JP2016217664A - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP2016217664A
JP2016217664A JP2015105234A JP2015105234A JP2016217664A JP 2016217664 A JP2016217664 A JP 2016217664A JP 2015105234 A JP2015105234 A JP 2015105234A JP 2015105234 A JP2015105234 A JP 2015105234A JP 2016217664 A JP2016217664 A JP 2016217664A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage tank
tank
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015105234A
Other languages
Japanese (ja)
Inventor
知哉 村本
Tomoya Muramoto
知哉 村本
道太郎 橋場
Michitaro HASHIBA
道太郎 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015105234A priority Critical patent/JP2016217664A/en
Publication of JP2016217664A publication Critical patent/JP2016217664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove a radiating thermal media with its temperature kept high for a long period of time.SOLUTION: Heat storage tanks 1a, 1b, 1c comprise heating means 3a, 3b and 3c at a bottom part in a storage tank space 8 having heat storage material 2 stored therein, and radiating heat transfer pipes 4a, 4b, 4c in an upper part of the storage tank space. The radiating heat transfer pipes 4a, 4b, 4c in the heat storage tanks 1a, 1b, 1c are connected in series through which a radiating thermal media 5 flows. To carry out heat storage in the heat storage tanks 1a, 1b, 1c, heating means 3a, 3b, 3c are controlled by a control device 7 to carry out a heat storing operation from the last heat storage tank 1c in a flowing order of the radiating thermal media, to reach a specified high heat storage state. To carry out heat radiation from the heat storage tanks 1a, 1b, 1c, the pre-heated or pre-heat stored radiating thermal media 5 in the first two heat storage tanks 1a, 1b in the flowing order of the radiating thermal media is flowed to the radiating heat transfer pipe 4c of the heat storage tank 1c, to hold the heat storage tank 1c that is the last to exchange heat with the radiating thermal media 5, at a high heat storage state for a long period of time.SELECTED DRAWING: Figure 1

Description

本発明は、熱の貯蔵に用いる蓄熱システムに関するものである。   The present invention relates to a heat storage system used for heat storage.

太陽熱発電や、太陽光発電、風力発電等の自然エネルギーを利用した発電設備では、日照条件や気象条件等の変化に起因する出力電力の過渡的な変化を抑制するために、蓄熱システムを備えることが行われている。   In power generation facilities that use natural energy such as solar thermal power generation, solar power generation, and wind power generation, a heat storage system should be provided to suppress transient changes in output power caused by changes in sunshine conditions and weather conditions. Has been done.

この種の蓄熱システムとしては、たとえば、蓄熱槽に、蓄熱温度範囲で固相と液相との相変化を生じる蓄熱材を充填し、この蓄熱材の潜熱を利用して蓄熱を行うことで、蓄熱密度の向上化を図ったものが従来知られている。   As this type of heat storage system, for example, a heat storage tank is filled with a heat storage material that causes a phase change between a solid phase and a liquid phase in a heat storage temperature range, and heat storage is performed using the latent heat of this heat storage material, The thing which aimed at the improvement of a thermal storage density is conventionally known.

更に、蓄熱槽(蓄熱ユニット)を複数組み合わせて使用することがあり、その場合、各蓄熱槽で蓄熱材と水との熱交換を行うようにしてある各蓄熱槽の放熱用の伝熱管が直列に接続されて使用されている(たとえば、特許文献1参照)。   Furthermore, there are cases where a plurality of heat storage tanks (heat storage units) are used in combination, and in that case, heat transfer tubes for heat radiation of each heat storage tank are arranged in series so as to exchange heat between the heat storage material and water in each heat storage tank. (See, for example, Patent Document 1).

又、蓄熱温度範囲で固相と液相との相変化を生じる蓄熱材としては、たとえば、CsNOとNaNO、LiNOとLiOH、LiNOとNaNO、KNOとNaNO、NaNOとRbNO、LiBrとLiOH、LiBrとNaNOといった組み合わせの2成分系で非共晶の組成の混合塩による蓄熱材を用いることが従来提案されている(たとえば、特許文献2参照)。 Examples of the heat storage material that causes a phase change between the solid phase and the liquid phase in the heat storage temperature range include CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and Conventionally, it has been proposed to use a heat storage material composed of a mixed salt having a non-eutectic composition of two components such as RbNO 3 , LiBr and LiOH, and LiBr and NaNO 3 (see, for example, Patent Document 2).

特開2001−248984号公報JP 2001-248984 A 国際公開第2014/185179号International Publication No. 2014/185179

ところで、複数の蓄熱槽を、放熱用の伝熱管を直列に接続して使用する場合、各蓄熱槽の伝熱管に放熱用熱媒体を順次流通させるときの熱媒体流通順序が最初の蓄熱槽は、放熱用伝熱管に、熱媒体供給手段等から供給される初期温度の放熱用熱媒体が流通する。これに対し、熱媒体流通順序が2番目以降の蓄熱槽は、放熱用伝熱管に、熱媒体流通順序が先の蓄熱槽の放熱用伝熱管を通過した後の放熱用熱媒体が流通するようになる。このため、各蓄熱槽より放熱用熱媒体を介して放熱を行うときには、蓄熱槽ごとに、伝熱管を流通する放熱用熱媒体の温度差が異なるため、蓄熱材との熱交換による放熱量に差が生じる。したがって、各蓄熱槽の蓄熱量には、ばらつきが生じることになる。   By the way, when using a plurality of heat storage tanks by connecting heat transfer tubes for heat dissipation in series, the heat storage tank having the first heat medium distribution order when the heat transfer heat medium is sequentially distributed to the heat transfer tubes of each heat storage tank is The heat radiating heat medium having an initial temperature supplied from the heat medium supplying means or the like flows through the heat radiating heat transfer tubes. On the other hand, in the heat storage tanks in which the heat medium distribution order is the second or later, the heat dissipation heat medium after the heat medium distribution order has passed through the heat dissipation heat transfer pipes of the previous heat storage tank flows through the heat dissipation heat transfer pipes. become. For this reason, when radiating heat from each heat storage tank via the heat dissipation heat medium, the temperature difference of the heat dissipation heat medium flowing through the heat transfer tubes differs for each heat storage tank. There is a difference. Therefore, variation occurs in the amount of heat stored in each heat storage tank.

しかも、従来提案されている、複数の蓄熱槽を直列に接続して用いる場合は、各蓄熱槽の蓄熱量にばらつきが生じた状態から、各蓄熱槽への蓄熱と各蓄熱槽からの放熱とが単に繰り返して行われると、すべての蓄熱槽が、設定されている蓄熱容量の上限と下限との間の蓄熱量になることが懸念されている。   Moreover, when a plurality of heat storage tanks that have been proposed in the past are connected in series, the heat storage amount to each heat storage tank and the heat release from each heat storage tank from the state in which the amount of heat stored in each heat storage tank varies. Is simply repeated, there is a concern that all the heat storage tanks have a heat storage amount between the upper limit and the lower limit of the set heat storage capacity.

また、蓄熱槽は、蓄熱容量の上限からの蓄熱量の低下に伴って、取り出し可能な放熱用熱媒体の温度が低下する。そのため、たとえ、複数の蓄熱槽の蓄熱量の合計値が一つの蓄熱槽の蓄熱容量の上限に達しているとしても、個々の蓄熱槽が温度低下している状態では、最終的に取り出される放熱用熱媒体の温度は、蓄熱容量が上限の蓄熱量となっている蓄熱槽から取り出される放熱用熱媒体に比して大幅に低下してしまう。   Moreover, the temperature of the heat-dissipating heat medium that can be taken out of the heat storage tank decreases as the heat storage amount decreases from the upper limit of the heat storage capacity. Therefore, even if the total value of the heat storage amount of the plurality of heat storage tanks reaches the upper limit of the heat storage capacity of one heat storage tank, in the state where the temperature of each heat storage tank is lowered, the heat radiation finally taken out The temperature of the heat transfer medium is greatly reduced as compared to the heat dissipation heat medium taken out from the heat storage tank whose heat storage capacity is the upper limit heat storage amount.

なお、特許文献2には、複数の蓄熱槽を統合して運用する考えは示されていない。   In addition, patent document 2 does not show the idea of integrating and operating a plurality of heat storage tanks.

そこで、本発明は、複数の蓄熱槽の蓄熱材と熱交換して最終的に取り出される放熱用熱媒体の温度を、長時間に亘り高温化を図ることができる蓄熱システムを提供しようとするものである。   Therefore, the present invention intends to provide a heat storage system capable of increasing the temperature of the heat-dissipating heat medium finally exchanged with heat storage materials of a plurality of heat storage tanks over a long period of time. It is.

本発明は、前記課題を解決するために、槽内に入れた蓄熱材と、前記槽内で、前記蓄熱材よりも低温の放熱用熱媒体を流通させて前記蓄熱材との熱交換を行う放熱用伝熱管と、前記蓄熱槽に設けられて、前記蓄熱材に対し蓄熱用の加熱を行う加熱手段と、を有する蓄熱槽を複数備え、前記複数の蓄熱槽は、前記放熱用伝熱管が、前記放熱用熱媒体が順に流通するよう直列に接続され、更に、前記複数の蓄熱槽の加熱手段の制御を行う制御装置を備え、前記制御装置は、前記放熱用伝熱管が直列に接続された前記複数の蓄熱槽に対し蓄熱を行う際に、前記直列に接続された放熱用伝熱管に前記放熱用熱媒体が流通するときの放熱用熱媒体流通順序が最後となる蓄熱槽から、前記放熱用熱媒体流通順序とは逆の順序で、前記複数の蓄熱槽にそれぞれ設定される高蓄熱状態までの蓄熱を個別に行う機能を備えるものとした構成を有する蓄熱システムとする。   In order to solve the above problems, the present invention performs heat exchange with the heat storage material by circulating a heat storage material placed in a tank and a heat-dissipating heat medium having a temperature lower than that of the heat storage material in the tank. A plurality of heat storage tanks, each of which is provided in the heat storage tube and a heating unit that heats the heat storage material for heat storage, and the plurality of heat storage tanks include the heat transfer tubes The heat dissipating heat medium is connected in series so that it flows in order, and further includes a control device that controls the heating means of the plurality of heat storage tanks, and the control device includes the heat dissipating heat transfer tubes connected in series. In addition, when performing heat storage on the plurality of heat storage tanks, from the heat storage tank in which the heat dissipation heat medium circulation sequence is the last when the heat dissipation heat medium flows through the heat dissipation heat transfer tubes connected in series, The heat storage tanks are arranged in the reverse order to the heat dissipation heat medium distribution order. The heat storage of up to a high heat storage state is set to the thermal storage system having the configuration as having the function of performing separately.

前記蓄熱材は、前記蓄熱槽の蓄熱温度範囲で固液の相変化を生じるものとし、前記各蓄熱槽は、前記蓄熱材を入れた槽内空間の底部側に前記加熱手段を備えると共に、前記槽内空間の上部寄りに前記放熱用伝熱管を備える構成としてある。   The heat storage material causes a solid-liquid phase change in the heat storage temperature range of the heat storage tank, and each of the heat storage tanks includes the heating means on the bottom side of the space in the tank containing the heat storage material, and It is set as the structure provided with the said heat exchanger tube for heat radiation near the upper part of the space in a tank.

前記各蓄熱槽の前記加熱手段は、加熱用熱媒体を流通させる熱媒体流路を備え、該熱媒体流路は、開閉弁を介して加熱用熱媒体供給ラインに接続され、前記制御装置は、前記各蓄熱槽の前記熱媒体流路ごとの前記開閉弁を個別に開閉操作する機能を備える構成としてある。   The heating means of each heat storage tank includes a heat medium flow path for circulating a heat medium for heating, the heat medium flow path is connected to a heating heat medium supply line via an on-off valve, and the control device The open / close valve for each heat medium flow path of each heat storage tank has a function of opening / closing individually.

前記各蓄熱槽の前記加熱手段は、電気ヒータを備え、前記制御装置は、前記各蓄熱槽の前記電気ヒータごとの給電と給電停止とを個別に操作する機能を備える構成としてある。   The heating means of each heat storage tank includes an electric heater, and the control device has a function of individually operating power supply and power supply stop for each electric heater of each heat storage tank.

本発明の蓄熱システムによれば、複数の蓄熱槽の蓄熱材と熱交換して最終的に取り出される放熱用熱媒体の温度を、長時間に亘り高温化を図ることができる。   According to the heat storage system of the present invention, it is possible to increase the temperature of the heat-dissipating heat medium finally taken out by exchanging heat with the heat storage materials of the plurality of heat storage tanks over a long period of time.

蓄熱システムの第1実施形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows 1st Embodiment of a thermal storage system. 第1実施形態における制御装置による蓄熱処理のフロー図である。It is a flowchart of the heat storage heat processing by the control apparatus in 1st Embodiment. (a)(b)(c)は第1実施形態の蓄熱システムによる蓄熱時の状態を示す図である。(A) (b) (c) is a figure which shows the state at the time of the thermal storage by the thermal storage system of 1st Embodiment. (a)(b)(c)は第1実施形態の蓄熱システムによる放熱時の状態を示す図である。(A) (b) (c) is a figure which shows the state at the time of the thermal radiation by the thermal storage system of 1st Embodiment. 蓄熱システムの第2実施形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows 2nd Embodiment of a thermal storage system.

以下、本発明を実施するための形態を図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[第1実施形態]
図1は蓄熱システムの第1実施形態を示す概略切断側面図である。図2は本実施形態における制御装置による蓄熱処理のフロー図である。図3(a)(b)(c)は本実施形態の蓄熱システムの蓄熱時の状態を示す図である。図4(a)(b)(c)は本実施形態の蓄熱システムの放熱時の状態を示す図である。
[First Embodiment]
FIG. 1 is a schematic cut side view showing a first embodiment of a heat storage system. FIG. 2 is a flow chart of heat storage heat treatment by the control device in the present embodiment. FIGS. 3A, 3B, and 3C are views showing a state during heat storage of the heat storage system of the present embodiment. FIGS. 4A, 4B, and 4C are views showing a state during heat dissipation of the heat storage system of the present embodiment.

本実施形態の蓄熱システムは、概説すると、図1に示すように、複数の蓄熱槽1a,1b,1cを備えている。図1には、3台の蓄熱槽1a,1b,1cとした構成例が示してある。   In summary, the heat storage system of the present embodiment includes a plurality of heat storage tanks 1a, 1b, and 1c as shown in FIG. FIG. 1 shows a configuration example in which three heat storage tanks 1a, 1b, and 1c are used.

蓄熱槽1a,1b,1cは、槽内に入れた蓄熱材2と、槽内の蓄熱材2に対して蓄熱用の加熱を行う加熱手段3a,3b,3cと、放熱用伝熱管4a,4b,4cとを備えた構成とされている。   The heat storage tanks 1a, 1b, 1c are the heat storage material 2 put in the tank, the heating means 3a, 3b, 3c for heating the heat storage material 2 in the tank, and the heat transfer tubes 4a, 4b for heat radiation. , 4c.

放熱用伝熱管4a,4b,4cは、槽内の蓄熱材2よりも低い温度の放熱用熱媒体5を流通させて、この放熱用熱媒体5と槽内の蓄熱材2との熱交換を行わせ、この熱交換によって加熱された放熱用熱媒体5を得るための伝熱管である。   The heat transfer tubes 4a, 4b, 4c for heat dissipation distribute the heat dissipation heat medium 5 having a temperature lower than that of the heat storage material 2 in the tank, and exchange heat between the heat dissipation heat medium 5 and the heat storage material 2 in the tank. This is a heat transfer tube for obtaining the heat radiating heat medium 5 heated by this heat exchange.

各蓄熱槽1a,1b,1cは、放熱用伝熱管4a,4b,4cが直列に接続されていて、外部の図示しない放熱用熱媒体供給手段より供給される放熱用熱媒体5が、各蓄熱槽1a,1b,1cの放熱用伝熱管4a,4b,4cを、順に流通するようになっている。このように各蓄熱槽1a,1b,1cの放熱用伝熱管4a,4b,4cに放熱用熱媒体5が流通する順序は、以下、各蓄熱槽1a,1b,1cについての放熱用熱媒体流通順序という。   Each of the heat storage tanks 1a, 1b, and 1c is connected to the heat radiating heat transfer tubes 4a, 4b, and 4c in series, and the heat radiating heat medium 5 supplied from an external heat radiating heat medium supplying means (not shown) The heat radiating heat transfer tubes 4a, 4b, 4c of the tanks 1a, 1b, 1c are circulated in order. The order in which the heat dissipation heat medium 5 flows through the heat transfer tubes 4a, 4b, and 4c of the heat storage tanks 1a, 1b, and 1c in this manner is as follows. It is called order.

本実施形態の蓄熱システムは、更に、各蓄熱槽1a,1b,1cの蓄熱量を測定する蓄熱量測定手段6a,6b,6cと、各蓄熱槽1a,1b,1cの加熱手段3a,3b,3cを統合して制御する制御装置7とを備えた構成とされている。   The heat storage system of the present embodiment further includes heat storage amount measuring means 6a, 6b, 6c for measuring the heat storage amount of each heat storage tank 1a, 1b, 1c, and heating means 3a, 3b for each heat storage tank 1a, 1b, 1c, The controller 7 is configured to be integrated and controlled.

本実施形態の蓄熱システムでは、蓄熱槽1a,1b,1cの槽内に入れる蓄熱材2は、たとえば、設定される蓄熱温度範囲(Tmin<T<Tmax)において固相と液相との間で相変化を生じ、且つ固相の密度が液相の密度よりも大となる蓄熱材2を用いる。図1では、蓄熱材2の固相にハッチングを付して示してある。なお、この蓄熱材2の詳細については後述する。 In the heat storage system of this embodiment, the heat storage material 2 put in the tanks of the heat storage tanks 1a, 1b, 1c is, for example, a solid phase and a liquid phase in a set heat storage temperature range ( Tmin <T < Tmax ). A heat storage material 2 is used in which a phase change occurs between them and the density of the solid phase is larger than the density of the liquid phase. In FIG. 1, the solid phase of the heat storage material 2 is hatched. The details of the heat storage material 2 will be described later.

蓄熱槽1a,1b,1cの槽内空間8の容積は、蓄熱槽1a,1b,1cに望まれる蓄熱容量と、蓄熱材2の種類等に応じて適宜設定されている。   The volume of the in-tank space 8 of the heat storage tanks 1a, 1b, 1c is appropriately set according to the heat storage capacity desired for the heat storage tanks 1a, 1b, 1c, the type of the heat storage material 2, and the like.

加熱手段3a,3b,3cは、槽内空間8の底部にホットプレート状に設けられている。この加熱手段3a,3b,3cは、たとえば、槽内空間8の内底面をフラットな面として形成するためのプレート部材9と、プレート部材9の下側に設けて、加熱用熱媒体11を流通させる熱媒体流路10とを備えた構成とされている。   The heating means 3a, 3b, 3c are provided in a hot plate shape at the bottom of the in-tank space 8. The heating means 3a, 3b, 3c are provided, for example, on a plate member 9 for forming the inner bottom surface of the tank space 8 as a flat surface, and on the lower side of the plate member 9, and the heating medium 11 is circulated. The heat medium flow path 10 is provided.

プレート部材9を備える構成とするのは、蓄熱槽1a,1b,1cの温度低下時に槽内空間8で生じて沈降する蓄熱材2の固相をプレート部材9の上側に分散させて堆積させ、この堆積物の荷重を、プレート部材9の面で分散して受けることが好ましいためである。なお加熱手段3a,3b,3cは、プレート部材9の下側に、プレート部材9に作用する堆積物の荷重を、加熱手段3a,3b,3cの下端部となる熱媒体流路10の下部に伝えて支持させるための上下の柱状や壁状の部材を備えるようにしてもよい。   The plate member 9 is configured to disperse and deposit the solid phase of the heat storage material 2 that is generated and settles in the internal space 8 when the temperature of the heat storage tanks 1a, 1b, 1c is lowered, and deposited on the upper side of the plate member 9, This is because it is preferable to receive the load of the deposit in a distributed manner on the surface of the plate member 9. The heating means 3a, 3b, 3c are configured to apply a load of deposits acting on the plate member 9 to the lower side of the heat medium flow path 10 which is the lower end of the heating means 3a, 3b, 3c. You may make it provide the upper and lower columnar and wall-shaped members for conveying and supporting.

熱媒体流路10は、加熱用熱媒体11の有する熱によりプレート部材9の全面をできるだけ均等に加熱できるように、プレート部材9の面内についての加熱用熱媒体11の流通経路の配置、形状、流路断面積等が適宜設定されている。なお、図1では、図示する便宜上、熱媒体流路10は簡略化した記載としてある。したがって、熱媒体流路10は、流通経路の配置、形状、流路断面積等が図示した以外の任意の設定とされていてもよいことは勿論である。   The heat medium channel 10 is arranged and shaped in the flow path of the heating medium 11 in the plane of the plate member 9 so that the entire surface of the plate member 9 can be heated as evenly as possible by the heat of the heating medium 11. The channel cross-sectional area and the like are set as appropriate. In FIG. 1, for convenience of illustration, the heat medium passage 10 is simplified. Therefore, it is needless to say that the heat medium flow path 10 may have any setting other than that shown in the drawing, such as the arrangement, shape, and cross-sectional area of the flow path.

各蓄熱槽1a,1b,1cの熱媒体流路10の入口には、外部の図示しない加熱用熱媒体供給手段より加熱用熱媒体11を導く加熱用熱媒体供給ライン12が、個別の開閉弁13a,13b,13cを介して並列に接続されている。   At the inlet of the heat medium flow path 10 of each heat storage tank 1a, 1b, 1c, a heating heat medium supply line 12 for guiding the heating heat medium 11 from an external heating medium supply means (not shown) is provided as an individual on-off valve. They are connected in parallel via 13a, 13b and 13c.

又、各蓄熱槽1a,1b,1cの熱媒体流路10の出口の下流側には、熱媒体流路10を流通した後の加熱用熱媒体11を、加熱用熱媒体供給手段へ戻す加熱用熱媒体戻しライン14が接続されている。更に、加熱用熱媒体供給手段は、太陽熱発電の集熱部のような熱源(図示せず)の熱を加熱用熱媒体11に与えて加熱するための熱交換部が備えられている。   Further, on the downstream side of the outlet of the heat medium flow path 10 of each heat storage tank 1a, 1b, 1c, the heating heat medium 11 after flowing through the heat medium flow path 10 is returned to the heating heat medium supply means. A heating medium return line 14 is connected. Further, the heating heat medium supply means is provided with a heat exchanging section for applying heat from a heat source (not shown) such as a heat collecting section of solar thermal power generation to the heating heat medium 11 for heating.

加熱用熱媒体11は、蓄熱温度範囲(Tmin<T<Tmax)の全域、更には、それよりも高い温度域まで液相となる熱媒体を選定して用いるか、あるいは、スチームを用いるようにすればよい。スチームはその圧力を調整することにより容易に温度調整が可能であることから、加熱用熱媒体11としてスチームを用いることで、加熱手段3a,3b,3cの温度調整が容易になる。 As the heating heat medium 11, a heat medium that is in a liquid phase up to the entire heat storage temperature range (T min <T <T max ) or higher than that is selected and used, or steam is used. What should I do? Since the temperature of the steam can be easily adjusted by adjusting the pressure, the temperature of the heating means 3a, 3b, 3c can be easily adjusted by using the steam as the heating heat medium 11.

これにより、加熱手段3a,3b,3cの熱媒体流路10には、加熱用熱媒体供給手段より、加熱された加熱用熱媒体11を循環供給することができる。したがって、加熱手段3a,3b,3cでは、熱媒体流路10に順次供給される加熱用熱媒体11の有する熱により、プレート部材9を介して、槽内空間8に入れた蓄熱材2を下方から加熱することができる。   Thereby, the heated heating medium 11 can be circulated and supplied from the heating medium supply means to the heating medium flow path 10 of the heating means 3a, 3b, 3c. Therefore, in the heating means 3 a, 3 b, 3 c, the heat storage material 2 put in the tank internal space 8 is moved downward via the plate member 9 by the heat of the heating heat medium 11 sequentially supplied to the heat medium flow path 10. Can be heated.

放熱用伝熱管4a,4b,4cは、槽内空間8の上部寄り位置に、蓄熱材2に没する配置で設けられている。放熱用伝熱管4a,4b,4cは、図示しない支持部材を介して、蓄熱槽1a,1b,1cの壁面や天井部より支持されている。放熱用伝熱管4a,4b,4cは、全体が蓄熱材2に没する範囲で、できるだけ、槽内空間8の上下方向の半分の高さ位置よりも上方に配置されることが好ましい。これは、後述するように、放熱用伝熱管4a,4b,4cの周囲で凝固して生じる蓄熱材2の固相が液相中で沈降する現象に支障が生じないようにするためである。しかし、放熱用伝熱管4a,4b,4cの管路形状や全体のサイズ等に応じて、放熱用伝熱管4a,4b,4cの下端側に位置する部分が、槽内空間8の上下方向の半分の高さ位置、あるいは、それよりも低い位置に部分的に配置されていてもよいことは勿論である。   The heat radiating heat transfer tubes 4 a, 4 b, 4 c are provided at positions near the upper part of the tank space 8 so as to be immersed in the heat storage material 2. The heat radiating heat transfer tubes 4a, 4b, and 4c are supported from the wall surfaces and ceiling portions of the heat storage tanks 1a, 1b, and 1c via a support member (not shown). It is preferable that the heat radiating heat transfer tubes 4a, 4b, 4c are arranged as far as possible above the half height position in the vertical direction of the in-tank space 8 as long as the whole is immersed in the heat storage material 2. This is for preventing the phenomenon that the solid phase of the heat storage material 2 solidified around the heat transfer tubes 4a, 4b, 4c for heat dissipation settles in the liquid phase, as will be described later. However, the part located on the lower end side of the heat transfer tubes 4a, 4b, 4c for heat dissipation is in the vertical direction of the inner space 8 depending on the pipe shape and the overall size of the heat transfer tubes 4a, 4b, 4c for heat dissipation. Of course, it may be partially disposed at a half height position or a lower position.

各蓄熱槽1a,1b,1cの放熱用伝熱管4a,4b,4cは、コネクタや接続管のような接続部材15を介して順次直列に接続されている。図1では、放熱用伝熱管4aの下流側端部と、放熱用伝熱管4bの上流側端部とが接続され、放熱用伝熱管4bの下流側端部と、放熱用伝熱管4cの上流側端部とが接続された構成となっている。   The heat transfer tubes 4a, 4b, 4c of the heat storage tanks 1a, 1b, 1c are sequentially connected in series via a connection member 15 such as a connector or a connection tube. In FIG. 1, the downstream end of the heat radiating heat transfer tube 4a and the upstream end of the heat radiating heat transfer tube 4b are connected, the downstream end of the heat radiating heat transfer tube 4b, and the upstream of the heat radiating heat transfer tube 4c. The side end portion is connected.

各放熱用伝熱管4a,4b,4cのうち、最も上流側に配置された放熱用伝熱管4aの上流側端部には、外部の図示しない放熱用熱媒体供給手段より放熱用熱媒体5を導く放熱用熱媒体供給ライン16が接続されている。又、最も下流側に配置された放熱用伝熱管4cの下流側端部には、各蓄熱槽1a,1b,1cの放熱用伝熱管4a,4b,4cを流通した後の放熱用熱媒体5を、所望の熱負荷(図示せず)へ送る放熱用熱媒体送出ライン17が接続されている。熱負荷に熱を供給した後の放熱用熱媒体5は、放熱用熱媒体供給手段へ戻すようにしてもよいし、戻さなくてもよい。   Of each heat-dissipating heat transfer tube 4a, 4b, 4c, the heat-dissipating heat medium 5 is provided at the upstream end of the heat-dissipating heat transfer tube 4a arranged on the most upstream side by an external heat-dissipating heat medium supplying means (not shown). A heat dissipation heat medium supply line 16 is connected. Further, at the downstream end of the heat radiating heat transfer tube 4c arranged on the most downstream side, the heat radiating heat medium 5 after flowing through the heat radiating heat transfer tubes 4a, 4b, 4c of the heat storage tanks 1a, 1b, 1c. To the desired heat load (not shown) is connected. The heat dissipation heat medium 5 after supplying heat to the heat load may or may not be returned to the heat dissipation heat medium supply means.

放熱用熱媒体5は、液相の熱媒体を選定して用いるか、あるいは、スチームを用いるようにすればよい。又、放熱用熱媒体5として液相の熱媒体を用いて、この液相の放熱用熱媒体5を、放熱用伝熱管4a,4b,4c内で蒸発させるようにしてもよい。   As the heat dissipation heat medium 5, a liquid heat medium may be selected and used, or steam may be used. Alternatively, a liquid-phase heat medium may be used as the heat-dissipating heat medium 5, and the liquid-phase heat-dissipating heat medium 5 may be evaporated in the heat-radiating heat transfer tubes 4a, 4b, 4c.

これにより、放熱用伝熱管4a,4b,4cには、放熱用熱媒体供給手段より放熱用熱媒体5が連続的に供給される。したがって、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5は、放熱用伝熱管4a,4b,4cの周囲に存在している蓄熱材2との熱交換により順次加熱され、加熱状態で放熱用熱媒体送出ライン17に回収される放熱用熱媒体5の保有する熱が、熱負荷へ与えられるようになる。   Thereby, the heat-dissipating heat medium 5 is continuously supplied from the heat-dissipating heat medium supplying means to the heat-dissipating heat transfer tubes 4a, 4b, 4c. Therefore, the heat-dissipating heat medium 5 flowing through the heat-dissipating heat transfer tubes 4a, 4b, 4c is sequentially heated by heat exchange with the heat storage material 2 existing around the heat-dissipating heat transfer tubes 4a, 4b, 4c. In this state, the heat retained by the heat dissipation heat medium 5 collected in the heat dissipation heat medium delivery line 17 is applied to the heat load.

このように、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5が、放熱用伝熱管4a,4b,4cの周囲に存在している蓄熱材2との熱交換により加熱されるときには、蓄熱材2は、相対的に温度低下する。この蓄熱材2の温度低下が、液相と固相との相変化温度で生じると、図1に示すように、放熱用伝熱管4a,4b,4cの周囲では、蓄熱材2が液相より凝固して固相が生じる。この蓄熱材2の固相は、液相よりも密度が大きいために、液相中を沈降するようになる。   Thus, the heat-dissipating heat medium 5 flowing through the heat-radiating heat transfer tubes 4a, 4b, 4c is heated by heat exchange with the heat storage material 2 existing around the heat-radiating heat-transfer tubes 4a, 4b, 4c. Sometimes, the heat storage material 2 relatively decreases in temperature. When the temperature drop of the heat storage material 2 occurs at the phase change temperature between the liquid phase and the solid phase, as shown in FIG. 1, the heat storage material 2 is moved from the liquid phase around the heat transfer tubes 4 a, 4 b, 4 c for heat radiation. Solidifies to form a solid phase. Since the solid phase of the heat storage material 2 has a higher density than the liquid phase, it settles in the liquid phase.

槽内空間8では、その上部寄り位置に放熱用伝熱管4a,4b,4cを設けた構成としてあるので、放熱用伝熱管4a,4b,4cの周囲に温度低下した蓄熱材2の固相が生じても、この固相は槽内空間8を底部まで沈降して、加熱手段3a,3b,3cの上側に堆積される。   In the internal space 8, the heat transfer tubes 4 a, 4 b, 4 c are provided at positions closer to the upper portion thereof, so that the solid phase of the heat storage material 2 whose temperature has dropped around the heat transfer tubes 4 a, 4 b, 4 c is provided. Even if it occurs, this solid phase settles down in the tank space 8 to the bottom and is deposited on the upper side of the heating means 3a, 3b, 3c.

したがって、蓄熱槽1a,1b,1cでは、放熱用伝熱管4a,4b,4cの周囲に蓄熱材2の固相が留まることはないため、蓄熱材2と、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5との間の熱伝達の効率が蓄熱材2の固相の存在によって低下することは抑制される。   Therefore, in the heat storage tanks 1a, 1b, and 1c, the solid phase of the heat storage material 2 does not stay around the heat dissipation heat transfer tubes 4a, 4b, and 4c, and therefore the heat storage material 2 and the heat dissipation heat transfer tubes 4a, 4b, and 4c. It is suppressed that the efficiency of heat transfer between the heat-dissipating heat medium 5 flowing through the heat storage material 2 decreases due to the presence of the solid phase of the heat storage material 2.

蓄熱槽1a,1b,1cの側壁18には、図1に示すように、側壁18の温度を上昇させるための側壁用ヒータ19が設けられていることが好ましい。   As shown in FIG. 1, side wall heaters 19 for increasing the temperature of the side walls 18 are preferably provided on the side walls 18 of the heat storage tanks 1a, 1b, 1c.

側壁用ヒータ19は、槽内空間8の下端側から少なくとも槽内空間8の上下方向の半分の高さ位置に達する配置で設けられていることが好ましい。又、側壁用ヒータ19は、側壁18の周方向の全周に亘り設けられていることが好ましい。なお、側壁用ヒータ19は、図1に示すように側壁18の外面に設ける構成のほか、図示しないが、側壁18の内面に沿って設けるようにしてもよい。更に、図示しないが、側壁用ヒータ19は、槽内空間8における蓄熱材2が貯留されている上下方向範囲の全体に亘って設けられていてもよい。   It is preferable that the side wall heater 19 is provided so as to reach at least a half height in the vertical direction of the inner space 8 from the lower end side of the inner space 8. The side wall heater 19 is preferably provided over the entire circumference of the side wall 18. The side wall heater 19 may be provided along the inner surface of the side wall 18 (not shown) in addition to the configuration provided on the outer surface of the side wall 18 as shown in FIG. Further, although not shown, the side wall heater 19 may be provided over the entire range in the vertical direction in which the heat storage material 2 in the tank internal space 8 is stored.

側壁用ヒータ19は、たとえば、電気ヒータを用いるようにすればよい。あるいは、側壁用ヒータ19は、加熱手段3a,3b,3cと同様に、スチームやその他の液相の熱媒体を流通させる熱媒体流路を備えた構成のヒータとしてもよい。   The side wall heater 19 may be an electric heater, for example. Or the heater 19 for side walls is good also as a heater of the structure provided with the heat medium flow path which distribute | circulates a steam and other liquid phase heat media like the heating means 3a, 3b, 3c.

更に、側壁用ヒータ19は、加熱手段3a,3b,3cによる蓄熱材2の加熱時、すなわち、蓄熱槽1a,1b,1cへの蓄熱時に、側壁用ヒータ19による側壁18の加熱も一緒に行うように設定されている。   Further, the side wall heater 19 also heats the side wall 18 by the side wall heater 19 when the heat storage material 2 is heated by the heating means 3a, 3b, 3c, that is, when heat is stored in the heat storage tanks 1a, 1b, 1c. Is set to

側壁用ヒータ19による側壁18の加熱温度は、蓄熱材2が固相から液相になる温度に設定されていればよい。   The heating temperature of the side wall 18 by the side wall heater 19 may be set to a temperature at which the heat storage material 2 changes from a solid phase to a liquid phase.

これにより、加熱手段3a,3b,3cによる加熱時には、槽内空間8で加熱手段3a,3b,3cの上側に堆積している蓄熱材2の固相が、下方から加熱されて、先ず、加熱手段3a,3b,3cの上面に接している部分から融解して液相となる。   Thereby, at the time of heating by the heating means 3a, 3b, 3c, the solid phase of the heat storage material 2 deposited on the upper side of the heating means 3a, 3b, 3c in the inner space 8 is heated from below, It melts from the portion in contact with the upper surface of the means 3a, 3b, 3c to become a liquid phase.

このとき、側壁用ヒータ19を一緒に運転することにより、側壁18の内面近傍に存在している蓄熱材2の固相が溶融して、液相になる。このため、蓄熱材2の固相の堆積物は、側壁18の内面への固着が解消される。更に、加熱手段3a,3b,3cの上面に接する部分で生じる蓄熱材2の液相は、側壁18の内周に沿う位置で流動して、蓄熱材2の固相の堆積物の上方へ移動する。   At this time, by operating the side wall heater 19 together, the solid phase of the heat storage material 2 existing in the vicinity of the inner surface of the side wall 18 is melted into a liquid phase. For this reason, the solid phase deposit of the heat storage material 2 is eliminated from the inner surface of the side wall 18. Furthermore, the liquid phase of the heat storage material 2 generated at the portion in contact with the upper surface of the heating means 3a, 3b, 3c flows at a position along the inner periphery of the side wall 18 and moves above the solid deposit of the heat storage material 2. To do.

その結果、槽内空間8では、蓄熱材2の固相の堆積物を、自重により加熱手段3a,3b,3cの上面に押し付けることができ、その際、加熱手段3a,3b,3cの上面と堆積物との間に形成される蓄熱材2の液相の層を薄くすることができる。これにより、加熱手段3a,3b,3cから蓄熱材2の固相への熱伝達の効率を高めることが可能になる。   As a result, in the tank space 8, the solid phase deposit of the heat storage material 2 can be pressed against the upper surface of the heating means 3a, 3b, 3c by its own weight, and at that time, the upper surface of the heating means 3a, 3b, 3c and The liquid phase layer of the heat storage material 2 formed between the deposits can be thinned. Thereby, the efficiency of heat transfer from the heating means 3a, 3b, 3c to the solid phase of the heat storage material 2 can be increased.

更に、加熱手段3a,3b,3cの上面に接する部分に存在している蓄熱材2に、固相から液相への相変化に伴って体積膨張が生じるとしても、その体積変化分は、蓄熱材2の液相の固相上方への移動によって容易に吸収させることができる。したがって、蓄熱材2の加熱時に、蓄熱槽1a,1b,1cや側壁18に対して局所的に過大な圧力が作用する虞は防止される。   Furthermore, even if volume expansion occurs with the phase change from the solid phase to the liquid phase in the heat storage material 2 existing in the portion in contact with the upper surface of the heating means 3a, 3b, 3c, The material 2 can be easily absorbed by moving the liquid phase upward of the solid phase. Therefore, when the heat storage material 2 is heated, the possibility that an excessively large pressure acts locally on the heat storage tanks 1a, 1b, 1c and the side wall 18 is prevented.

更に、不測の事態により、万一、蓄熱槽1a,1b,1c全体が、蓄熱温度範囲(Tmin<T<Tmax)よりも温度低下して、槽内空間8に入れた蓄熱材2がすべて固相になった場合には、側壁用ヒータ19を運転することにより、蓄熱材2を上下方向の広い範囲で融解させながら、蓄熱槽1a,1b,1c内を昇温させて、蓄熱温度範囲まで復帰させることが可能になる。 Furthermore, due to an unforeseen situation, the heat storage tanks 1a, 1b, 1c as a whole have a temperature lower than the heat storage temperature range ( Tmin <T < Tmax ), and the heat storage material 2 placed in the tank inner space 8 is When all of them are in a solid phase, the temperature of the heat storage tanks 1a, 1b, 1c is increased by melting the heat storage material 2 in a wide range in the vertical direction by operating the heater 19 for the side wall. It is possible to return to the range.

次に、蓄熱材2について説明する。   Next, the heat storage material 2 will be described.

蓄熱材2の保有する熱を、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5を用いて放熱させる際、放熱用伝熱管4a,4b,4cの周囲で凝固する蓄熱材2の固相が放熱用伝熱管4a,4b,4cの表面に付着すると、蓄熱材2の固相の存在によって伝熱効率が低下する。   The heat storage material 2 that solidifies around the heat transfer tubes 4a, 4b, 4c for heat dissipation when the heat stored in the heat storage material 2 is dissipated using the heat dissipation heat medium 5 flowing through the heat transfer tubes 4a, 4b, 4c. If the solid phase adheres to the surface of the heat transfer tubes 4a, 4b, 4c for heat radiation, the heat transfer efficiency is lowered due to the presence of the solid phase of the heat storage material 2.

このような伝熱効率の低下に対する対策の研究結果として、特許文献2に示されているように、放熱用伝熱管4a,4b,4cの表面へ蓄熱材2の固相が付着し難くなるようにするためには、蓄熱材2として、蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の2成分混合塩からなるものを用いることが有利であるという知見が得られている。 As a research result of measures against such a decrease in heat transfer efficiency, as shown in Patent Document 2, it is difficult for the solid phase of the heat storage material 2 to adhere to the surfaces of the heat transfer tubes 4a, 4b, 4c for heat radiation. In order to do this, the heat storage material 2 is made of a binary mixed salt of a non-eutectic composition that is in a solid-liquid coexistence state at the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ). Has been found to be advantageous.

たとえば、太陽熱発電等の高温のシステムに適用することを想定する場合、蓄熱システムに所望される蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminは150℃以上、好ましくは200℃以上となる。 For example, when assuming application to a high-temperature system such as solar thermal power generation, the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ) desired for the heat storage system is 150 ° C. or higher, preferably 200 ℃ or more.

そこで、一例として、本実施形態の蓄熱システムにおける蓄熱温度範囲(Tmin<T<Tmax)は、蓄熱最高温度Tmaxが400℃、蓄熱最低温度Tminが250℃に設定される場合の例を以下に示す。 Therefore, as an example, the heat storage temperature range (T min <T <T max ) in the heat storage system of the present embodiment is an example in which the maximum heat storage temperature T max is set to 400 ° C. and the minimum heat storage temperature T min is set to 250 ° C. Is shown below.

この条件に好適な蓄熱材2としては、前記特許文献2に示されている2成分系の混合塩の組み合わせのうち、たとえば、硝酸カリウム(KNO)と硝酸ナトリウム(NaNO)とを、非共晶となる組成で混合した2成分混合塩がある。 As the heat storage material 2 suitable for this condition, for example, potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) are used in combination of the two-component mixed salts shown in Patent Document 2 as non-covalent. There is a binary mixed salt mixed in a composition that forms crystals.

この硝酸カリウムと硝酸ナトリウムの混合物では、硝酸ナトリウムのモル分率が0.49となる組成で共晶となるので、この共晶となる組成以外の組成とし、且つ、蓄熱最低温度Tminである250℃において固液共存状態となるようにする。具体的な組成例としては、硝酸ナトリウムのモル分率が0.786(質量分率が0.755)となる組成のものを、蓄熱材2として用いる例について説明する。 In this mixture of potassium nitrate and sodium nitrate, a eutectic is formed with a composition in which the molar fraction of sodium nitrate is 0.49. Therefore, a composition other than the composition that becomes the eutectic is used, and the heat storage minimum temperature T min is 250. A solid-liquid coexistence state is established at ° C. As a specific composition example, an example in which a composition having a molar fraction of sodium nitrate of 0.786 (mass fraction of 0.755) is used as the heat storage material 2 will be described.

この蓄熱材2は、蓄熱最高温度Tmaxである400℃では、液相のみとなっており、この状態から徐々に冷却されると、274℃で固相が生じる。蓄熱材2は、更に冷却されると、固相の割合が徐々に増加しながら蓄熱最低温度Tminである250℃まで温度低下する。この冷却の際、蓄熱材2は、最も低温となる放熱用伝熱管4a,4b,4cの表面で固相を生じ、その固相が放熱用伝熱管4a,4b,4cの表面に沿って成長するが、固相は放熱用伝熱管4a,4b,4cの表面に付着し難くなっているため、蓄熱材2の流動等によって剥がれ落ちる。なお、蓄熱材2は、蓄熱最低温度Tminである250℃から更に冷却されると、234℃で蓄熱材2全体が固相になる。 The heat storage material 2 is only in the liquid phase at 400 ° C., which is the maximum heat storage temperature T max , and when it is gradually cooled from this state, a solid phase is generated at 274 ° C. When the heat storage material 2 is further cooled, the temperature decreases to 250 ° C., which is the minimum heat storage temperature T min , while the ratio of the solid phase gradually increases. During this cooling, the heat storage material 2 generates a solid phase on the surface of the heat radiating heat transfer tubes 4a, 4b, 4c having the lowest temperature, and the solid phase grows along the surface of the heat radiating heat transfer tubes 4a, 4b, 4c. However, since the solid phase is difficult to adhere to the surfaces of the heat transfer tubes 4a, 4b, and 4c for heat radiation, the solid phase is peeled off by the flow of the heat storage material 2 or the like. In addition, if the heat storage material 2 is further cooled from 250 degreeC which is the heat storage minimum temperature Tmin , the whole heat storage material 2 will be in a solid phase at 234 degreeC.

したがって、この蓄熱材2を用いた蓄熱槽1a,1b,1cは、蓄熱最低温度Tminの250℃から274℃までの温度域では、蓄熱材2の顕熱と、蓄熱材2が固相から融解して液相になるときの潜熱とによって蓄熱が行われ、274℃から蓄熱最高温度Tmaxの400℃の温度域では、蓄熱材2の顕熱によって蓄熱が行われるようになる。 Therefore, the heat storage tanks 1a, 1b, and 1c using the heat storage material 2 have a sensible heat of the heat storage material 2 and the heat storage material 2 from the solid phase in a temperature range from 250 ° C. to 274 ° C. of the minimum heat storage temperature T min. Heat storage is performed by the latent heat when the liquid phase is melted, and heat storage is performed by sensible heat of the heat storage material 2 in a temperature range of 274 ° C. to 400 ° C. from the maximum heat storage temperature T max .

なお、蓄熱材2としては、前記と同様に蓄熱最高温度Tmaxが400℃、蓄熱最低温度Tminが250℃に設定される場合は、前記特許文献2に示されている2成分系の混合塩の組み合わせのうち、たとえば、CsNOとNaNOの混合物、LiNOとNaNOの混合物、NaNOとRbNOの混合物を用いることも可能である。 In addition, as the heat storage material 2, when the maximum heat storage temperature T max is set to 400 ° C. and the minimum heat storage temperature T min is set to 250 ° C. as described above, the two-component mixing shown in Patent Document 2 Of the salt combinations, for example, a mixture of CsNO 3 and NaNO 3, a mixture of LiNO 3 and NaNO 3, and a mixture of NaNO 3 and RbNO 3 can be used.

CsNOとNaNOの混合物を用いる場合は、NaNOのモル分率を0.902(質量分率を0.801)とし、LiNOとNaNOの混合物を用いる場合は、NaNOのモル分率を0.877(質量分率を0.898)とし、NaNOとRbNOの混合物を用いる場合は、RbNOのモル分率を0.105(質量分率を0.169)とすることにより、蓄熱最低温度Tminである250℃において固液共存状態とすることができる。 When a mixture of CsNO 3 and NaNO 3 is used, the molar fraction of NaNO 3 is 0.902 (mass fraction is 0.801), and when a mixture of LiNO 3 and NaNO 3 is used, the molar fraction of NaNO 3 When the ratio is 0.877 (mass fraction is 0.898) and a mixture of NaNO 3 and RbNO 3 is used, the molar fraction of RbNO 3 is 0.105 (mass fraction is 0.169). Thus, a solid-liquid coexistence state can be obtained at 250 ° C., which is the lowest heat storage temperature T min .

更に、蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminが280℃に設定される場合には、蓄熱材2として、前記特許文献2に示されている2成分系の混合塩の組み合わせのうち、LiBrとNaNOの混合物を用いることが可能である。この場合は、NaNOのモル分率を0.964(質量分率を0.963)とすることにより、蓄熱最低温度Tminである280℃において固液共存状態とすることができる。 Further, when the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ) is set to 280 ° C., the heat storage material 2 is a mixture of two components shown in Patent Document 2 above. Of the salt combinations, it is possible to use a mixture of LiBr and NaNO 3 . In this case, by setting the molar fraction of NaNO 3 to 0.964 (mass fraction of 0.963), a solid-liquid coexistence state can be achieved at 280 ° C., which is the lowest heat storage temperature T min .

前記のような非共晶組成の2成分混合塩を蓄熱材2として用いると、放熱用伝熱管4a,4b,4cの周囲で凝固して生じた蓄熱材2の固相は、冷却面となる伝熱面である放熱用伝熱管4a,4b,4cの表面に強く付着せず、容易にはがれ落ちるようになる。   When a binary mixed salt having a non-eutectic composition as described above is used as the heat storage material 2, the solid phase of the heat storage material 2 generated by solidification around the heat transfer tubes 4a, 4b, 4c for heat dissipation becomes a cooling surface. It does not adhere strongly to the surface of the heat transfer tubes 4a, 4b, 4c, which are heat transfer surfaces, and easily comes off.

これは、凝固しはじめる際に冷却面付近の固相率が局所的に大きくなるため、融点が比較的低い液相を形成している溶融塩が、冷却面と固相との間に入り込みながら凝固が進行するためであると考えられ、非共晶の溶融塩の固液共存領域が温度幅をもって存在することに起因すると考えられる。   This is because the solid fraction near the cooling surface increases locally when it begins to solidify, so that the molten salt forming a liquid phase with a relatively low melting point enters between the cooling surface and the solid phase. This is thought to be due to the progress of solidification, and is attributed to the existence of a solid-liquid coexistence region of non-eutectic molten salt with a temperature range.

したがって、本実施形態の蓄熱システムは、蓄熱槽1a,1b,1c内で、蓄熱材2が液相の状態から徐々に固相が増加するように、すなわち、徐々に温度を低下させるように制御を行うことで、固相となった蓄熱材2が放熱用伝熱管4a,4b,4cの表面に固着(密着)することを、抑制することが可能になる。   Therefore, the heat storage system of this embodiment is controlled so that the solid phase gradually increases from the liquid phase state of the heat storage material 2 in the heat storage tanks 1a, 1b, and 1c, that is, the temperature is gradually decreased. It is possible to suppress the heat storage material 2 that has become a solid phase from sticking (adhering) to the surfaces of the heat transfer tubes 4a, 4b, 4c for heat radiation.

各蓄熱槽1a,1b,1cには、蓄熱量測定手段6a,6b,6cとして、たとえば、温度測定器が設けられている。温度の測定個所の数は、単数又は複数のいずれであってもよく、又、温度測定個所の配置は、適宜設定してよい。この場合、試験などを行って、蓄熱量測定手段6a,6b,6cによる温度測定結果と、蓄熱槽1a,1b,1cの蓄熱量との相関を予め求めておくようにすれば、温度測定結果から蓄熱量を測定(推定)することが可能になる。蓄熱量測定手段6a,6b,6cは、温度測定結果を制御装置7に送るようにしてある。   Each heat storage tank 1a, 1b, 1c is provided with, for example, a temperature measuring device as the heat storage amount measuring means 6a, 6b, 6c. The number of temperature measurement points may be either singular or plural, and the arrangement of the temperature measurement points may be set as appropriate. In this case, if a test or the like is performed and the correlation between the temperature measurement results by the heat storage amount measuring means 6a, 6b, 6c and the heat storage amount of the heat storage tanks 1a, 1b, 1c is obtained in advance, the temperature measurement results From this, it is possible to measure (estimate) the amount of heat storage. The heat storage amount measuring means 6 a, 6 b, 6 c are configured to send the temperature measurement result to the control device 7.

制御装置7は、蓄熱量測定手段6a,6b,6cからの入力を基に、図2にフロー図を示す蓄熱処理を行う。   The control device 7 performs heat storage heat treatment shown in a flow chart in FIG. 2 based on inputs from the heat storage amount measuring means 6a, 6b, 6c.

制御装置7には、各蓄熱槽1a,1b,1cが高蓄熱状態であるということの判断基準となる基準値が設定される(ステップS1)。たとえば、制御装置7に蓄熱量測定手段6a,6b,6cから温度測定結果が入力される場合は、この基準値は温度の値によって設定しておくことが、入力値と基準値との比較を容易にできる点で好ましい。なお、各蓄熱槽1a,1b,1cの高蓄熱状態とは、蓄熱最高温度Tmaxとなる蓄熱状態であることが好ましいが、必ずしも蓄熱最高温度Tmaxとなる蓄熱状態に限定されるものではない。 The control device 7 is set with a reference value that is a criterion for determining that each of the heat storage tanks 1a, 1b, and 1c is in a high heat storage state (step S1). For example, when the temperature measurement result is input from the heat storage amount measuring means 6a, 6b, 6c to the control device 7, this reference value may be set according to the temperature value. This compares the input value with the reference value. It is preferable in that it can be easily performed. In addition, although it is preferable that the high heat storage state of each heat storage tank 1a, 1b, 1c is the heat storage state used as the heat storage maximum temperature Tmax , it is not necessarily limited to the heat storage state used as the heat storage maximum temperature Tmax. .

この状態で、制御装置7は、蓄熱処理を開始する(ステップS2)。蓄熱処理を開始すると、制御装置7には、蓄熱量測定手段6a,6b,6cから温度測定結果が入力される(ステップS3)。   In this state, the control device 7 starts heat storage heat treatment (step S2). When the heat storage heat treatment is started, the temperature measurement result is input to the control device 7 from the heat storage amount measuring means 6a, 6b, 6c (step S3).

この入力が行われると、制御装置7は、先ず、放熱用熱媒体流通順序(n=1,2,3)が最後(n=nmax、ここではn=3)の蓄熱槽1cを蓄熱対象に選定し(ステップS4)、この蓄熱対象とされた蓄熱槽1cについて、蓄熱量測定手段6cから入力される温度測定結果を設定された基準値と比較して、高蓄熱状態であるか否かを判断する(ステップS5)。 When this input is performed, the control device 7 first stores the heat storage tank 1c in the heat dissipation tank 1c whose heat dissipation heat medium distribution order (n = 1, 2, 3) is last (n = n max , here n = 3) as a heat storage target. (Step S4), whether or not the heat storage tank 1c that is the target of heat storage is in a high heat storage state by comparing the temperature measurement result input from the heat storage amount measuring means 6c with a set reference value Is determined (step S5).

ステップS5にて、蓄熱槽1cについての温度測定結果が基準値に達しておらず、蓄熱槽1cが高蓄熱状態ではないと判断される場合は、制御装置7は、ステップS6に進み、その時点で蓄熱対象となっている蓄熱槽1cへの蓄熱を実施する。具体的には、制御装置7は、通常はすべて閉状態とされている開閉弁13a,13b,13cについて、図3(a)に示すように、蓄熱槽1cの開閉弁13cのみを開操作する。なお、図3(a)(b)(c)では、図示する便宜上、開操作された開閉弁13cは白抜きで示し、閉状態の開閉弁13a,13bは黒塗りで示してある(図4(a)(b)(c)も同様)。   In step S5, when the temperature measurement result for the heat storage tank 1c does not reach the reference value and it is determined that the heat storage tank 1c is not in the high heat storage state, the control device 7 proceeds to step S6, at which time The heat storage to the heat storage tank 1c that is the target of heat storage is performed. Specifically, the control device 7 opens only the on-off valve 13c of the heat storage tank 1c as shown in FIG. 3A for the on-off valves 13a, 13b, 13c that are normally all closed. . In FIGS. 3A, 3B, and 3C, for convenience of illustration, the open / close valve 13c that has been opened is shown in white, and the open / close valves 13a and 13b in the closed state are shown in black (FIG. 4). The same applies to (a), (b) and (c).

これにより、蓄熱槽1cでは、加熱用熱媒体供給ライン12を通して導かれる加熱用熱媒体11が、熱媒体流路10に流通するようになるため、加熱手段3cによる蓄熱材2の加熱が行われて、蓄熱槽1cへの蓄熱が開始される。   As a result, in the heat storage tank 1c, the heating heat medium 11 guided through the heating heat medium supply line 12 flows through the heat medium flow path 10, so that the heat storage material 2 is heated by the heating means 3c. Thus, heat storage in the heat storage tank 1c is started.

制御装置7は、ステップS6にて蓄熱対象の蓄熱槽1cへの蓄熱を開始すると、ステップS5へ戻り、蓄熱槽1cが高蓄熱状態であると判断されるようになるまで、ステップS5とステップS6の処理ループを順次繰り返して、蓄熱槽1cへの蓄熱を行う。   If the control apparatus 7 starts the heat storage to the heat storage tank 1c of heat storage object in step S6, it will return to step S5 and will be step S5 and step S6 until it is judged that the heat storage tank 1c is a high heat storage state. These processing loops are sequentially repeated to store heat in the heat storage tank 1c.

一方、制御装置7は、ステップS4からステップS5に最初に進んだ時点で蓄熱槽1cが高蓄熱状態であると判断された場合、又は、ステップS6による蓄熱処理の結果、ステップS5で蓄熱槽1cが高蓄熱状態であると判断されるようになった場合は、ステップS7に進む。この際、ステップS6による蓄熱処理が行われていた場合は、制御装置7は、蓄熱槽1cの開閉弁13cを閉操作して、蓄熱槽1cの蓄熱処理は停止する。   On the other hand, when it is determined that the heat storage tank 1c is in the high heat storage state when the control device 7 first proceeds from step S4 to step S5, or as a result of the heat storage heat treatment in step S6, the heat storage tank 1c is determined in step S5. When it is determined that is in a high heat storage state, the process proceeds to step S7. At this time, if the heat storage heat treatment in step S6 has been performed, the control device 7 closes the on-off valve 13c of the heat storage tank 1c and stops the heat storage heat treatment of the heat storage tank 1c.

ステップS7では、制御装置7は、その時点で蓄熱対象とされている蓄熱槽1cが、放熱用熱媒体流通順序が最初(n=1)の蓄熱槽であるか否か、すなわち、本実施形態では蓄熱槽1aであるか否かを判断し、蓄熱対象が放熱用熱媒体流通順序が最初の蓄熱槽1aでない場合は、ステップS8に進む。   In step S7, the control device 7 determines whether or not the heat storage tank 1c that is the target of heat storage at that time is the first (n = 1) heat storage tank in the heat-dissipation heat medium distribution sequence, that is, the present embodiment. Then, it is determined whether or not it is the heat storage tank 1a, and if the heat storage target is not the first heat storage tank 1a in the heat-dissipation heat medium distribution sequence, the process proceeds to step S8.

ステップS8では、制御装置7は、蓄熱対象として、放熱用熱媒体流通順序が一つ前(n=n−1)の蓄熱槽1bを選定する更新を行い、その後、ステップS5へ戻る。   In step S8, the control device 7 performs an update for selecting the heat storage tank 1b whose heat dissipation heat medium circulation order is one previous (n = n−1) as the heat storage target, and then returns to step S5.

これにより、新たに蓄熱対象とされた蓄熱槽1bについて、前述したステップS5以降の処理が、蓄熱槽1cの場合と同様に開始される。なお、このように蓄熱槽1bが蓄熱対象となるときには、放熱用熱媒体流通順序が後の蓄熱槽1cが高蓄熱状態となっている。   Thereby, about the heat storage tank 1b newly made into the heat storage object, the process after step S5 mentioned above is started similarly to the case of the heat storage tank 1c. In addition, when the heat storage tank 1b becomes a heat storage object in this way, the heat storage tank 1c after the heat medium circulation sequence for heat radiation is in a high heat storage state.

ステップS5において、蓄熱量測定手段6bから入力される温度測定結果が基準値に達しておらず、蓄熱槽1bが高蓄熱状態ではないと判断される場合は、制御装置7は、ステップS6に進み、蓄熱槽1bへの蓄熱を実施する。具体的には、制御装置7は、図3(b)に示すように、蓄熱槽1bの開閉弁13bのみを開操作する。これにより、蓄熱槽1bでは、加熱用熱媒体供給ライン12を通して導かれる加熱用熱媒体11が、熱媒体流路10に流通するようになるため、加熱手段3bによる蓄熱材2の加熱が行われて、蓄熱槽1bへの蓄熱が開始される。   In step S5, when the temperature measurement result input from the heat storage amount measuring unit 6b does not reach the reference value and it is determined that the heat storage tank 1b is not in the high heat storage state, the control device 7 proceeds to step S6. The heat storage to the heat storage tank 1b is carried out. Specifically, as shown in FIG. 3B, the control device 7 opens only the on-off valve 13b of the heat storage tank 1b. As a result, in the heat storage tank 1b, the heating heat medium 11 guided through the heating heat medium supply line 12 flows through the heat medium flow path 10, so that the heat storage material 2 is heated by the heating means 3b. Thus, heat storage in the heat storage tank 1b is started.

制御装置7は、ステップS6にて蓄熱対象の蓄熱槽1bへの蓄熱を開始すると、ステップS5へ戻り、蓄熱槽1bが高蓄熱状態であると判断されるようになるまで、ステップS5とステップS6の処理ループを順次繰り返して、蓄熱槽1bへの蓄熱を行う。   If the control apparatus 7 starts the heat storage to the heat storage tank 1b of heat storage object in step S6, it will return to step S5, and until it will be judged that the heat storage tank 1b is a high heat storage state, step S5 and step S6 These processing loops are sequentially repeated to store heat in the heat storage tank 1b.

一方、制御装置7は、蓄熱槽1bが蓄熱対象とされた後にステップS5に最初に進んだ時点、あるいは、ステップS6による蓄熱処理の結果のいずれであっても、ステップS5にて、蓄熱槽1bが高蓄熱状態であると判断された場合は、ステップS7に進む。この際、ステップS6による蓄熱処理が行われていた場合は、制御装置7は、蓄熱槽1bの開閉弁13bを閉操作して、蓄熱槽1bの蓄熱処理は停止する。   On the other hand, the control device 7 determines whether the heat storage tank 1b is the heat storage tank 1b at step S5, either at the time when the heat storage tank 1b is first subjected to heat storage or when the process first proceeds to step S5 or as a result of the heat storage heat treatment at step S6. If it is determined that is in a high heat storage state, the process proceeds to step S7. At this time, if the heat storage heat treatment in step S6 has been performed, the control device 7 closes the on-off valve 13b of the heat storage tank 1b and stops the heat storage heat treatment of the heat storage tank 1b.

制御装置7は、ステップS7では、その時点で蓄熱対象とされている蓄熱槽1bが、放熱用熱媒体流通順序が最初(n=1)の蓄熱槽1aではないと判断されるために、ステップS8に進む。   In step S7, the control device 7 determines that the heat storage tank 1b that is the heat storage target at that time is not the first (n = 1) heat storage tank 1a in the heat-dissipation heat medium distribution sequence. Proceed to S8.

ステップS8では、制御装置7は、蓄熱対象として、放熱用熱媒体流通順序が一つ前(n=n−1)の蓄熱槽1aを選定する更新を行い、その後、ステップS5へ戻る。   In step S8, the control apparatus 7 performs the update which selects the heat storage tank 1a with the heat | fever heat-distribution heat | fever distribution order one previous (n = n-1) as heat storage object, and returns to step S5 after that.

これにより、新たに蓄熱対象とされた蓄熱槽1aについて、前述したステップS5以降の処理が、蓄熱槽1bの場合と同様に開始される。なお、この蓄熱槽1aが蓄熱対象となるときには、放熱用熱媒体流通順序が後の各蓄熱槽1b,1cが高蓄熱状態となっている。   Thereby, about the heat storage tank 1a newly made into the heat storage object, the process after step S5 mentioned above is started similarly to the case of the heat storage tank 1b. In addition, when this heat storage tank 1a becomes heat storage object, each heat storage tank 1b, 1c after the heat medium circulation sequence for thermal radiation is a high heat storage state.

ステップS5において、蓄熱量測定手段6aから入力される温度測定結果が基準値に達しておらず、蓄熱槽1aが高蓄熱状態ではないと判断される場合は、制御装置7は、ステップS6に進み、蓄熱槽1aへの蓄熱を実施する。具体的には、制御装置7は、図3(c)に示すように、蓄熱槽1aの開閉弁13aのみを開操作する。これにより、蓄熱槽1aでは、加熱用熱媒体供給ライン12を通して導かれる加熱用熱媒体11が、熱媒体流路10に流通するようになるため、加熱手段3aによる蓄熱材2の加熱が行われて、蓄熱槽1aへの蓄熱が開始される。   In step S5, when the temperature measurement result input from the heat storage amount measuring means 6a does not reach the reference value and it is determined that the heat storage tank 1a is not in the high heat storage state, the control device 7 proceeds to step S6. The heat storage to the heat storage tank 1a is carried out. Specifically, as shown in FIG. 3C, the control device 7 opens only the on-off valve 13a of the heat storage tank 1a. As a result, in the heat storage tank 1a, the heating heat medium 11 guided through the heating heat medium supply line 12 flows through the heat medium flow path 10, so that the heat storage material 2 is heated by the heating means 3a. Thus, heat storage in the heat storage tank 1a is started.

制御装置7は、ステップS6にて蓄熱対象の蓄熱槽1bへの蓄熱を開始すると、ステップS5へ戻り、蓄熱槽1aが高蓄熱状態であると判断されるようになるまで、ステップS5とステップS6の処理ループを順次繰り返して、蓄熱槽1aへの蓄熱を行う。   If the control apparatus 7 starts the heat storage to the heat storage tank 1b of heat storage object in step S6, it will return to step S5 and will be step S5 and step S6 until it is judged that the heat storage tank 1a is a high heat storage state. These processing loops are sequentially repeated to store heat in the heat storage tank 1a.

一方、制御装置7は、蓄熱槽1aが蓄熱対象とされた後にステップS5に最初に進んだ時点、あるいは、ステップS6による蓄熱処理の結果のいずれであっても、ステップS5にて、蓄熱対象とされた蓄熱槽1aが高蓄熱状態であると判断された場合は、ステップS7に進む。この際、ステップS6による蓄熱処理が行われていた場合は、制御装置7は、蓄熱槽1aの開閉弁13aを閉操作して、蓄熱槽1aの蓄熱処理は停止する。   On the other hand, the control device 7 determines whether the heat storage tank 1a is the heat storage target at step S5, or the result of the heat storage heat treatment in step S6. If it is determined that the heat storage tank 1a is in the high heat storage state, the process proceeds to step S7. At this time, if the heat storage heat treatment in step S6 has been performed, the control device 7 closes the on-off valve 13a of the heat storage tank 1a and stops the heat storage heat treatment of the heat storage tank 1a.

制御装置7は、ステップS7では、その時点で蓄熱対象とされている蓄熱槽1aが、放熱用熱媒体流通順序が最初(n=1)の蓄熱槽1aであると判断される。この場合、放熱用熱媒体流通順序が最後から最初までのすべての蓄熱槽1a,1b,1cが高蓄熱状態になっているので、制御装置7は、ステップS9に進んで、蓄熱処理を終了する。   In step S <b> 7, the control device 7 determines that the heat storage tank 1 a that is a heat storage target at that time is the first heat storage tank 1 a in the heat dissipation heat medium distribution sequence (n = 1). In this case, since all the heat storage tanks 1a, 1b, 1c in the heat dissipation heat medium distribution sequence from the last to the first are in the high heat storage state, the control device 7 proceeds to step S9 and ends the heat storage heat treatment. .

更に、制御装置7は、図2にフロー図を示した蓄熱処理のいずれの時点であっても、各蓄熱槽1a,1b,1cからの放熱を行う場合は、放熱開始の時点で蓄熱処理を中断する機能を備えている。その後、各蓄熱槽1a,1b,1cへの蓄熱処理を再開する場合は、制御装置7は、図2のステップS2以降の処理を行う機能を備えている。   Furthermore, the control device 7 performs heat storage heat treatment at the start of heat dissipation when performing heat dissipation from each of the heat storage tanks 1a, 1b, and 1c at any time of heat storage heat treatment shown in the flowchart of FIG. Has the ability to interrupt. Then, when restarting the thermal storage heat processing to each thermal storage tank 1a, 1b, 1c, the control apparatus 7 is provided with the function to perform the process after step S2 of FIG.

これにより、本実施形態の蓄熱システムでは、放熱用伝熱管4a,4b,4cが直列に接続された複数の蓄熱槽1a,1b,1cに蓄熱を行うときには、各蓄熱槽1a,1b,1cの蓄熱量にばらつきが生じていても、必ず、放熱用熱媒体流通順序が最後の蓄熱槽1cから、放熱用熱媒体流通順序とは逆の順序に従って、1台ずつ高蓄熱状態となるまでの蓄熱が行われる。   Thereby, in the heat storage system of this embodiment, when heat storage is performed on the plurality of heat storage tanks 1a, 1b, 1c to which the heat transfer tubes 4a, 4b, 4c are connected in series, the heat storage tanks 1a, 1b, 1c Even if the amount of heat storage varies, the heat storage from the last heat storage tank 1c in the heat dissipation heat medium distribution order to the high heat storage state one by one according to the reverse order of the heat dissipation heat medium distribution order. Is done.

次に、前述のように蓄熱量が制御装置によって統合して制御される複数の蓄熱槽1a,1b,1cから放熱を行う場合について図4(a)(b)(c)を用いて説明する。なお、図4(a)(b)(c)では、制御装置7の記載は省略してある。   Next, the case where heat is dissipated from the plurality of heat storage tanks 1a, 1b, 1c whose heat storage amount is integrated and controlled by the control device as described above will be described with reference to FIGS. . In addition, description of the control apparatus 7 is abbreviate | omitted in FIG. 4 (a) (b) (c).

先ず、各蓄熱槽1a,1b,1cが高蓄熱状態で、たとえば、図4(a)に示すように、各蓄熱槽1a,1b,1cが蓄熱最高温度Tmaxである400℃の場合は、各蓄熱槽1a,1b,1cにおける蓄熱材2は、ほとんど液相になっている。この状態で、放熱用熱媒体供給ライン16から、たとえば、200℃の放熱用熱媒体5を放熱用伝熱管4a,4b,4cに供給すると、放熱用熱媒体流通順序が最初の蓄熱槽1aでは、放熱用熱媒体5の温度が蓄熱材2の温度に比して低いために、両者の温度差の大きさに応じて、蓄熱材2から放熱用熱媒体5への放熱が進む。これにより、放熱用伝熱管4aを通過した放熱用熱媒体5は、蓄熱槽1aの400℃という高い温度の蓄熱材2との熱交換によって、たとえば、350℃まで加熱される。この際、蓄熱槽1aでは、放熱用伝熱管4aの表面で、放熱用熱媒体5との熱交換によって蓄熱材2が部分的に274℃以下に温度低下すると、固相が生じ、その固相は液相中を沈降する。 First, when each heat storage tank 1a, 1b, 1c is a high heat storage state, for example, as shown to Fig.4 (a), when each heat storage tank 1a, 1b, 1c is 400 degreeC which is the heat storage maximum temperature Tmax , The heat storage material 2 in each heat storage tank 1a, 1b, 1c is almost in a liquid phase. In this state, for example, when the heat-radiating heat medium 5 at 200 ° C. is supplied from the heat-dissipating heat medium supply line 16 to the heat-dissipating heat transfer tubes 4a, 4b, 4c, the heat-dissipating heat medium distribution sequence is the first heat storage tank 1a. Since the temperature of the heat dissipation heat medium 5 is lower than the temperature of the heat storage material 2, heat dissipation from the heat storage material 2 to the heat dissipation heat medium 5 proceeds according to the magnitude of the temperature difference between the two. Thereby, the heat-dissipating heat medium 5 that has passed through the heat-dissipating heat transfer tube 4a is heated to, for example, 350 ° C. by heat exchange with the heat storage material 2 having a high temperature of 400 ° C. in the heat storage tank 1a. At this time, in the heat storage tank 1a, when the temperature of the heat storage material 2 is partially lowered to 274 ° C. or less by heat exchange with the heat radiating heat medium 5 on the surface of the heat radiating heat transfer tube 4a, a solid phase is generated. Settles in the liquid phase.

放熱用伝熱管4aを通過した放熱用熱媒体5は、その後、放熱用熱媒体流通順序が後の蓄熱槽1b,1cの放熱用伝熱管4b,4cに順次供給される。この際、放熱用熱媒体5は、蓄熱槽1aで既に350℃という高い温度まで加熱されている。そのため、蓄熱槽1b,1cでは、放熱用熱媒体5の温度と蓄熱材2の温度との温度差が小さくなるので、蓄熱材2から放熱用熱媒体5に対する放熱の進行は抑えられ、よって、蓄熱槽1b,1cでは蓄熱材2の温度低下が抑えられる。   The heat-dissipating heat medium 5 that has passed through the heat-dissipating heat transfer pipe 4a is then sequentially supplied to the heat-dissipating heat transfer pipes 4b and 4c of the heat storage tanks 1b and 1c, which are later in the heat-dissipating heat medium distribution sequence. At this time, the heat dissipation heat medium 5 is already heated to a high temperature of 350 ° C. in the heat storage tank 1a. Therefore, in the heat storage tanks 1b and 1c, since the temperature difference between the temperature of the heat dissipation heat medium 5 and the temperature of the heat storage material 2 is reduced, the progress of heat dissipation from the heat storage material 2 to the heat dissipation heat medium 5 is suppressed. In the heat storage tanks 1b and 1c, the temperature drop of the heat storage material 2 is suppressed.

その後、放熱用熱媒体5の供給を継続して行うと、蓄熱槽1aでは、蓄熱材2の温度が次第に下がり、274℃以下になると、図4(b)に示すように、蓄熱材2の固相が次第に増加して堆積する。この状態では、蓄熱槽1aの放熱用伝熱管4aを流通する放熱用熱媒体5は、蓄熱槽1aで蓄熱材2との熱交換により加熱されるとしても、その温度は274℃以上にはならない。図4(b)では、たとえば、蓄熱槽1aの蓄熱材2の温度が270℃、放熱用伝熱管4aを流通した後の放熱用熱媒体5が230℃となる状態を示している。   Then, if supply of the heat-dissipating heat medium 5 is continued, in the heat storage tank 1a, when the temperature of the heat storage material 2 gradually decreases to 274 ° C. or less, as shown in FIG. The solid phase gradually increases and deposits. In this state, even if the heat-dissipating heat medium 5 flowing through the heat-dissipating heat transfer pipe 4a of the heat storage tank 1a is heated by heat exchange with the heat storage material 2 in the heat storage tank 1a, the temperature does not exceed 274 ° C. . FIG. 4B shows a state in which, for example, the temperature of the heat storage material 2 in the heat storage tank 1a is 270 ° C., and the heat dissipation heat medium 5 after passing through the heat transfer heat transfer tube 4a is 230 ° C.

この場合、蓄熱槽1bの蓄熱材2は400℃からの温度低下が抑えられているため、放熱用伝熱管4bに供給される放熱用熱媒体5と、蓄熱槽1bの蓄熱材2の温度との温度差が大きくなる。そのため、この状態では、放熱用熱媒体5は、放熱用伝熱管4bを通過するときに、蓄熱槽1bの400℃という高い温度の蓄熱材2との熱交換が行われて、たとえば、350℃まで加熱される。この際、蓄熱槽1bでは、放熱用伝熱管4bの表面で、放熱用熱媒体5との熱交換によって蓄熱材2が部分的に274℃以下に温度低下すると、固相が生じ、その固相は液相中を沈降する。   In this case, the temperature of the heat storage material 2 in the heat storage tank 1b is suppressed from 400 ° C. Therefore, the heat dissipation heat medium 5 supplied to the heat transfer heat transfer pipe 4b and the temperature of the heat storage material 2 in the heat storage tank 1b The temperature difference increases. Therefore, in this state, when the heat radiating heat medium 5 passes through the heat radiating heat transfer tube 4b, heat exchange with the heat storage material 2 having a high temperature of 400 ° C. in the heat storage tank 1b is performed. Until heated. At this time, in the heat storage tank 1b, when the temperature of the heat storage material 2 is partially lowered to 274 ° C. or less by heat exchange with the heat radiating heat medium 5 on the surface of the heat radiating heat transfer tube 4b, a solid phase is generated. Settles in the liquid phase.

放熱用伝熱管4bを通過した放熱用熱媒体5は、その後、放熱用熱媒体流通順序が次の蓄熱槽1cの放熱用伝熱管4cに供給される。この際、放熱用熱媒体5は、蓄熱槽1bを通過した時点で既に350℃という高い温度まで加熱されている。そのため、蓄熱槽1cでは、放熱用熱媒体5の温度と蓄熱材2の温度との温度差が小さくなるので、蓄熱材2から放熱用熱媒体5に対する放熱の進行は抑えられ、よって、蓄熱槽1cでは蓄熱材2の温度低下が抑えられる。   The heat-dissipating heat medium 5 that has passed through the heat-dissipating heat transfer tube 4b is then supplied to the heat-dissipating heat transfer tube 4c of the heat storage tank 1c in the next heat-dissipating heat medium distribution sequence. At this time, the heat-dissipating heat medium 5 is already heated to a high temperature of 350 ° C. when it passes through the heat storage tank 1b. For this reason, in the heat storage tank 1c, the temperature difference between the temperature of the heat dissipation heat medium 5 and the temperature of the heat storage material 2 is reduced, so that the progress of heat dissipation from the heat storage material 2 to the heat dissipation heat medium 5 is suppressed. In 1c, the temperature drop of the heat storage material 2 is suppressed.

放熱用熱媒体5の供給を更に継続して行うと、蓄熱槽1aは、蓄熱材2の温度が更に下がり、図4(c)に示すように、固相率が増大する。又、蓄熱槽1bでは、蓄熱材2の温度が次第に下がり、274℃以下になると、図4(c)に示すように、蓄熱材2の固相が次第に増加して堆積する。この状態では、蓄熱槽1aの放熱用伝熱管4aを流通する放熱用熱媒体5は、蓄熱槽1aで蓄熱材2との熱交換により加熱されるとしても、その温度は274℃以上にはならない。図4(c)では、たとえば、蓄熱槽1aの蓄熱材2の温度が250℃、放熱用伝熱管4aを流通した後の放熱用熱媒体5が220℃、蓄熱槽1bの蓄熱材2の温度が270℃、放熱用伝熱管4bを流通した後の放熱用熱媒体5が250℃となる状態を示してある。   When the supply of the heat radiating heat medium 5 is further continued, the temperature of the heat storage material 2 further decreases in the heat storage tank 1a, and the solid phase ratio increases as shown in FIG. Further, in the heat storage tank 1b, when the temperature of the heat storage material 2 gradually decreases to 274 ° C. or lower, the solid phase of the heat storage material 2 gradually increases and accumulates as shown in FIG. In this state, even if the heat-dissipating heat medium 5 flowing through the heat-dissipating heat transfer pipe 4a of the heat storage tank 1a is heated by heat exchange with the heat storage material 2 in the heat storage tank 1a, the temperature does not exceed 274 ° C. . In FIG. 4C, for example, the temperature of the heat storage material 2 in the heat storage tank 1a is 250 ° C., the heat dissipation heat medium 5 after flowing through the heat transfer tube 4a is 220 ° C., and the temperature of the heat storage material 2 in the heat storage tank 1b. Shows a state in which the heat-dissipating heat medium 5 after flowing through the heat-dissipating heat transfer tube 4b reaches 250 ° C.

この場合であっても、蓄熱槽1cの蓄熱材2は400℃からの温度低下が抑えられているため、蓄熱槽1cの放熱用伝熱管4cに供給される放熱用熱媒体5と、蓄熱槽1cの蓄熱材2の温度との温度差が大きくなる。そのため、この状態では、放熱用熱媒体5は、放熱用伝熱管4cを通過するときに、蓄熱槽1cの400℃という高い温度の蓄熱材2との熱交換が行われて、たとえば、350℃まで加熱される。この際、蓄熱槽1cでは、放熱用伝熱管4cの表面で、放熱用熱媒体5との熱交換によって蓄熱材2が部分的に274℃以下に温度低下すると、固相が生じ、その固相は液相中を沈降する。   Even in this case, the heat storage material 2 of the heat storage tank 1c is suppressed from lowering the temperature from 400 ° C., so the heat dissipation heat medium 5 supplied to the heat transfer heat transfer pipe 4c of the heat storage tank 1c and the heat storage tank The temperature difference with the temperature of the heat storage material 2 of 1c becomes large. Therefore, in this state, when the heat radiating heat medium 5 passes through the heat radiating heat transfer tube 4c, heat exchange with the heat storage material 2 having a high temperature of 400 ° C. in the heat storage tank 1c is performed. Until heated. At this time, in the heat storage tank 1c, when the temperature of the heat storage material 2 is partially lowered to 274 ° C. or less by heat exchange with the heat radiating heat medium 5 on the surface of the heat radiating heat transfer tube 4c, a solid phase is generated. Settles in the liquid phase.

このように、本実施形態の蓄熱システムによれば、複数の蓄熱槽1a,1b,1cのうち、放熱用熱媒体5と蓄熱材2との熱交換による放熱が主として行われる蓄熱槽1a,1b,1cを放熱用熱媒体流通順序が最初のものから順に変えることができる。したがって、放熱用熱媒体流通順序が最後の蓄熱槽1cには、放熱用熱媒体流通順序がより前の蓄熱槽1aや蓄熱槽1bで加熱又は予熱された放熱用熱媒体5が供給されるため、蓄熱槽1cは、長時間に亘り、蓄熱材2の放熱を抑えることができて、蓄熱材2の温度が高い高蓄熱状態を保持することができる。   Thus, according to the heat storage system of the present embodiment, among the plurality of heat storage tanks 1a, 1b, 1c, the heat storage tanks 1a, 1b in which heat dissipation is mainly performed by heat exchange between the heat dissipation heat medium 5 and the heat storage material 2. , 1c can be changed in order from the first in order of circulation of the heat-dissipating heat medium. Therefore, since the heat storage tank 1c having the last heat-sink distribution sequence is supplied with the heat-sink tank 5a heated or preheated in the heat storage tank 1a or the heat storage tank 1b in the earlier heat-sink distribution order. The heat storage tank 1c can suppress heat radiation of the heat storage material 2 over a long period of time, and can maintain a high heat storage state in which the temperature of the heat storage material 2 is high.

しかも、前述したように、本実施形態の蓄熱システムは、前述した蓄熱槽1a,1b,1cからの放熱処理の任意の時点で蓄熱処理を開始するときには、放熱用熱媒体流通順序が最後の蓄熱槽1cから順に、高蓄熱状態になるまでの蓄熱を行う。このことからも、放熱用熱媒体流通順序が最後の蓄熱槽1cは、蓄熱材2の温度が高い高蓄熱状態を長時間に亘り維持することができる。   Moreover, as described above, when the heat storage system of the present embodiment starts the heat storage heat treatment at an arbitrary time of the heat dissipation treatment from the heat storage tanks 1a, 1b, 1c, the heat storage circulation sequence for heat dissipation is the last heat storage. In order from the tank 1c, heat storage is performed until a high heat storage state is reached. Also from this, the heat storage tank 1c with the last heat medium distribution sequence for heat dissipation can maintain the high heat storage state where the temperature of the heat storage material 2 is high for a long time.

したがって、本実施形態の蓄熱システムによれば、複数の蓄熱槽1a,1b,1cの蓄熱材2と熱交換して最終的に取り出される放熱用熱媒体5の温度を、長時間に亘り高温化を図ることができる。   Therefore, according to the heat storage system of the present embodiment, the temperature of the heat-dissipating heat medium 5 that is finally taken out by heat exchange with the heat storage material 2 of the plurality of heat storage tanks 1a, 1b, 1c is increased over a long period of time. Can be achieved.

又、本実施形態の蓄熱システムは、蓄熱槽1a,1b,1cの蓄熱材2の蓄熱のための加熱を行う熱源として、加熱用熱媒体11を用いるようにしてある。このため、本実施形態の蓄熱システムは、自然エネルギーを利用した発電設備のうち、太陽熱発電のように、自然エネルギーを利用して高温の熱を得る形式の発電設備に適用するのに好適なものとすることができる。   Moreover, the heat storage system of this embodiment uses the heating heat medium 11 as a heat source for heating for heat storage of the heat storage material 2 of the heat storage tanks 1a, 1b, 1c. For this reason, the heat storage system of this embodiment is suitable for application to a power generation facility that uses natural energy to obtain high-temperature heat, such as solar thermal power generation, among power generation facilities that use natural energy. It can be.

[第2実施形態]
図5は蓄熱システムの第2実施形態を示す概略切断側面図である。
[Second Embodiment]
FIG. 5 is a schematic cut side view showing a second embodiment of the heat storage system.

なお、図5において、図1に示したものと同一のものには同一符号を付して、その説明を省略する。   5 that are the same as those shown in FIG. 1 are marked with the same symbols and descriptions of them will be omitted.

本実施形態の蓄熱システムは、図5に示すように、図1に示したと同様の構成において、各蓄熱槽1a,1b,1cの加熱手段3a,3b,3cを、加熱用熱媒体11を熱源として用いる構成に代えて、電気ヒータ20a,20b,20cを熱源として用いる構成としたものである。   As shown in FIG. 5, the heat storage system of the present embodiment has the same configuration as that shown in FIG. 1, the heating means 3 a, 3 b, 3 c of the heat storage tanks 1 a, 1 b, 1 c and the heating medium 11 as a heat source. Instead of the structure used as the electric heater, the electric heaters 20a, 20b, and 20c are used as the heat source.

そのために、本実施形態における各蓄熱槽1a,1b,1cの加熱手段3a,3b,3cは、槽内空間8の底部に設けられたプレート部材9の下側に、電気ヒータ20a,20b,20cを備えている。電気ヒータ20a,20b,20cは、給電と給電停止とを個別に操作可能な電源装置21に接続されている。   For this purpose, the heating means 3a, 3b, 3c of the heat storage tanks 1a, 1b, 1c in the present embodiment are disposed below the plate member 9 provided at the bottom of the tank internal space 8, and the electric heaters 20a, 20b, 20c. It has. The electric heaters 20a, 20b, and 20c are connected to a power supply device 21 that can individually operate power supply and power supply stop.

更に、制御装置7は、電源装置21の制御を行う機能を備えている。   Further, the control device 7 has a function of controlling the power supply device 21.

具体的には、制御装置7は、図2にフロー図を示した処理手順と同様の処理手順により蓄熱槽1a,1b,1cの蓄熱処理を行うときに、ステップS6での処理のみが、以下のように変更されている。   Specifically, when the control device 7 performs heat storage heat treatment of the heat storage tanks 1a, 1b, and 1c according to the processing procedure similar to the processing procedure shown in the flowchart of FIG. 2, only the processing in step S6 is as follows. Has been changed.

すなわち、本実施形態では、制御装置7は、ステップS6で、その時点で蓄熱対象に選定されている蓄熱槽1c、蓄熱槽1b又は蓄熱槽1aに蓄熱を実施するときに、電源装置21を制御して、蓄熱対象の蓄熱槽1c、蓄熱槽1b又は蓄熱槽1aの電気ヒータ20c、電気ヒータ20b又は電気ヒータ20aにのみ給電を行う機能を備えている。   That is, in this embodiment, the control device 7 controls the power supply device 21 when performing heat storage in the heat storage tank 1c, the heat storage tank 1b, or the heat storage tank 1a currently selected as the heat storage object in step S6. And it has the function to supply electric power only to the electric heater 20c, the electric heater 20b, or the electric heater 20a of the heat storage tank 1c, the heat storage tank 1b, or the heat storage tank 1a to be stored.

そのため、本実施形態の蓄熱システムによっても、蓄熱処理を行う場合は、第1実施形態と同様に、放熱用伝熱管4a,4b,4cが直列に接続された複数の蓄熱槽1a,1b,1cについて、放熱用熱媒体流通順序が最後の蓄熱槽1cから、放熱用熱媒体流通順序とは逆の順序に従って、1台ずつ高蓄熱状態となるまでの蓄熱を行うことができる。   Therefore, also by the heat storage system of this embodiment, when performing heat storage heat processing, similarly to 1st Embodiment, the several heat storage tank 1a, 1b, 1c to which the heat exchanger tube 4a, 4b, 4c for heat radiation was connected in series was carried out. The heat storage from the last heat storage tank 1c in the heat dissipation heat medium distribution order to the high heat storage state can be performed one by one in accordance with the reverse order of the heat dissipation heat medium distribution order.

本実施形態の蓄熱システムによる放熱処理は、第1実施形態と同様である。   The heat radiation process by the heat storage system of this embodiment is the same as that of 1st Embodiment.

したがって、本実施形態の蓄熱システムによれば、放熱用熱媒体流通順序が最後の蓄熱槽1cは、長時間に亘り、蓄熱材2の放熱を抑えることができて、蓄熱材2の温度が高い高蓄熱状態を保持することができる。よって、本実施形態の蓄熱システムによっても、第1実施形態と同様に、複数の蓄熱槽1a,1b,1cの蓄熱材2と熱交換して最終的に取り出される放熱用熱媒体5の温度を、長時間に亘り高温化を図ることができる。   Therefore, according to the heat storage system of the present embodiment, the heat storage tank 1c with the last heat medium distribution sequence for heat dissipation can suppress heat dissipation of the heat storage material 2 over a long period of time, and the temperature of the heat storage material 2 is high. A high heat storage state can be maintained. Therefore, also by the heat storage system of this embodiment, the temperature of the heat-dissipating heat medium 5 that is finally taken out by exchanging heat with the heat storage material 2 of the plurality of heat storage tanks 1a, 1b, and 1c as in the first embodiment. The temperature can be increased for a long time.

又、本実施形態の蓄熱システムは、蓄熱槽1a,1b,1cの蓄熱材2の蓄熱のための加熱を行う熱源として、電気ヒータ20a,20b,20cを用いるようにしてある。このため、本実施形態の蓄熱システムは、自然エネルギーを利用した発電設備のうち、太陽光発電や風力発電のように、自然エネルギーを利用して電気を直接発生させる形式の発電設備に適用するのに好適なものとすることができる。   Moreover, the heat storage system of this embodiment uses the electric heaters 20a, 20b, and 20c as a heat source for heating for heat storage of the heat storage material 2 of the heat storage tanks 1a, 1b, and 1c. For this reason, the heat storage system of this embodiment is applied to a power generation facility that directly generates electricity using natural energy, such as solar power generation or wind power generation, among power generation facilities using natural energy. It can be made suitable for.

なお、前記各実施形態の蓄熱システムは、蓄熱槽1a,1b,1cに、放熱用伝熱管4a,4b,4cの表面に付着する固相の蓄熱材2を剥落させるための固相剥落手段として、特許文献2に示されたと同様の固相剥落手段を備える構成としてもよい。固相剥落手段は、たとえば、循環ポンプで液相の蓄熱材2を流動させることで、固相となった蓄熱材2を放熱用伝熱管4a,4b,4cの表面から剥落させる形式、蓄熱槽1a,1b,1cの放熱用伝熱管4a,4b,4cの下方で気泡を生成し、生成した気泡により、固相となった蓄熱材2を放熱用伝熱管4a,4b,4cの表面から剥落させる形式、放熱用伝熱管4a,4b,4cを通す伝熱管挿通穴が形成されたスライド板や、先端が先細となったスライド部材や、先端にベアリングを設けたスライド部材を、アクチュエータにより放熱用伝熱管4a,4b,4cの表面に沿わせて往復運動させて、固相となった蓄熱材2を機械的に放熱用伝熱管4a,4b,4cの表面から剥落させる形式等を採用すればよい。   In addition, the heat storage system of each said embodiment is as a solid-phase peeling means for peeling off the solid-phase heat storage material 2 adhering to the surface of the heat exchanger tubes 4a, 4b, 4c for heat radiation in the heat storage tanks 1a, 1b, 1c. The same solid-state peeling means as that shown in Patent Document 2 may be provided. The solid phase peeling means is, for example, a type in which the heat storage material 2 in a solid phase is caused to flow from the surface of the heat radiating heat transfer tubes 4a, 4b, 4c by flowing the liquid heat storage material 2 with a circulation pump. Bubbles are generated below the heat transfer tubes 4a, 4b, and 4c for heat radiation 1a, 1b, and 1c, and the generated heat bubbles are peeled off from the surfaces of the heat transfer tubes 4a, 4b, and 4c for heat radiation by the generated bubbles. Type, heat slide tube insertion hole through which heat transfer tubes 4a, 4b, and 4c are passed, slide members with tapered tips, and slide members with bearings at the tips are used for heat radiation by actuators. If a reciprocating motion is made along the surfaces of the heat transfer tubes 4a, 4b, 4c, and the heat storage material 2 that has become a solid phase is mechanically peeled off from the surfaces of the heat transfer tubes 4a, 4b, 4c, etc. Good.

又、本発明は、前記各実施形態にのみ限定されるものではなく、各図に示した蓄熱槽1a,1b,1cの上下寸法や径寸法、放熱用伝熱管4a,4b,4cの太さ、その他の各部の寸法は、図示するための便宜上のものであり、実際の寸法を反映したものではない。   Further, the present invention is not limited to the embodiments described above, and the vertical and radial dimensions of the heat storage tanks 1a, 1b, 1c shown in the drawings, the thickness of the heat transfer tubes 4a, 4b, 4c for heat radiation. The dimensions of the other parts are for convenience of illustration and do not reflect actual dimensions.

図1、図4では、蓄熱槽1a,1b,1cは、放熱用伝熱管4a,4b,4cが側壁を貫通するように配置されている構成を示したが、放熱用伝熱管4a,4b,4cの配管経路は任意に設定してよい。   1 and 4, the heat storage tanks 1a, 1b, and 1c have a configuration in which the heat radiating heat transfer tubes 4a, 4b, and 4c are disposed so as to penetrate the side walls, but the heat radiating heat transfer tubes 4a, 4b, The piping path 4c may be set arbitrarily.

図1では、蓄熱槽1a,1b,1cの加熱手段3a,3b,3cの熱媒体流路10に外部から加熱用熱媒体供給ライン12と加熱用熱媒体戻しライン14を接続した構成を示したが、加熱用熱媒体供給ライン12と加熱用熱媒体戻しライン14のいずれか一方又は双方を、蓄熱槽1a,1b,1cの槽内を通して配置するようにしてもよい。   FIG. 1 shows a configuration in which a heating medium supply line 12 and a heating medium return line 14 are externally connected to the heating medium flow path 10 of the heating means 3a, 3b, 3c of the heat storage tanks 1a, 1b, 1c. However, one or both of the heating medium supply line 12 and the heating medium return line 14 may be arranged through the tanks of the heat storage tanks 1a, 1b, and 1c.

蓄熱槽1a,1b,1cの槽内空間8の上部寄りにおける放熱用伝熱管4a,4b,4cの配置は、槽内空間8のサイズや形状等に応じて、図示した以外の任意の配置としてよい。   The arrangement of the heat transfer tubes 4a, 4b, 4c near the top of the tank space 8 of the heat storage tanks 1a, 1b, 1c may be any arrangement other than those illustrated depending on the size, shape, etc. of the tank space 8. Good.

蓄熱材2としては、例示した非共晶組成の2成分混合塩からなるものを用いることが好ましいが、蓄熱槽1a,1b,1cの蓄熱温度範囲で固液の相変化を生じるものであり、且つ固相の密度が液相の密度よりも大きいものであれば、単成分の塩(溶融塩)、非共晶組成の3成分以上の混合塩、共晶組成の複数成分の混合塩、その他、塩以外の任意の蓄熱材を用いるようにしてもよい。   As the heat storage material 2, it is preferable to use a material composed of the two-component mixed salt of the exemplified non-eutectic composition, but it causes a solid-liquid phase change in the heat storage temperature range of the heat storage tanks 1a, 1b, 1c. If the density of the solid phase is larger than the density of the liquid phase, a single component salt (molten salt), a mixed salt of three or more components of non-eutectic composition, a mixed salt of multiple components of eutectic composition, etc. Any heat storage material other than salt may be used.

蓄熱温度範囲は、熱源及び熱負荷の種類等に応じて自在に変更してよい。   The heat storage temperature range may be freely changed according to the type of heat source and heat load.

蓄熱槽1a,1b,1cは、蓄熱容量や構成が、必ずしも均一でなくてもよい。各蓄熱槽1a,1b,1cの蓄熱温度範囲は、必ずしも均一でなくてもよい。   The heat storage tanks 1a, 1b, and 1c do not necessarily have a uniform heat storage capacity and configuration. The heat storage temperature range of each heat storage tank 1a, 1b, 1c does not necessarily have to be uniform.

蓄熱槽1a,1b,1cは、蓄熱温度範囲で固液の相変化を生じる蓄熱材を入れたものであることが好ましいが、相変化を生じない蓄熱材を入れたものであってもよい。   The heat storage tanks 1a, 1b, and 1c preferably include a heat storage material that causes a solid-liquid phase change in the heat storage temperature range, but may include a heat storage material that does not cause a phase change.

本発明の蓄熱システムを構成する複数の蓄熱槽の数は、2台であってもよく、又、4台以上としてもよい。   The number of the plurality of heat storage tanks constituting the heat storage system of the present invention may be two or four or more.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

1a,1b,1c 蓄熱槽、2 蓄熱材、3a,3b,3c 加熱手段、4a,4b,4c 放熱用伝熱管、5 放熱用熱媒体、7 制御装置、10 熱媒体流路、11 加熱用熱媒体、12 加熱用熱媒体供給ライン、13a,13b,13c 開閉弁、20a,20b,20c 電気ヒータ 1a, 1b, 1c Heat storage tank, 2 Heat storage material, 3a, 3b, 3c Heating means, 4a, 4b, 4c Heat dissipating tube, 5 Heat dissipating heat medium, 7 Controller, 10 Heat medium flow path, 11 Heating heat Medium, 12 Heating medium supply line for heating, 13a, 13b, 13c On-off valve, 20a, 20b, 20c Electric heater

Claims (4)

槽内に入れた蓄熱材と、
前記槽内で、前記蓄熱材よりも低温の放熱用熱媒体を流通させて前記蓄熱材との熱交換を行う放熱用伝熱管と、
前記蓄熱槽に設けられて、前記蓄熱材に対し蓄熱用の加熱を行う加熱手段と、
を有する蓄熱槽を複数備え、
前記複数の蓄熱槽は、前記放熱用伝熱管が、前記放熱用熱媒体が順に流通するよう直列に接続され、
更に、前記複数の蓄熱槽の加熱手段の制御を行う制御装置を備え、
前記制御装置は、前記放熱用伝熱管が直列に接続された前記複数の蓄熱槽に対し蓄熱を行う際に、前記直列に接続された放熱用伝熱管に前記放熱用熱媒体が流通するときの放熱用熱媒体流通順序が最後となる蓄熱槽から、前記放熱用熱媒体流通順序とは逆の順序で、前記複数の蓄熱槽にそれぞれ設定される高蓄熱状態までの蓄熱を個別に行う機能を備えること
を特徴とする蓄熱システム。
A heat storage material placed in the tank,
In the tank, a heat-radiating heat transfer tube that circulates a heat-dissipating heat medium having a temperature lower than that of the heat storage material and performs heat exchange with the heat storage material,
A heating means provided in the heat storage tank for heating the heat storage material for heat storage;
A plurality of heat storage tanks having
The plurality of heat storage tanks are connected in series so that the heat-dissipating heat transfer tube flows in order through the heat-dissipating heat medium,
And a control device for controlling the heating means of the plurality of heat storage tanks,
When the control device performs heat storage on the plurality of heat storage tanks in which the heat radiating heat transfer tubes are connected in series, the heat radiating heat medium flows through the heat radiating heat transfer tubes connected in series. A function of individually performing heat storage from the heat storage tank in which the heat dissipation heat medium distribution order is last to the high heat storage state set in each of the plurality of heat storage tanks in the reverse order of the heat dissipation heat medium distribution order. A heat storage system characterized by comprising.
前記蓄熱材は、前記蓄熱槽の蓄熱温度範囲で固液の相変化を生じるものとし、
前記各蓄熱槽は、前記蓄熱材を入れた槽内空間の底部側に前記加熱手段を備えると共に、前記槽内空間の上部寄りに前記放熱用伝熱管を備えること
を特徴とする請求項1記載の蓄熱システム。
The heat storage material shall produce a solid-liquid phase change in the heat storage temperature range of the heat storage tank,
Each said heat storage tank is equipped with the said heating means in the bottom part side of the space in the tank which put the said thermal storage material, and is equipped with the said heat-radiation heat exchanger tube near the upper part of the said space in a tank. Heat storage system.
前記各蓄熱槽の前記加熱手段は、加熱用熱媒体を流通させる熱媒体流路を備え、該熱媒体流路は、開閉弁を介して加熱用熱媒体供給ラインに接続され、
前記制御装置は、前記各蓄熱槽の前記熱媒体流路ごとの前記開閉弁を個別に開閉操作する機能を備えること
を特徴とする請求項2記載の蓄熱システム。
The heating means of each heat storage tank includes a heat medium flow path for circulating a heat medium for heating, and the heat medium flow path is connected to a heating heat medium supply line via an on-off valve,
The heat storage system according to claim 2, wherein the control device has a function of individually opening and closing the on-off valve for each of the heat medium flow paths of the heat storage tanks.
前記各蓄熱槽の前記加熱手段は、電気ヒータを備え、
前記制御装置は、前記各蓄熱槽の前記電気ヒータごとの給電と給電停止とを個別に操作する機能を備えること
を特徴とする請求項2記載の蓄熱システム。
The heating means of each heat storage tank includes an electric heater,
The said control apparatus is provided with the function to operate separately the electric power feeding and electric power feeding stop for every said electric heater of each said heat storage tank. The heat storage system of Claim 2 characterized by these.
JP2015105234A 2015-05-25 2015-05-25 Heat storage system Pending JP2016217664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105234A JP2016217664A (en) 2015-05-25 2015-05-25 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105234A JP2016217664A (en) 2015-05-25 2015-05-25 Heat storage system

Publications (1)

Publication Number Publication Date
JP2016217664A true JP2016217664A (en) 2016-12-22

Family

ID=57580764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105234A Pending JP2016217664A (en) 2015-05-25 2015-05-25 Heat storage system

Country Status (1)

Country Link
JP (1) JP2016217664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084315A1 (en) 2016-11-07 2018-05-11 株式会社岡村製作所 Panel body, space partition device, furniture with top board, and manufacturing method for panel body
WO2018170533A1 (en) 2017-03-23 2018-09-27 1414 Degrees Limited Energy storage and retrieval system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326860B2 (en) * 1974-08-02 1978-08-04
WO2014185179A1 (en) * 2013-05-17 2014-11-20 株式会社Ihi Heat storage system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326860B2 (en) * 1974-08-02 1978-08-04
WO2014185179A1 (en) * 2013-05-17 2014-11-20 株式会社Ihi Heat storage system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084315A1 (en) 2016-11-07 2018-05-11 株式会社岡村製作所 Panel body, space partition device, furniture with top board, and manufacturing method for panel body
WO2018170533A1 (en) 2017-03-23 2018-09-27 1414 Degrees Limited Energy storage and retrieval system
CN110494711A (en) * 2017-03-23 2019-11-22 1414度有限公司 Energy storage and recovery system
EP3601924A4 (en) * 2017-03-23 2020-11-25 1414 Degrees Limited Energy storage and retrieval system
US11085705B2 (en) 2017-03-23 2021-08-10 1414 Degrees Limited Energy storage and retrieval system
AU2018239960B2 (en) * 2017-03-23 2023-11-02 1414 Degrees Limited Energy storage and retrieval system

Similar Documents

Publication Publication Date Title
Agyenim et al. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins
Liu et al. An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: Charging only and discharging only modes
JP6308051B2 (en) Heat storage system
CN104047699A (en) COOLING APPARATUS AND COOLING METHOD for cooling heating element
Hamed et al. Numerical analysis of an integrated storage solar heater
EP1610082B1 (en) Device for temperature control of a fluid to be treated
US20170241669A1 (en) Heat storage devices and circuits for solar steam generation, and associated systems and methods
JP2016217664A (en) Heat storage system
JP6477249B2 (en) Heat storage system
CN110165327B (en) Battery pack heat treatment device and phase-change material manufacturing method
Dhaidan et al. Experimental investigation of thermal characteristics of phase change material in finned heat exchangers
EP3465053B1 (en) Heat exchanger device comprising a phase-change material
JP2005016766A (en) Heat accumulating device
Zhong et al. Experimental study of downward facing boiling on a structured hemispherical surface
DK3120098T3 (en) Improved phase change based latent heat thermal storage device
WO2018034352A1 (en) Latent heat storage device
JP5037985B2 (en) Bath equipment
Zou et al. Employing perforated copper foam to improve the thermal performance of latent thermal energy storage units
JP3891486B2 (en) Latent heat storage type cold heat source equipment and latent heat storage type heat source equipment
EP2971760B1 (en) Concentrating solar power station with improved operation
JP2009103341A (en) Heat storage device
Hirano et al. Characteristic of reheating operation in supercooled thermal energy storage unit for hot water supply or space heating
Sobhansarbandi et al. Melting process expedition of phase change materials via silicone oil
JP2004060960A (en) Latent heat storage system
JP6906432B2 (en) Heat storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190709