JPH0737610B2 - Latent heat storage type heating device and solid-liquid two-phase heat medium - Google Patents

Latent heat storage type heating device and solid-liquid two-phase heat medium

Info

Publication number
JPH0737610B2
JPH0737610B2 JP1089054A JP8905489A JPH0737610B2 JP H0737610 B2 JPH0737610 B2 JP H0737610B2 JP 1089054 A JP1089054 A JP 1089054A JP 8905489 A JP8905489 A JP 8905489A JP H0737610 B2 JPH0737610 B2 JP H0737610B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
liquid
solid
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1089054A
Other languages
Japanese (ja)
Other versions
JPH02269182A (en
Inventor
雅雄 平嶋
勇夫 上野
Original Assignee
株式会社田熊総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田熊総合研究所 filed Critical 株式会社田熊総合研究所
Priority to JP1089054A priority Critical patent/JPH0737610B2/en
Publication of JPH02269182A publication Critical patent/JPH02269182A/en
Publication of JPH0737610B2 publication Critical patent/JPH0737610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄熱材循環方式の潜熱蓄熱型加熱装置とこれ
に使用する固液二相熱媒体に関するものである。
Description: TECHNICAL FIELD The present invention relates to a latent heat storage type heating device of a heat storage material circulation system and a solid-liquid two-phase heat medium used for the same.

(従来の技術) 従来の潜熱蓄熱型加熱装置に於いては、蓄熱材の物理的
及び化学的性質の特殊性から、蓄熱材と熱媒体とを伝熱
壁を介して隔離する方式の伝熱機構が一般的に利用され
ている。第2図及び第3図はその一例を示すものであ
り、前者(カプセル型)では、蓄熱材Aを充填したカプ
セルBの外表面に沿って空気等の熱媒体Cが流通され、
また後者(シエル・チューブ型)に於いては、蓄熱材A
の内部に設けたチューブD内へ水等の熱媒体Cが流通さ
れ、蓄熱体Aと熱媒体C間の熱交換が行なわれている。
(Prior Art) In a conventional latent heat storage type heating device, a heat transfer method of separating a heat storage material and a heat medium through a heat transfer wall due to the peculiarities of the physical and chemical properties of the heat storage material. The mechanism is commonly used. FIG. 2 and FIG. 3 show an example thereof, and in the former (capsule type), a heat medium C such as air is circulated along the outer surface of the capsule B filled with the heat storage material A,
In the latter case (shell tube type), the heat storage material A
A heat medium C such as water is circulated in a tube D provided inside the heat storage body A to exchange heat between the heat storage body A and the heat medium C.

しかし、前記カプセル型やシエル・チューブ型の熱交換
には、伝熱壁部に於ける熱伝達率が低く、放熱速度や蓄
熱速度を上げ難いという基本的な欠点があり、潜熱蓄熱
型加熱装置の実用化を図る上で大きな障害となってい
る。
However, the capsule-type or shell-tube type heat exchange has a basic defect that the heat transfer coefficient in the heat transfer wall is low and it is difficult to increase the heat dissipation rate or the heat storage rate. This is a major obstacle to the practical application of.

例えば、放熱時に於いては、凝固した蓄熱材が時間の経
過と共に蓄熱材側の伝熱面上に層状に付着し、その厚さ
が順次増大する。ところが、蓄熱材そのものは熱伝導度
が相対的に低いため、蓄熱材の凝固層の厚みが大きくな
るとその熱抵抗が大きな値となる。その結果、溶融状態
の蓄熱材の蓄熱量が十分で且つ蓄熱材温度と熱媒体間の
温度差が大きな場合でも、伝熱量は極く制限されたもの
となり、加熱装置の容量アップが著しく困難となる。
For example, during heat dissipation, the solidified heat storage material adheres in layers on the heat transfer surface on the heat storage material side with the lapse of time, and the thickness thereof increases gradually. However, since the heat storage material itself has a relatively low thermal conductivity, its thermal resistance becomes a large value as the thickness of the solidified layer of the heat storage material increases. As a result, even if the heat storage amount of the heat storage material in the molten state is sufficient and the temperature difference between the heat storage material temperature and the heat medium is large, the heat transfer amount is extremely limited, and it is extremely difficult to increase the capacity of the heating device. Become.

一方、上述の如きカプセル型やシエル・チューブ型の伝
熱上の欠点を除去するものとして、第3図の如き蓄熱材
循環型の所謂アクティブ型熱交換を用いた潜熱蓄熱型加
熱装置が開発されている。即ち、タンクE内な貯留した
溶融塩等の蓄熱材Aを熱媒体とし、これを循環ポンプF
によって熱交換器G内へ送ることにより、チューブH内
を流通する水を加熱して温水(又は蒸気)を得るよう構
成されている。尚、第3図に於いてIは送水ポンプ、J
はヒータ等の加熱源である。
On the other hand, in order to eliminate the above-mentioned heat transfer defects of the capsule type and shell tube type, a latent heat storage type heating device using a so-called active type heat exchange of a heat storage material circulation type as shown in FIG. 3 has been developed. ing. That is, the heat storage material A such as the molten salt stored in the tank E is used as the heat medium, and this is used as the circulation pump F.
It is configured to heat the water flowing in the tube H to obtain hot water (or steam) by sending it into the heat exchanger G by. In FIG. 3, I is a water pump, J
Is a heating source such as a heater.

前記蓄熱材循環方式の潜熱蓄熱型加熱装置では、蓄熱材
Aが一定の流速で循環流動されるため、伝熱チューブH
の外表面上に蓄熱材Aの凝固層が固着し難くなる。その
結果、熱伝達特性も蓄熱材Aが静止した状態にあるカプ
セル型やシエル・チューブ型の場合に比較して相当改善
されることになる。
In the latent heat storage type heating device of the heat storage material circulation system, since the heat storage material A is circulated and flowed at a constant flow velocity, the heat transfer tube H
It becomes difficult for the solidified layer of the heat storage material A to adhere to the outer surface of the. As a result, the heat transfer characteristics are considerably improved as compared with the case of the capsule type or shell tube type in which the heat storage material A is in a stationary state.

しかし、チューブHの外表面に於ける蓄熱材の凝固層の
積層固着を皆無にすることは困難であり、特に熱媒体と
しての蓄熱材Aの循環流速が低いと、チューブ外表面へ
の凝固層の固着が著しく増大する。その結果、高い熱伝
達特性を保持するためには蓄熱材Aの循環流速を相当に
高める必要があり、蓄熱材である溶融塩がスラリー状で
あってその流動性が相対的に低いこととも相俟って、循
環ポンプFの動力費が著しく高騰することになる。
However, it is difficult to completely prevent the solidified layer of the heat storage material from being stuck and laminated on the outer surface of the tube H. Especially, when the circulation flow velocity of the heat storage material A as the heat medium is low, the solidified layer on the outer surface of the tube is not formed. The sticking of is significantly increased. As a result, in order to maintain high heat transfer characteristics, it is necessary to considerably increase the circulation flow velocity of the heat storage material A, and the molten salt that is the heat storage material is in the form of slurry and its fluidity is relatively low. Therefore, the power cost of the circulation pump F will increase significantly.

また、従前の蓄熱材循環型加熱装置に於いては、熱媒体
である蓄熱材Aとして単相の溶融塩を使用しているた
め、溶融温度が80℃〜200℃で、蓄熱性に優れた実用可
能な蓄熱材Aの入手困難である。その結果、冷・暖房設
備等で必要とする80℃〜200℃程度の加熱水若しくは蒸
気を容易に入手することが出来ないという問題がある。
Further, in the conventional heat storage material circulation type heating device, since the single-phase molten salt is used as the heat storage material A which is the heat medium, the melting temperature is 80 ° C to 200 ° C and the heat storage property is excellent. It is difficult to obtain a practical heat storage material A. As a result, there is a problem in that heated water or steam of about 80 to 200 ° C., which is required for cooling and heating equipment, etc., cannot be easily obtained.

(発明が解決しようとする問題点) 本発明の従前の潜熱蓄熱型加熱装置に於ける上述の如き
問題、即ち、カプセル型やシエル・チューブ型の伝熱
機構を用いた加熱装置では、伝熱壁部に於ける熱抵抗が
著しく高くなり、必要な伝熱特性が得にくいこと、及び
蓄熱材循環型加熱装置では、高い熱伝達率を得ようと
すれば循環ポンプの動力費が増大すると共に、溶融温度
が80℃〜200℃程度の実用可能な蓄熱材Aが存在せず、8
0℃〜200℃程度の加熱水若しくは蒸気の入手が困難なこ
と等の問題を解決せんとするものであり、少ない動力消
費でもって80℃〜200℃程度の水若しくは蒸気を高効率
で、しかも容易に入手出来ると共に、装置の大幅な小形
化を可能とした蓄熱材循環方式の潜熱蓄熱型加熱装置
と、これに使用する固液二相熱媒体を提供するものであ
る。
(Problems to be Solved by the Invention) The above-mentioned problems in the conventional latent heat storage type heating device of the present invention, that is, in the heating device using the capsule-type or shell-tube type heat transfer mechanism, The heat resistance in the wall becomes extremely high, and it is difficult to obtain the necessary heat transfer characteristics. Also, in the heat storage material circulation type heating device, trying to obtain a high heat transfer coefficient increases the power cost of the circulation pump. , There is no practicable heat storage material A with a melting temperature of 80 to 200 ℃,
It aims to solve problems such as difficulty in obtaining heated water or steam at 0 ° C to 200 ° C, and highly efficient operation of water or steam at 80 ° C to 200 ° C with low power consumption. The present invention provides a latent heat storage type heating device of a heat storage material circulation system, which is easily available and enables the size of the device to be greatly reduced, and a solid-liquid two-phase heat medium used for the heating device.

(課題を解決するための手段) 請求項(1)に記載の発明は、加熱源を備えた蓄熱タン
クと,前記蓄熱タンク内に貯留した、粒径が1.5〜5.0mm
φの表面架橋ポリエチレン粒体と熱媒油若しくはエチレ
ングリコール液との混合比を20〜70VoL%とした固液二
相熱媒体と,前記固液二相熱媒体の循環ポンプと,前記
固液二相熱媒体の循環により給水を加熱する熱交換器と
を発明の基本構成とするものである。
(Means for Solving the Problem) The invention according to claim (1) is such that a heat storage tank equipped with a heating source and a particle size of 1.5 to 5.0 mm stored in the heat storage tank.
A solid-liquid two-phase heat medium having a mixing ratio of the surface-crosslinked polyethylene particles of φ and a heat-transfer oil or ethylene glycol liquid of 20 to 70 VoL%, a circulation pump for the solid-liquid two-phase heat medium, and the solid-liquid two-phase A heat exchanger that heats feed water by circulating a phase heat medium is a basic configuration of the invention.

また、請求項(2)に記載の発明は、粒径が1.5〜5.0mm
φの表面架橋ポリエチレン粒体と、熱媒油若しくはエチ
レングリコール液との混合体より成り、且つ表面架橋ポ
リエチレン粒体と熱媒油若しくはエチレングリコール液
との混合比を20〜70VoL%としたことを発明の基本構成
とするものである。
Further, the invention according to claim (2) has a particle size of 1.5 to 5.0 mm.
It consists of a mixture of φ surface-crosslinked polyethylene granules and heat carrier oil or ethylene glycol liquid, and the mixing ratio of the surface cross-linked polyethylene granules and heat carrier oil or ethylene glycol liquid is set to 20 to 70 VoL%. This is a basic configuration of the invention.

(作用) 蓄熱タンク内の加熱源で固液二相熱媒体を所定の温度下
で一定時間加熱することにより、熱媒体の固相分を形成
する表面架橋合成樹脂粒体の内部が固相状から液相状に
相転移を起し、潜熱に相当する熱量が粒体内部に蓄熱さ
れると共に熱媒体及び粒体に顕熱が蓄熱される。
(Function) By heating the solid-liquid two-phase heat medium at a predetermined temperature for a certain period of time with the heat source in the heat storage tank, the inside of the surface-crosslinked synthetic resin granules forming the solid phase of the heat medium is in the solid state. Causes a phase transition in a liquid phase, and the amount of heat corresponding to latent heat is stored inside the granules and sensible heat is stored in the heat medium and the granules.

潜熱蓄熱が行なわれた固液二相熱媒体は、循環ポンプに
よって熱交換器を通して循環され、ひれ付熱交換用水管
を介して保持する熱を給水に与える。尚、熱媒体内の粒
体はその表面が架橋されているため、蓄熱状態下に於い
ても保形性があり、元の形状を保持している。
The solid-liquid two-phase heat medium in which the latent heat storage is performed is circulated through the heat exchanger by the circulation pump, and gives the heat to the feed water through the finned heat exchange water pipe. Since the surface of the granules in the heat medium is cross-linked, the granules retain their shape even in the heat storage state and retain their original shape.

熱交換により、熱媒体内の粒体はその潜熱を放出して内
部の液相が固相に相転移すると共に、順次蓄熱タンクへ
戻される。
By the heat exchange, the particles in the heat medium release their latent heat, the internal liquid phase undergoes a phase transition to a solid phase, and the particles are sequentially returned to the heat storage tank.

表面架橋合成樹脂粒体は、前述の通り蓄熱状態下に於い
ても元の形状を保持しているため、熱交換用水管の外表
面へ固着するようなことは全く起らず、熱伝達率が著し
く改善される。
As mentioned above, the surface-crosslinked synthetic resin granules retain their original shape even under heat storage conditions, so that they do not stick to the outer surface of the heat exchange water pipe at all, and the heat transfer coefficient Is significantly improved.

(実施例) 以下、図面に基づいて本発明の実施例を説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明に係る潜熱蓄熱型加熱装置の系統図であ
り、図に於いて1は蓄熱タンク、2は蓄熱材の加熱源で
あるヒータ、3は熱媒体循環ポンプ、4は熱交換器、5
はひれ付熱交換用水管、6は給水ポンプ、7は温水(又
は蒸気)出口、8は管路、Kは蓄熱タンク1内に貯留し
た熱媒体である。
FIG. 1 is a system diagram of a latent heat storage type heating device according to the present invention. In the drawing, 1 is a heat storage tank, 2 is a heater which is a heating source of a heat storage material, 3 is a heat medium circulation pump, and 4 is heat exchange. Bowl, 5
Is a water pipe for heat exchange with fins, 6 is a water supply pump, 7 is an outlet for hot water (or steam), 8 is a pipeline, and K is a heat medium stored in the heat storage tank 1.

前記熱媒体Kは所謂固液二相流体であって、液相Ka内に
固相Kbが混在した状態で管路8及び熱交換器4内を流通
する。
The heat medium K is a so-called solid-liquid two-phase fluid, and flows in the pipe 8 and the heat exchanger 4 in a state where the solid phase Kb is mixed in the liquid phase Ka.

前記熱媒体Kの固相分Kbはポリエチレン、ポリエステ
ル、ポリプロピレン等の粒材の表層部のみを架橋した所
謂表面架橋合成樹脂粒体から構成されている。本実施例
では直径1.5〜5mmφ、比重約0.9〜1.0、軟化温度約80℃
〜20℃、潜熱約50〜80Kcal/kgの表面架橋ポリエチレン
が、前記熱媒体の固相分Kbとして利用している。より具
体的に記述すれば、前記表面架橋ポリエチレンの粒径は
1.5〜3mmφ位いが伝熱並びに熱媒体Kの循環流動という
点から最適であり、又、その軟化温度が約133℃と188℃
の二種類のものについて実用試験を行なった。
The solid phase component Kb of the heating medium K is composed of so-called surface-crosslinked synthetic resin particles obtained by crosslinking only the surface layer of the granular material such as polyethylene, polyester and polypropylene. In this embodiment, the diameter is 1.5 to 5 mmφ, the specific gravity is about 0.9 to 1.0, and the softening temperature is about 80 ° C.
Surface-crosslinked polyethylene having a latent heat of about 50 to 80 Kcal / kg at -20 ° C is used as the solid phase Kb of the heat medium. More specifically, the particle size of the surface cross-linked polyethylene is
It is optimal for heat transfer and circulation of heat medium K, and its softening temperature is about 133 ℃ and 188 ℃.
Practical tests were carried out on the two types.

尚、前記ポリエチレン粒体の表面架橋は所謂電子線照射
法等によって行なわれ、当該表面架橋処理を行なうこと
により、ポリエチレン粒子の表層部のみが若干硬化す
る。その結果、粒体内部が加熱下で溶融状態にあって
も、その表層部は固化状のままであり、粒体形状を保持
することになる。又、前記表面架橋処理を施しても、ポ
リエチレンの潜熱が大幅に減少するようなことは全く無
い。
Surface cross-linking of the polyethylene particles is carried out by a so-called electron beam irradiation method, etc. By the surface cross-linking treatment, only the surface layer portion of the polyethylene particles is slightly cured. As a result, even if the inside of the granule is in a molten state under heating, the surface layer portion thereof remains in a solidified state and maintains the shape of the granule. Even if the surface cross-linking treatment is applied, the latent heat of polyethylene is not significantly reduced.

一方、前記固液二相熱媒体Kの液相分Kaには、熱媒油若
しくはエチレングリコールやプロピレングリコール等液
状高分子材が使用されている。本実施例では、前記熱媒
体の液相分Kaとして、熱媒油か若しくはエチレングリコ
ールの何れかを前記表面架橋ポリエチレン粒体の軟化温
度に応じて使用している。
On the other hand, for the liquid phase component Ka of the solid-liquid two-phase heating medium K, a heating medium oil or a liquid polymer material such as ethylene glycol or propylene glycol is used. In this embodiment, as the liquid phase component Ka of the heat medium, either heat medium oil or ethylene glycol is used according to the softening temperature of the surface-crosslinked polyethylene granules.

熱媒体Kの液相分Kaの材質としては、前記固相分Kbが浮
遊し得る比重を有する必要があり、更に、固相分Kbを形
成する表面架橋合成樹脂粒体の表層部の安定性を阻害し
ないことが必要がある。加えて、液相分Kaは、化学的安
定性や流動性に優れ、熱容量の大きな物質が良い。これ
等の点を勘案し、本実施例では前述の如く、軟化温度が
約133℃の表面架橋ポリエチレン粒体を固相分Kaとした
場合には、エチレングリコールを、また、軟化温度が約
188℃の表面架橋ポリエチレン粒体を固相分Kbとした場
合には、熱媒油を、夫々液相分Kaとするようにしてい
る。
The material of the liquid phase component Ka of the heat medium K must have a specific gravity such that the solid phase component Kb can float, and further the stability of the surface layer portion of the surface-crosslinked synthetic resin granules forming the solid phase component Kb. Need not to interfere. In addition, the liquid phase component Ka is preferably a substance having excellent chemical stability and fluidity and a large heat capacity. Taking these points into consideration, in the present embodiment, as described above, when the surface cross-linked polyethylene granules having a softening temperature of about 133 ° C. are used as the solid phase component Ka, ethylene glycol is added, and the softening temperature is about
When the surface-crosslinked polyethylene granules at 188 ° C. are used as the solid phase component Kb, the heat transfer oil is used as the liquid phase component Ka respectively.

前記固液二相熱媒体Kを構成する液相分Kaと固相分Kbと
の混合比率(Kb/Ka)は20〜70VOL%程度であり、50%程
度が伝熱特性等の点から最適である。
The mixing ratio (Kb / Ka) of the liquid phase component Ka and the solid phase component Kb constituting the solid-liquid two-phase heating medium K is about 20 to 70 VOL%, and about 50% is optimal in terms of heat transfer characteristics. Is.

次に、本発明に係る潜熱蓄熱型加熱装置の作動について
説明する。
Next, the operation of the latent heat storage type heating device according to the present invention will be described.

蓄熱タンク1内に貯留された熱媒体K(固相分Kb・表面
架橋ポリエチレン、液相分Kaエチレングリコール)は、
夜間等の余剰電力を用いて加熱源2により、表面架橋ポ
リエチレンの軟化温度約133℃以上の温度で一定時間加
熱される。これにより、表面架橋ポリエチレン粒体の内
部が溶融状態になり(粒子の外表層は若干軟化するが、
元の形状が保持された状態にある)、潜熱に相当する熱
量が蓄熱されると共に、エチレングリコール等の液相分
には所謂顕熱蓄熱が行なわれる。
The heat medium K (solid phase Kb / surface cross-linked polyethylene, liquid phase Ka ethylene glycol) stored in the heat storage tank 1 is
The surplus power at night is used to heat the surface-crosslinked polyethylene at a softening temperature of about 133 ° C. or higher for a certain time by the heating source 2. As a result, the inside of the surface-crosslinked polyethylene granules becomes in a molten state (the outer surface layer of the particles is slightly softened,
The original shape is maintained), a heat amount corresponding to latent heat is stored, and so-called sensible heat storage is performed on the liquid phase component such as ethylene glycol.

熱媒体循環ポンプ3を駆動して固液二相熱媒体Kを熱交
換器4へ送ることにより、ひれ付熱交換用水管5を介し
て給水ポンプ6からの給水との間で熱交換が行なわれ、
出口7から温水(又は蒸気)が取り出される。
By driving the heat medium circulation pump 3 and sending the solid-liquid two-phase heat medium K to the heat exchanger 4, heat exchange is performed with the water supply from the water supply pump 6 via the finned heat exchange water pipe 5. And
Hot water (or steam) is taken out from the outlet 7.

熱媒体K内のポリエチレン粒体は、その内部が溶融して
いても外表層は固化状態にあり、粒体形状を保持してい
る。従って、熱交換用水管5の外表面に固相分が固着す
ることは全くない。
Even if the inside of the polyethylene particles in the heating medium K is melted, the outer surface layer is in a solidified state and maintains the particle shape. Therefore, the solid phase does not stick to the outer surface of the heat exchange water pipe 5.

熱交換により潜熱を放出したポリエチレン粒子は、その
内部が固相に相転移し、液相分Ka内に浮遊した状態で管
路8を通して蓄熱タンク1へ戻される。
The polyethylene particles, which have released latent heat by heat exchange, are returned to the heat storage tank 1 through the conduit 8 in a state where the inside thereof undergoes a phase transition to a solid phase and is suspended in the liquid phase component Ka.

(発明の効果) 本発明に於いては、熱媒体Kを固液二相流体とすると共
に、その固相分を表面架橋合成樹脂粒体としているた
め、固相分に大量の潜熱が蓄熱されることになり、熱媒
体の蓄熱密度が上昇すると共に蓄熱時の蓄熱速度も大幅
に向上する。
(Effects of the Invention) In the present invention, the heat medium K is a solid-liquid two-phase fluid, and the solid phase is surface-crosslinked synthetic resin particles, so a large amount of latent heat is stored in the solid phase. As a result, the heat storage density of the heat medium rises, and the heat storage rate during heat storage also greatly improves.

また、固液二相流体を、流動させると共に、潜熱蓄熱材
を表面架橋合成樹脂粒体としているため、従前の溶融塩
循環方式のように熱交換器の熱交換用水管の外表面に溶
融塩の固相分が固着して熱伝達率が悪化するようなこと
が皆無となる。これにより、前記溶融塩循環方式の場合
に比較して、熱伝達率が約3倍程度向上することが確認
されている。
Also, since the solid-liquid two-phase fluid is made to flow and the latent heat storage material is made of surface-crosslinked synthetic resin particles, the molten salt on the outer surface of the heat exchange water pipe of the heat exchanger as in the conventional molten salt circulation system. There is no possibility that the solid-phase component of will adhere and the heat transfer coefficient will deteriorate. As a result, it has been confirmed that the heat transfer coefficient is improved by about 3 times as compared with the case of the molten salt circulation method.

更に小粒径の潜熱蓄熱材を液相分内へ浮遊せしめた状態
で固液二相熱媒体をポンプにより循環させるようにして
いるため、従前のスラリー状の溶融塩を循環させる場合
に比較して流体の流動性が向上し、ポンプ動力費の引下
げが可能となる。
Furthermore, since the solid-liquid two-phase heat transfer medium is circulated by a pump while the latent heat storage material with a small particle size is suspended in the liquid phase component, it is possible to compare it with the conventional method of circulating molten salt in the form of slurry. As a result, the fluidity of the fluid is improved, and the pump power cost can be reduced.

そのうえ、表面架橋合成樹脂粒体の軟化温度を80℃〜20
0℃程度に選定することにより、高温水又は蒸気が容易
に得られると共に、熱媒油等の液相分は100℃以上でも
常圧であるため、蓄熱タンクには圧力がかからず、安全
性や経済性の点でも好都合である。
In addition, the softening temperature of the surface cross-linked synthetic resin granules should be 80 ℃ ~ 20
By selecting around 0 ° C, high temperature water or steam can be easily obtained, and since the liquid phase of heat transfer oil etc. is normal pressure even at 100 ° C or higher, no pressure is applied to the heat storage tank, which is safe. It is also convenient in terms of efficiency and economy.

本発明は上述の通り、優れた実用的効用を奏するもので
ある。
As described above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る潜熱蓄熱型加熱装置の系統図であ
る。 第2図乃至第4図は従前の潜熱蓄熱型加熱装置の説明図
である。 1……蓄熱タンク 2……加熱源 3……熱媒体循環ポンプ 4……熱交換器 5……熱交換用水管 K……熱媒体 Ka……液相分 Kb……固相分
FIG. 1 is a system diagram of a latent heat storage type heating device according to the present invention. 2 to 4 are explanatory views of a conventional latent heat storage type heating device. 1 ... Heat storage tank 2 ... Heating source 3 ... Heat medium circulation pump 4 ... Heat exchanger 5 ... Heat exchange water pipe K ... Heat medium Ka ... Liquid phase component Kb ... Solid phase component

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】加熱源を備えた蓄熱タンクと,前記蓄熱タ
ンク内に貯留した、粒径が1.5〜5.0mmφの表面架橋ポリ
エチレン粒体と熱媒油若しくはエチレングリコール液と
の混合比を20〜70VoL%とした固液二相熱媒体と,前記
固液二相熱媒体の循環ポンプと,前記固液二相熱媒体の
循環により給水を加熱する熱交換器とから構成した潜熱
蓄熱型加熱装置。
1. A heat storage tank equipped with a heating source, and a mixing ratio of a surface cross-linked polyethylene particle having a particle size of 1.5 to 5.0 mmφ and a heat transfer oil or ethylene glycol liquid stored in the heat storage tank to 20 to. Latent heat storage type heating device comprising a solid-liquid two-phase heat medium of 70VoL%, a circulation pump for the solid-liquid two-phase heat medium, and a heat exchanger for heating feed water by circulating the solid-liquid two-phase heat medium .
【請求項2】粒径が1.5〜5.0mmφの表面架橋ポリエチレ
ン粒体と、熱媒油若しくはエチレングリコール液との混
合体より成り、且つ表面架橋ポリエチレン粒体と熱媒油
若しくはエチレングリコール液との混合比を20〜70VoL
%としたことを特徴とする潜熱蓄熱型加熱装置用の固液
二相熱媒体。
2. A mixture of surface-crosslinked polyethylene particles having a particle diameter of 1.5 to 5.0 mm and heat carrier oil or ethylene glycol liquid, wherein the surface-crosslinked polyethylene particles and heat carrier oil or ethylene glycol liquid. Mixing ratio 20-70VoL
%, And a solid-liquid two-phase heat medium for a latent heat storage type heating device.
JP1089054A 1989-04-07 1989-04-07 Latent heat storage type heating device and solid-liquid two-phase heat medium Expired - Fee Related JPH0737610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089054A JPH0737610B2 (en) 1989-04-07 1989-04-07 Latent heat storage type heating device and solid-liquid two-phase heat medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089054A JPH0737610B2 (en) 1989-04-07 1989-04-07 Latent heat storage type heating device and solid-liquid two-phase heat medium

Publications (2)

Publication Number Publication Date
JPH02269182A JPH02269182A (en) 1990-11-02
JPH0737610B2 true JPH0737610B2 (en) 1995-04-26

Family

ID=13960152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089054A Expired - Fee Related JPH0737610B2 (en) 1989-04-07 1989-04-07 Latent heat storage type heating device and solid-liquid two-phase heat medium

Country Status (1)

Country Link
JP (1) JPH0737610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673704A (en) * 2012-09-25 2014-03-26 北京兆阳光热技术有限公司 Heat storage and heat exchange equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650683A (en) * 1992-07-30 1994-02-25 Saamaru:Kk Heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH617716A5 (en) * 1975-04-28 1980-06-13 Ciba Geigy Ag
JPS59142276A (en) * 1983-02-03 1984-08-15 Mitsui Petrochem Ind Ltd Latent heat type multi-layer heat storage material
JPS6245680A (en) * 1985-08-23 1987-02-27 Matsushita Electric Works Ltd Heat storing capsule, process for preparing the same and heat storing building material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673704A (en) * 2012-09-25 2014-03-26 北京兆阳光热技术有限公司 Heat storage and heat exchange equipment

Also Published As

Publication number Publication date
JPH02269182A (en) 1990-11-02

Similar Documents

Publication Publication Date Title
US5687706A (en) Phase change material storage heater
CN106701032B (en) A kind of composite phase change heat-accumulation material, microcapsules and preparation method thereof
CN109297335A (en) A kind of Improvement type mixed heat accumulation list tank
JPH0737610B2 (en) Latent heat storage type heating device and solid-liquid two-phase heat medium
JPS5986894A (en) Regenerating method and regenerator
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
Tayeb Organic-inorganic mixtures for solar energy storage systems
JPH0823449B2 (en) Heat storage type electric hot water / steam generator
JPH1123065A (en) Heat storing heat dissipating device
JPS6022279B2 (en) heat storage device
JP2003130562A (en) Hot heat storage apparatus
JPH0933184A (en) Heat exchanger
JPH05295356A (en) Particulate heat-storage material using heat of fusion of substance
JP2000087020A (en) Heat storage material composition and heat storage type hot water supplying apparatus using the same
JP2005009837A (en) Heat storage device
JPH0784946B2 (en) Heat storage material Direct contact type electric hot water / steam generator
JP2006183970A (en) Heat storage device
JPH0120341B2 (en)
JP2010071633A (en) Heat storage body, heat storage unit and heat storage system
JPS5847990A (en) Heat accumulating tank
JP2001031957A (en) Heat storage material composition and heat storage-type hot water supplying apparatus
JPS5855434B2 (en) Method and device for preventing supercooling of heat storage device
CN109237976B (en) PCM energy storage structure capable of improving crystallization speed of phase change energy storage material
JPS61173085A (en) Latent heat storage device
JPH07229689A (en) Heat exchange equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees