

また、熱媒体を表面架橋ポリエチレン粒体を固相分と
する固液二相流体としているため、固相分に大量の潜熱
が蓄熱でき、熱媒体の蓄熱密度が大幅に向上する。
Further, since the heat medium is a solid-liquid two-phase fluid having surface-crosslinked polyethylene particles as the solid phase component, a large amount of latent heat can be stored in the solid phase component, and the heat storage density of the heat medium is significantly improved.

更に、固液二相熱媒体を流動させると共に、その固相
分を表面架橋ポリエチレン粒体としているため、従前の
溶融塩循環方式のように、熱交換用水管の外表面に溶融
塩の固相分が固着して熱伝達率が悪化するようなことが
皆無となり、前記溶融塩循環方式の場合に比較して熱伝
達率が約3倍程度向上する。その結果、温水・蒸気発生
器の大幅な小形化が可能となる。
Furthermore, since the solid-liquid two-phase heat medium is made to flow and the solid phase portion is made of surface-crosslinked polyethylene granules, the solid phase of the molten salt is formed on the outer surface of the heat exchange water pipe like the conventional molten salt circulation system. There is no possibility that the heat transfer coefficient will be deteriorated due to the fixed amount, and the heat transfer coefficient will be improved by about 3 times as compared with the case of the molten salt circulation system. As a result, it is possible to significantly reduce the size of the hot water / steam generator.

加えて、小粒径の潜熱蓄熱材を液相分内へ浮遊せしめ
た状態で固液二相熱媒体をポンプにより循環若しくは攪
拌羽根により流動させるようにしているため、従前のス
ラリー状の溶融塩を循環若しくは攪拌流動させる場合に
比較して流体の流動性が向上し、ポンプ動力費の引下げ
が可能となる。
In addition, the solid-liquid two-phase heat medium is circulated by a pump or made to flow by a stirring blade in a state in which a latent heat storage material having a small particle size is suspended in the liquid phase component. The fluidity of the fluid is improved and the pump power cost can be reduced as compared with the case where the fluid is circulated or stirred.

そのうえ、熱媒体内の表面架橋ポリエチレン粒体の軟
化温度を80〜200℃程度に選定することにより、高温水
又は蒸気が容易に得られると共に、熱媒油等の液相分は
100℃以上でも常圧であるため、蓄熱タンクや槽本体に
は圧力がかからず、安全性や経済性の点でも好都合であ
る。
Moreover, by selecting the softening temperature of the surface-crosslinked polyethylene granules in the heating medium to about 80 to 200 ° C, high-temperature water or steam can be easily obtained, and the liquid phase content of the heating medium oil, etc.
Since the pressure is not applied to the heat storage tank or the main body of the tank because it is normal pressure even at 100 ° C or higher, it is convenient in terms of safety and economy.

本発明は上述の通り、優れた実用的効用を奏するもの
である。
As described above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の第1実施例に係る蓄熱型電気温水・
蒸気発生器の系統図である。 第2図は、第1実施例で使用する熱交換器の他の例を示
す断面図である。 第3図及び第4図は、本発明の第2実施例に係る蓄熱型
電気温水・蒸気発生器の横断面図及び縦断面図である。 第5図及び第6図は、従前の蓄熱温水気温水・蒸気発生
器の概要説明図である。 1……蓄熱タンク 2……熱媒体加熱用ヒータ 3……熱媒体循環ポンプ 4a・4b……熱交換器 5a・5b……熱交換用水管 6……給水ポンプ 7……スチームセパレータ 10……給水加熱用ヒータ 13……槽本体 14……攪拌装置 15……水管壁 K……固液二相熱媒体
FIG. 1 shows a heat storage type electric hot water according to the first embodiment of the present invention.
It is a system diagram of a steam generator. FIG. 2 is a sectional view showing another example of the heat exchanger used in the first embodiment. 3 and 4 are a horizontal sectional view and a vertical sectional view of a heat storage type electric hot water / steam generator according to a second embodiment of the present invention. 5 and 6 are schematic explanatory views of a conventional heat storage hot water temperature air temperature water / steam generator. 1 …… Heat storage tank 2 …… Heater for heating heat medium 3 …… Heat medium circulation pump 4a ・ 4b …… Heat exchanger 5a ・ 5b …… Water pipe for heat exchange 6 …… Water supply pump 7 …… Steam separator 10 …… Heater for supplying water 13 …… Bath body 14 …… Stirring device 15 …… Water pipe wall K …… Solid-liquid two-phase heat medium

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱媒体加熱用ヒータ(2)を備えた蓄熱タ
ンク(1)と,粒径が1.5〜5mmφの表面架橋ポリエチレ
ン粒体(Kb)と熱媒油若しくはエチレングリコール(K
a)とを後者に対する前者の比(Kb/Ka)が20〜70VoL%
の範囲で混合して成り、前記蓄熱タンク(1)内に貯留
した固液二相熱媒体(K)と,熱交換用水管(5a)を備
え、ピーク負荷時に流動する固液二相熱媒体(K)によ
り給水を加熱する熱交換器(4a)と,定常負荷時に給水
を加熱するヒータ(10)を内部に設けた熱交換用水管
(5b)を備え、ピーク負荷時に流動する固液二相熱媒体
(K)により前記給水を加熱する熱交換器(4b)と,ピ
ーク負荷時に作動する固液二相熱媒体(K)の循環ポン
プ(3)と,前記熱交換用水管(5b)又は熱交換用水管
(5a)及び熱交換用水管(5b)へ給水する給水ポンプ
(6)と,前記熱交換用水管(5b)又は熱交換用水管
(5a)及び熱交換用水管(5b)からの加熱給水を受入れ
するスチームセパレータ(7)と,から構成したことを
特徴とする蓄熱型電気温水・蒸気発生器。
1. A heat storage tank (1) equipped with a heater (2) for heating a heat medium, surface-crosslinked polyethylene particles (Kb) having a particle size of 1.5 to 5 mmφ, and a heat transfer oil or ethylene glycol (K).
a) and the ratio (Kb / Ka) of the former to the latter is 20-70VoL%
And a solid-liquid two-phase heat medium (K) stored in the heat storage tank (1) and a water pipe (5a) for heat exchange, and flowing at peak load. (K) is equipped with a heat exchanger (4a) that heats the feed water, and a heat exchange water pipe (5b) that internally has a heater (10) that heats the feed water during a steady load. A heat exchanger (4b) for heating the feed water with a phase heat medium (K), a circulation pump (3) for the solid-liquid two-phase heat medium (K) that operates at peak load, and the heat exchange water pipe (5b) Alternatively, a water supply pump (6) for supplying water to the heat exchange water pipe (5a) and the heat exchange water pipe (5b), and the heat exchange water pipe (5b) or the heat exchange water pipe (5a) and the heat exchange water pipe (5b). Regenerative electric hot water / steam comprising a steam separator (7) for receiving heated water from Generator.
JP1089055A 1989-04-07 1989-04-07 Heat storage type electric hot water / steam generator Expired - Fee Related JPH0823449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089055A JPH0823449B2 (en) 1989-04-07 1989-04-07 Heat storage type electric hot water / steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089055A JPH0823449B2 (en) 1989-04-07 1989-04-07 Heat storage type electric hot water / steam generator

Publications (2)

Publication Number Publication Date
JPH02267462A JPH02267462A (en) 1990-11-01
JPH0823449B2 true JPH0823449B2 (en) 1996-03-06

Family

ID=13960178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089055A Expired - Fee Related JPH0823449B2 (en) 1989-04-07 1989-04-07 Heat storage type electric hot water / steam generator

Country Status (1)

Country Link
JP (1) JPH0823449B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723858B2 (en) * 2005-01-10 2010-05-25 New World Generation Inc. Power plant having a heat storage medium and a method of operation thereof
WO2019016909A1 (en) * 2017-07-20 2019-01-24 日新ネオ株式会社 Heat exchanger
MX2021008165A (en) * 2021-07-05 2023-01-06 Castillo Karl Heinrich Stoever Fog-generating device and operating method.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827773A (en) * 1981-08-12 1983-02-18 Mitsubishi Petrochem Co Ltd Molded article of polyethylene for heat retention
JPS5986894A (en) * 1982-11-10 1984-05-19 Agency Of Ind Science & Technol Regenerating method and regenerator
JPS5987575U (en) * 1982-11-29 1984-06-13 株式会社フジクラ Exhaust heat recovery device using granular latent heat storage material
JPS6152549A (en) * 1984-08-21 1986-03-15 Hitachi Chem Co Ltd Heat accumulating device utilizing latent heat for hot water supplier

Also Published As

Publication number Publication date
JPH02267462A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
Karunamurthy et al. Use of CuO nano-material for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond
US20010028791A1 (en) Water heating unit with integral thermal energy storage
CN106221676A (en) The phase change heat storage material of many transformation temperatures and preparation technology thereof
CN107841291A (en) A kind of phase transformation microemulsion and its application as cooling working medium
CN109943290A (en) A kind of phase change fluid of low conductivity and preparation method thereof
JPS63217196A (en) Latent heat type heat storage material
JPH0823449B2 (en) Heat storage type electric hot water / steam generator
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
JP2000130975A (en) Heat-transferring device
JPS5986894A (en) Regenerating method and regenerator
Tayeb Organic-inorganic mixtures for solar energy storage systems
JP2000087020A (en) Heat storage material composition and heat storage type hot water supplying apparatus using the same
JPH0737610B2 (en) Latent heat storage type heating device and solid-liquid two-phase heat medium
JP2005009837A (en) Heat storage device
JPH0933184A (en) Heat exchanger
JP3473283B2 (en) Heat storage material composition
JP2003240465A (en) Latent heat storage device
JPH0784946B2 (en) Heat storage material Direct contact type electric hot water / steam generator
JP2016217664A (en) Heat storage system
JP2002053850A (en) Dispersion for thermal stratification type heat storage tank
JPH07229689A (en) Heat exchange equipment
JPH0414272B2 (en)
JPS5835337A (en) Floor heating device
JP2001031957A (en) Heat storage material composition and heat storage-type hot water supplying apparatus
JPH05118568A (en) Heat accumulation type floor heating system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees