JP6477249B2 - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP6477249B2
JP6477249B2 JP2015105233A JP2015105233A JP6477249B2 JP 6477249 B2 JP6477249 B2 JP 6477249B2 JP 2015105233 A JP2015105233 A JP 2015105233A JP 2015105233 A JP2015105233 A JP 2015105233A JP 6477249 B2 JP6477249 B2 JP 6477249B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
medium
temperature
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015105233A
Other languages
Japanese (ja)
Other versions
JP2016217663A (en
Inventor
知哉 村本
知哉 村本
道太郎 橋場
道太郎 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015105233A priority Critical patent/JP6477249B2/en
Publication of JP2016217663A publication Critical patent/JP2016217663A/en
Application granted granted Critical
Publication of JP6477249B2 publication Critical patent/JP6477249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、熱の貯蔵に用いる蓄熱システムに関するものである。   The present invention relates to a heat storage system used for heat storage.

太陽熱発電、太陽光発電、風力発電等の自然エネルギーを利用した発電設備では、日照条件や気象条件等の変化に起因する出力電力の過渡的な変化を抑制するために、蓄熱システムを備えることが行われている。   Power generation facilities that use natural energy, such as solar thermal power generation, solar power generation, and wind power generation, should be equipped with a heat storage system to suppress transient changes in output power caused by changes in sunshine conditions and weather conditions. Has been done.

この種の蓄熱システムとしては、たとえば、蓄熱槽に、蓄熱温度範囲で固相と液相との相変化を生じる蓄熱材を充填し、この蓄熱材の潜熱を利用して蓄熱を行うことで、蓄熱密度の向上化を図ったものが従来知られている。   As this type of heat storage system, for example, a heat storage tank is filled with a heat storage material that causes a phase change between a solid phase and a liquid phase in a heat storage temperature range, and heat storage is performed using the latent heat of this heat storage material, The thing which aimed at the improvement of a thermal storage density is conventionally known.

又、蓄熱温度範囲で固相と液相との相変化を生じる蓄熱材としては、たとえば、CsNOとNaNO、LiNOとLiOH、LiNOとNaNO、KNOとNaNO、NaNOとRbNO、LiBrとLiOH、LiBrとNaNOといった組み合わせの2成分系で非共晶の組成の混合塩による蓄熱材を用いることが従来提案されている(たとえば、特許文献1参照)。 Examples of the heat storage material that causes a phase change between the solid phase and the liquid phase in the heat storage temperature range include CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and Conventionally, it has been proposed to use a heat storage material made of a mixed salt having a non-eutectic composition of two components such as RbNO 3 , LiBr and LiOH, and LiBr and NaNO 3 (see, for example, Patent Document 1).

更に、蓄熱装置の一つである温水蓄熱装置については、温水を流通させて潜熱蓄熱材との熱交換を行わせる熱交換器を、温水の入口と出口とを連通する複数の分岐経路と、複数の開閉弁を備えた構成とする考えが示されている。更に、この熱交換器は、温水を流通させる経路を、温水通路面積が大きくて且つ通路長さが短い並列経路と、温水通路面積が小さくて通路長さが長い直列経路とに切り替えることができるとされている(たとえば、特許文献2参照)。   Furthermore, for a hot water heat storage device that is one of the heat storage devices, a heat exchanger that circulates the hot water and performs heat exchange with the latent heat storage material, a plurality of branch paths that communicate the inlet and outlet of the hot water, The idea of a configuration with a plurality of on-off valves is shown. Furthermore, this heat exchanger can switch the path through which the hot water is circulated between a parallel path having a large hot water passage area and a short passage length, and a series path having a small hot water passage area and a long passage length. (For example, see Patent Document 2).

国際公開第2014/185179号International Publication No. 2014/185179 特開2003−294322号公報JP 2003-294322 A

ところで、一般に、熱媒体を供給して、その熱を利用する熱負荷は、その種類によっては、できるだけ温度が安定した熱媒体の供給が望まれる場合がある。   By the way, in general, depending on the type of heat load that supplies a heat medium and uses the heat, it may be desired to supply a heat medium that is as stable as possible.

これに対し、蓄熱槽は、蓄熱量が変わると蓄熱材の温度が変わる。そのため、一定温度の放熱用熱媒体を供給し、この放熱用熱媒体との熱交換によって蓄熱材からの放熱を行わせる場合は、蓄熱材の温度変化に伴って蓄熱材と放熱用熱媒体との温度差が変化するので、この温度差の大小に応じて伝熱速度が変わる。これにより従来の蓄熱槽は、蓄熱材から放熱用熱媒体へ放熱するときの放熱速度が変わるために、蓄熱材との熱交換の後で蓄熱槽から回収される放熱用熱媒体の温度は、蓄熱槽の蓄熱量に応じて変化している。   On the other hand, in the heat storage tank, the temperature of the heat storage material changes when the amount of heat storage changes. Therefore, when supplying a heat-dissipating heat medium at a constant temperature and causing heat dissipation from the heat storage material by heat exchange with the heat-dissipating heat medium, the heat storage material and the heat-dissipating heat medium Therefore, the heat transfer rate changes depending on the temperature difference. Thereby, since the heat dissipation rate when the conventional heat storage tank radiates heat from the heat storage material to the heat dissipation heat medium changes, the temperature of the heat dissipation heat medium recovered from the heat storage tank after heat exchange with the heat storage material is It changes according to the amount of heat stored in the heat storage tank.

なお、特許文献2に示された熱交換器は、温水を流通させる経路を、温水通路面積が大きくて且つ通路長さが短い並列経路と、温水通路面積が小さくて通路長さが長い直列経路とに切り替えるようにしてあるが、各経路同士では、温水と潜熱蓄熱材との熱交換を行う伝熱面積の大小の差はあまりない。   Note that the heat exchanger shown in Patent Document 2 has a path through which hot water flows, a parallel path having a large hot water passage area and a short passage length, and a series path having a small hot water passage area and a long passage length. However, there is not much difference in the size of the heat transfer area where heat is exchanged between the hot water and the latent heat storage material.

しかも、特許文献2には、分岐管ごとに開閉弁を備える考えや、潜熱蓄熱部の潜熱蓄熱材が温度変化するときにも放熱用熱媒体である温水の温度変化を抑えるといった考えは全く示されていない。   Moreover, Patent Document 2 does not show the idea of providing an on-off valve for each branch pipe, or the idea of suppressing the temperature change of the hot water that is a heat-dissipating heat medium even when the temperature of the latent heat storage material of the latent heat storage unit changes. It has not been.

そこで、本発明は、蓄熱槽の蓄熱量が変化しても、蓄熱槽の放熱用伝熱管を流通する間に蓄熱材と熱交換させてから回収する放熱用熱媒体の温度の安定化を図ることができる蓄熱システムを提供しようとするものである。   Therefore, the present invention aims to stabilize the temperature of the heat-dissipating heat medium that is recovered after heat exchange with the heat-storing material while circulating the heat-dissipating heat transfer tubes of the heat-storage tank even if the heat storage amount of the heat-storage tank changes. It is intended to provide a heat storage system that can.

本発明は、前記課題を解決するために、蓄熱槽と、前記蓄熱槽に入れた蓄熱材と、前記蓄熱槽の槽内で、前記蓄熱材よりも低温の放熱用熱媒体を流通させて前記蓄熱材との熱交換を行う複数の放熱用伝熱管と、前記複数の放熱用伝熱管に対する前記放熱用熱媒体の供給と供給停止とを切り替える複数の弁と、前記蓄熱槽に設けられて、前記蓄熱材に対し蓄熱用の加熱を行う加熱手段と、前記放熱用伝熱管を流通した後に回収される前記放熱用熱媒体の温度を求める手段と、該手段からの入力を基に、前記弁に個別の制御指令を与える制御装置とを備える構成を有する蓄熱システムとする。   In order to solve the above problems, the present invention circulates a heat storage tank, a heat storage material put in the heat storage tank, and a heat-dissipating heat medium having a temperature lower than that of the heat storage material in the heat storage tank. A plurality of heat-dissipating heat transfer tubes that perform heat exchange with the heat storage material, a plurality of valves that switch supply and stop of the heat-dissipating heat medium to the heat dissipating heat transfer tubes, and provided in the heat storage tank, Based on the input from the heating means for heating the heat storage material for heat storage, the means for determining the temperature of the heat dissipation heat medium recovered after flowing through the heat dissipation heat transfer tube, the valve The heat storage system has a configuration including a control device that gives individual control commands to the control unit.

前記蓄熱材は、前記蓄熱槽の蓄熱温度範囲で固液の相変化を生じるものとし、前記蓄熱槽は、前記蓄熱材を入れた内部空間の上部寄りに前記放熱用伝熱管を備え、該内部空間の底部側に前記加熱手段を備える構成としてある。   The heat storage material causes a solid-liquid phase change in the heat storage temperature range of the heat storage tank, and the heat storage tank includes the heat-dissipating heat transfer tube near the upper part of the internal space containing the heat storage material, The heating means is provided on the bottom side of the space.

前記各弁により前記放熱用熱媒体の供給と供給停止とが切り替えられる各放熱用伝熱管は、蓄熱槽の内部空間に水平方向に配列される構成としてある。   Each heat transfer heat transfer tube, which is switched between supply and stop of supply of the heat dissipation heat medium by the valves, is arranged in the horizontal direction in the internal space of the heat storage tank.

前記各弁により前記放熱用熱媒体の供給と供給停止とが切り替えられる各放熱用伝熱管は、固相剥落手段を個別に備える構成としてある。   Each heat-transfer heat transfer tube that is switched between supply and stop of supply of the heat-dissipation heat medium by the valves is configured to individually include solid-phase stripping means.

本発明の蓄熱システムによれば、蓄熱槽の蓄熱量が変化しても、蓄熱槽の放熱用伝熱管を流通させて蓄熱材と熱交換させた後に回収する放熱用熱媒体の温度の安定化を図ることができる。   According to the heat storage system of the present invention, even if the heat storage amount of the heat storage tank changes, the temperature of the heat-dissipating heat medium recovered after circulating the heat transfer pipe for heat dissipation of the heat storage tank and exchanging heat with the heat storage material is stabilized. Can be achieved.

蓄熱システムの第1実施形態を示すもので、(a)は概略切断側面図、(b)は(a)のA−A方向矢視図である。The 1st Embodiment of a thermal storage system is shown, (a) is a schematic cut | disconnection side view, (b) is an AA direction arrow directional view of (a). 第1実施形態の蓄熱システムの放熱処理を説明するための図で、(a)(b)(c)は蓄熱槽から回収される放熱用熱媒体の温度がそれぞれ異なるときの状態を示す図1(b)に対応する図である。It is a figure for demonstrating the thermal radiation process of the thermal storage system of 1st Embodiment, (a) (b) (c) is a figure which shows a state when the temperature of the thermal medium for thermal radiation collect | recovered from a thermal storage tank differs, respectively. It is a figure corresponding to (b). 第1実施形態の第1応用例を示すもので、(a)は概略切断側面図、(b)は(a)のB−B方向矢視図、(c)は(a)のC−C方向矢視図である。The 1st application example of 1st Embodiment is shown, (a) is a general | schematic cutting side view, (b) is a BB direction arrow directional view of (a), (c) is CC of (a). FIG. 第1実施形態の第2応用例を示す概要図である。It is a schematic diagram which shows the 2nd application example of 1st Embodiment. 第1実施形態の第3応用例を示す概要図である。It is a schematic diagram which shows the 3rd application example of 1st Embodiment. 蓄熱システムにおける放熱用伝熱管の配置の別の例を示すもので、(a)は概略切断側面図、(b)は(a)のD−D方向矢視図である。The another example of arrangement | positioning of the heat exchanger tube for thermal radiation in a thermal storage system is shown, (a) is a schematic cut | disconnection side view, (b) is a DD direction arrow directional view of (a).

以下、本発明を実施するための形態を図面を参照して説明する。
[第1実施形態]
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[First Embodiment]

図1は、蓄熱システムの第1実施形態を示すもので、図1(a)は概略切断側面図、図1(b)は図1(a)のA−A方向矢視図である。図2は、本実施形態の蓄熱システムの放熱時の状態を示すもので、図2(a)は蓄熱槽の蓄熱量が大となっている場合を、(b)は蓄熱量が中程度となっている場合を、(c)は蓄熱量が小となっている場合をそれぞれ示す図1(b)に対応する図である。   1A and 1B show a first embodiment of a heat storage system, in which FIG. 1A is a schematic cut side view, and FIG. 1B is a view in the direction of arrows AA in FIG. FIG. 2 shows a state during heat dissipation of the heat storage system of the present embodiment. FIG. 2 (a) shows a case where the heat storage amount of the heat storage tank is large, and FIG. 2 (b) shows that the heat storage amount is medium. (C) is a figure corresponding to FIG.1 (b) which respectively shows the case where the amount of heat storage is small.

本実施形態の蓄熱システムは、図1(a)(b)に示すように、蓄熱槽1と、蓄熱槽1に入れた蓄熱材2と、蓄熱材2に対して蓄熱用の加熱を行う加熱手段3と、放熱用熱媒体5を流通させて、蓄熱材2と放熱用熱媒体5との熱交換を行わせる並列接続された複数系統の放熱用伝熱管4a,4b,4cとを備えた構成とされている。図1(b)では、図示する便宜上、3系統の放熱用伝熱管4a,4b,4cを備えた構成が示してある。   As shown in FIGS. 1A and 1B, the heat storage system of the present embodiment performs heating for heat storage on the heat storage tank 1, the heat storage material 2 put in the heat storage tank 1, and the heat storage material 2. Means 3 and a plurality of heat radiation heat transfer tubes 4a, 4b, 4c connected in parallel to allow heat exchange between the heat storage material 2 and the heat radiation heat medium 5 by circulating the heat radiation heat medium 5 are provided. It is configured. In FIG. 1B, for convenience of illustration, a configuration including three systems of heat transfer tubes 4a, 4b, and 4c for heat radiation is shown.

各放熱用伝熱管4a,4b,4cの上流側は、共通の分配管6に個別の弁7a,7b,7cを介して接続されている。分配管6には、外部の図示しない放熱用熱媒体供給手段が、放熱用熱媒体供給ライン8を介して接続されている。これにより、放熱用熱媒体供給手段より放熱用熱媒体供給ライン8を通して分配管6に供給される放熱用熱媒体5は、各弁7a,7b,7cのうち、開操作状態の弁7a,7b,7cに接続された放熱用伝熱管4a,4b,4cに供給される。   The upstream side of each heat radiating heat transfer pipe 4a, 4b, 4c is connected to a common distribution pipe 6 via individual valves 7a, 7b, 7c. The distribution pipe 6 is connected to an external heat-dissipating heat medium supply means (not shown) through a heat-dissipating heat medium supply line 8. Thereby, the heat-dissipating heat medium 5 supplied to the distribution pipe 6 from the heat-dissipating heat medium supplying means through the heat-dissipating heat medium supply line 8 is the open valves 7a, 7b among the valves 7a, 7b, 7c. , 7c are supplied to the heat radiating heat transfer tubes 4a, 4b, 4c.

各放熱用伝熱管4a,4b,4cの下流側は、共通の集合管9に接続されている。集合管9には、放熱用伝熱管4a,4b,4cを流通した後の放熱用熱媒体5を、所望の熱負荷Xへ送る放熱用熱媒体送出ライン10の上流側が接続されている。これにより、放熱用伝熱管4a,4b,4cを流通した後の放熱用熱媒体5は、集合管9に一旦回収され、集合管9で混合された後、放熱用熱媒体送出ライン10を経て熱負荷Xに送られる。なお、熱負荷Xに熱を供給した後の放熱用熱媒体5は、放熱用熱媒体供給手段へ戻すようにしてもよいし、戻さなくてもよい。   The downstream side of each heat radiating heat transfer tube 4 a, 4 b, 4 c is connected to a common collecting tube 9. The collecting pipe 9 is connected to the upstream side of the heat-dissipating heat medium delivery line 10 that sends the heat-dissipating heat medium 5 after flowing through the heat-dissipating heat transfer pipes 4a, 4b, and 4c to the desired heat load X. As a result, the heat-dissipating heat medium 5 after flowing through the heat-dissipating heat transfer tubes 4a, 4b, 4c is once collected in the collecting pipe 9, mixed in the collecting pipe 9, and then passed through the heat-dissipating heat medium delivery line 10. Sent to thermal load X. The heat dissipation heat medium 5 after supplying heat to the heat load X may or may not be returned to the heat dissipation heat medium supply means.

更に、本実施形態の蓄熱システムは、放熱用伝熱管4a,4b,4cを流通した後に回収される放熱用熱媒体5の温度を求める手段として、たとえば、放熱用熱媒体送出ライン10に設けられた温度計測器11を備え、この温度計測器11からの入力を基に、弁7a,7b,7cに個別の制御指令を与える制御装置12を備えた構成とされている。   Furthermore, the heat storage system of this embodiment is provided in the heat-dissipating heat medium delivery line 10, for example, as means for obtaining the temperature of the heat-dissipating heat medium 5 collected after flowing through the heat-radiating heat transfer tubes 4a, 4b, 4c. And a control device 12 for giving individual control commands to the valves 7a, 7b, 7c based on the input from the temperature measuring device 11.

本実施形態の蓄熱システムでは、蓄熱槽1に入れる蓄熱材2は、たとえば、設定される蓄熱温度範囲(Tmin<T<Tmax)において固相と液相との間で相変化を生じ、且つ固相の密度が液相の密度よりも大となる蓄熱材2を用いる。図1では、蓄熱材2の固相はハッチングを付して示してある。なお、この蓄熱材2の詳細については後述する。 In the heat storage system of this embodiment, the heat storage material 2 put into the heat storage tank 1 causes a phase change between a solid phase and a liquid phase in a set heat storage temperature range (T min <T <T max ), for example, In addition, the heat storage material 2 in which the density of the solid phase is larger than the density of the liquid phase is used. In FIG. 1, the solid phase of the heat storage material 2 is shown with hatching. The details of the heat storage material 2 will be described later.

蓄熱槽1の容積は、蓄熱槽1に望まれる蓄熱容量と、蓄熱材2の種類等に応じて適宜設定されている。   The volume of the heat storage tank 1 is appropriately set according to the heat storage capacity desired for the heat storage tank 1, the type of the heat storage material 2, and the like.

蓄熱槽1は、前記した蓄熱材2の特性を考慮して、以下のような構成とする。   The heat storage tank 1 is configured as follows in consideration of the characteristics of the heat storage material 2 described above.

加熱手段3は、蓄熱材2を収納する蓄熱槽1の内部空間の底部に、ホットプレート状のものとして設けられている。この加熱手段3は、たとえば、蓄熱槽1の内部空間の底面をフラットな面として形成するためのプレート部材13と、プレート部材13の下側に設けて、加熱用熱媒体15を流通させる熱媒体流路14とを備えた構成とされている。   The heating means 3 is provided as a hot plate at the bottom of the internal space of the heat storage tank 1 that houses the heat storage material 2. The heating means 3 includes, for example, a plate member 13 for forming the bottom surface of the internal space of the heat storage tank 1 as a flat surface, and a heat medium that circulates the heating heat medium 15 provided below the plate member 13. The flow path 14 is provided.

プレート部材13を備える構成とするのは、蓄熱槽1の温度低下時に槽内で生じて沈降する蓄熱材2の固相をプレート部材13の上側に分散させて堆積させ、この堆積物の荷重を、プレート部材13の面で分散して受けることが好ましいためである。なお加熱手段3は、プレート部材13の下側に、プレート部材13に作用する堆積物の荷重を、熱媒体流路14の下部に伝えて支持させるための上下の柱状や壁状の部材を備えるようにしてもよい。   The plate member 13 is configured so that the solid phase of the heat storage material 2 generated and settled in the tank when the temperature of the heat storage tank 1 is lowered is dispersed and deposited on the upper side of the plate member 13, and the load of this deposit is This is because it is preferably received in a distributed manner on the surface of the plate member 13. The heating means 3 includes upper and lower columnar and wall-like members for transmitting and supporting the load of deposits acting on the plate member 13 to the lower part of the heat medium flow path 14 below the plate member 13. You may do it.

熱媒体流路14は、加熱用熱媒体15の有する熱によりプレート部材13の全面をできるだけ均等に加熱できるように、プレート部材13の面内についての加熱用熱媒体15の流通経路の配置、形状、流路断面積等が適宜設定されている。なお、図1では、図示する便宜上、熱媒体流路14は簡略化した記載としてある。したがって、熱媒体流路14は、流通経路の配置、形状、流路断面積等が図示した以外の任意の設定とされていてもよいことは勿論である。   The heat medium passage 14 is arranged and shaped in the flow path of the heating medium 15 in the plane of the plate member 13 so that the entire surface of the plate member 13 can be heated as evenly as possible by the heat of the heating medium 15. The channel cross-sectional area and the like are set as appropriate. In FIG. 1, for convenience of illustration, the heat medium flow path 14 is simplified. Therefore, the heat medium flow path 14 may of course have any setting other than those shown in the drawing, such as the arrangement, shape, and cross-sectional area of the flow path.

熱媒体流路14の入口側には、外部の図示しない加熱用熱媒体供給手段より加熱用熱媒体15を導く加熱用熱媒体供給ライン16が接続されている。   A heating heat medium supply line 16 that leads the heating heat medium 15 from an external heating heat medium supply means (not shown) is connected to the inlet side of the heat medium flow path 14.

又、熱媒体流路14の出口側には、熱媒体流路14を流通した後の加熱用熱媒体15を、加熱用熱媒体供給手段へ戻す加熱用熱媒体戻しライン17が接続されている。更に、加熱用熱媒体供給手段は、太陽熱発電の集熱部のような熱源(図示せず)の熱を加熱用熱媒体15に与えて加熱するための熱交換部を備えた構成とされている。   Further, a heating heat medium return line 17 for returning the heating heat medium 15 after flowing through the heat medium flow path 14 to the heating heat medium supply means is connected to the outlet side of the heat medium flow path 14. . Furthermore, the heating medium supply means is configured to include a heat exchanging unit for supplying the heating medium 15 with heat from a heat source (not shown) such as a heat collecting unit of solar thermal power generation for heating. Yes.

加熱用熱媒体15は、蓄熱温度範囲(Tmin<T<Tmax)の全域、更には、それよりも高い温度域まで液相となる熱媒体を選定して用いるか、あるいは、スチームを用いるようにすればよい。スチームはその圧力を調整することにより容易に温度調整が可能であることから、加熱用熱媒体15としてスチームを用いることで、加熱手段3の温度調整が容易になる。 As the heating heat medium 15, a heat medium that is in a liquid phase up to the entire heat storage temperature range (T min <T <T max ) or higher than that is selected and used, or steam is used. What should I do? Since the temperature of the steam can be easily adjusted by adjusting its pressure, the temperature of the heating means 3 can be easily adjusted by using the steam as the heating heat medium 15.

これにより、加熱手段3の熱媒体流路14には、加熱用熱媒体供給手段より、加熱された加熱用熱媒体15を循環供給することができる。したがって、加熱手段3では、熱媒体流路14に順次供給される加熱用熱媒体15の有する熱により、プレート部材13を介して、蓄熱槽1内の蓄熱材2を下方から加熱することができる。   Thereby, the heated heating medium 15 can be circulated and supplied to the heating medium flow path 14 of the heating unit 3 from the heating medium supply unit. Therefore, in the heating means 3, the heat storage material 2 in the heat storage tank 1 can be heated from below through the plate member 13 by the heat of the heating heat medium 15 sequentially supplied to the heat medium flow path 14. .

かかる構成としてある加熱手段3は、蓄熱材2の蓄熱のための加熱を行う熱源として、加熱用熱媒体15の保有する熱を用いるようにしてある。このため、本実施形態の蓄熱システムは、自然エネルギーを利用した発電設備のうち、太陽熱発電のように、自然エネルギーを利用して高温の熱を得る形式の発電設備に適用して、余剰の熱を蓄熱する場合に好適である。   The heating means 3 having such a configuration uses the heat held by the heating heat medium 15 as a heat source for heating the heat storage material 2 for storing heat. For this reason, the heat storage system of this embodiment is applied to a power generation facility that uses natural energy to obtain high-temperature heat, such as solar thermal power generation, among the power generation facilities that use natural energy, and surplus heat. It is suitable when storing heat.

なお、蓄熱槽1の加熱手段3は、電気ヒータを用いるようにしてもよい。この場合は、本実施形態の蓄熱システムが、自然エネルギーを利用した発電設備のうち、太陽光発電や風力発電のように、自然エネルギーを利用して電気を直接発生させる形式の発電設備に適用して、余剰の電力を熱として蓄熱するのに好適なものとなる。   The heating means 3 of the heat storage tank 1 may be an electric heater. In this case, the heat storage system of the present embodiment is applied to a power generation facility that directly generates electricity using natural energy, such as solar power generation or wind power generation, among power generation facilities using natural energy. Thus, it is suitable for storing surplus power as heat.

放熱用伝熱管4a,4b,4cは、蓄熱槽1の内部空間の上部寄り位置に、図1(b)に示すように水平方向に並ぶ配列で、且つ蓄熱材2に没する配置で設けられている。なお、ここで言う水平方向に並ぶ配列とは、放熱用伝熱管4a,4b,4cが凡そ水平方向に並ぶように配置されていればよく、放熱用伝熱管4a,4b,4c同士の上下の多少のずれは許容される。   The heat transfer tubes 4a, 4b, and 4c for heat radiation are provided at positions near the upper portion of the internal space of the heat storage tank 1 in an arrangement aligned in the horizontal direction as shown in FIG. ing. In addition, the arrangement | sequence arranged in a horizontal direction said here should just be arrange | positioned so that the heat exchanger tubes 4a, 4b, 4c for heat radiation may be arranged in a substantially horizontal direction, and the heat transfer tubes 4a, 4b, 4c for heat radiation are the upper and lower sides. Some deviation is allowed.

放熱用伝熱管4a,4b,4cは、図示しない支持部材を介して、蓄熱槽1の壁面や天井部より支持されている。放熱用伝熱管4a,4b,4cは、全体が蓄熱材2に没する範囲で、できるだけ、蓄熱槽1の内部空間の上下方向の半分の高さ位置よりも上方に配置されることが好ましい。これは、後述するように、放熱用伝熱管4a,4b,4cの周囲で凝固して生じる蓄熱材2の固相が液相中で沈降する現象に支障が生じないようにするためである。しかし、放熱用伝熱管4a,4b,4cの管路形状や全体のサイズ等に応じて、放熱用伝熱管4a,4b,4cの下端側に位置する部分が、蓄熱槽1の内部空間の上下方向の半分の高さ位置、あるいは、それよりも低い位置に部分的に配置されていてもよいことは勿論である。   The heat radiating heat transfer tubes 4a, 4b, and 4c are supported from the wall surface and ceiling portion of the heat storage tank 1 through a support member (not shown). It is preferable that the heat radiating heat transfer tubes 4 a, 4 b, 4 c be arranged as high as possible in the vertical direction half of the internal space of the heat storage tank 1 as much as possible within the range where the heat storage material 2 is entirely immersed. This is for preventing the phenomenon that the solid phase of the heat storage material 2 solidified around the heat transfer tubes 4a, 4b, 4c for heat dissipation settles in the liquid phase, as will be described later. However, depending on the pipe shape and overall size of the heat transfer tubes 4a, 4b, 4c for heat dissipation, the portions located on the lower end side of the heat transfer tubes 4a, 4b, 4c for heat dissipation are located above and below the internal space of the heat storage tank 1. Of course, it may be partially arranged at a height position half of the direction or at a position lower than that.

放熱用伝熱管4a,4b,4cの上流側と下流側は、蓄熱槽1の側壁1aを貫通させて外部に突出させてあり、上流側の各突出端部が、弁7a,7b,7cを介して分配管6にそれぞれ接続され、下流側の各突出端部が集合管9にそれぞれ接続されている。   The upstream and downstream sides of the heat transfer tubes 4a, 4b, and 4c for heat dissipation pass through the side wall 1a of the heat storage tank 1 and protrude to the outside, and the protruding ends on the upstream side connect the valves 7a, 7b, and 7c. And the downstream projecting ends are connected to the collecting pipe 9.

放熱用熱媒体5は、液相の熱媒体を選定して用いるか、あるいは、スチームを用いるようにすればよい。なお、本実施形態の蓄熱システムでは、後述するように、運用中に弁7a,7b,7cを必要に応じて開閉操作する。そのため、閉操作された弁7a,7b,7cに接続されている放熱用伝熱管4a,4b,4cは、管内に放熱用熱媒体5が滞留するようになる。したがって、放熱用熱媒体5は、放熱用伝熱管4a,4b,4cの管内に滞留した状態で蓄熱材2の保有する熱を受けるが、その状態でも、性状が安定していることが必要とされる。よって、放熱用熱媒体5は、蓄熱槽1に設定される蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最高温度Tmaxにおいても性状が安定した材質のものを使用する。 As the heat dissipation heat medium 5, a liquid heat medium may be selected and used, or steam may be used. In the heat storage system of this embodiment, as will be described later, the valves 7a, 7b, and 7c are opened and closed as necessary during operation. Therefore, the heat-dissipating heat transfer tubes 4a, 4b, and 4c connected to the valves 7a, 7b, and 7c that are operated to close the heat-dissipating heat medium 5 stay in the tubes. Therefore, the heat-dissipating heat medium 5 receives the heat held by the heat storage material 2 while staying in the heat-radiating heat transfer tubes 4a, 4b, and 4c, but it is necessary that the properties be stable even in this state. Is done. Therefore, the heat dissipation heat medium 5 is made of a material whose properties are stable even at the maximum heat storage temperature T max in the heat storage temperature range (T min <T <T max ) set in the heat storage tank 1.

これにより、放熱用熱媒体5は、分配管6から、弁7a,7b,7cのうち、開操作されている弁7a,7b,7cの下流側の放熱用伝熱管4a,4b,4cに、連続的に供給される。放熱用伝熱管4a,4b,4cに供給された放熱用熱媒体5は、放熱用伝熱管4a,4b,4cを流通する間に、放熱用伝熱管4a,4b,4cの周囲に存在している蓄熱材2との熱交換により順次加熱され、加熱状態で集合管9へ回収される。この集合管9に回収された放熱用熱媒体5が、放熱用熱媒体送出ライン10を通して熱負荷Xへ供給されることで、放熱用熱媒体5の保有する熱が、熱負荷Xへ与えられる。   Thereby, the heat-dissipating heat medium 5 is transferred from the distribution pipe 6 to the heat-dissipating heat transfer tubes 4a, 4b, 4c on the downstream side of the valves 7a, 7b, 7c, which are opened, among the valves 7a, 7b, 7c. Continuously supplied. The heat-dissipating heat medium 5 supplied to the heat-dissipating heat transfer tubes 4a, 4b, 4c is present around the heat-dissipating heat transfer tubes 4a, 4b, 4c while flowing through the heat-dissipating heat transfer tubes 4a, 4b, 4c. Heat is exchanged sequentially by heat exchange with the heat storage material 2 and is collected in the collecting tube 9 in a heated state. The heat dissipating heat medium 5 collected in the collecting pipe 9 is supplied to the heat load X through the heat dissipating heat medium delivery line 10 so that the heat held by the heat dissipating heat medium 5 is given to the heat load X. .

このように、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5が、放熱用伝熱管4a,4b,4cの周囲に存在している蓄熱材2との熱交換により加熱されるときには、放熱用伝熱管4a,4b,4cの周囲に存在している蓄熱材2は、相対的に温度低下する。この蓄熱材2の温度低下が、液相と固相との相変化温度で生じると、図1(a)に示すように、放熱用伝熱管4a,4b,4cの周囲では、蓄熱材2が液相より凝固して固相が生じる。この蓄熱材2の固相は、液相よりも密度が大きいために、液相中を沈降するようになる。   Thus, the heat-dissipating heat medium 5 flowing through the heat-radiating heat transfer tubes 4a, 4b, 4c is heated by heat exchange with the heat storage material 2 existing around the heat-radiating heat-transfer tubes 4a, 4b, 4c. Sometimes, the temperature of the heat storage material 2 existing around the heat transfer tubes 4a, 4b, and 4c for heat radiation is relatively lowered. When the temperature drop of the heat storage material 2 occurs at the phase change temperature between the liquid phase and the solid phase, as shown in FIG. 1 (a), the heat storage material 2 is disposed around the heat transfer tubes 4a, 4b, and 4c for heat radiation. A solid phase is formed by solidifying from the liquid phase. Since the solid phase of the heat storage material 2 has a higher density than the liquid phase, it settles in the liquid phase.

蓄熱槽1は、その内部空間の上部寄り位置に放熱用伝熱管4a,4b,4cを設けた構成としてあるので、放熱用伝熱管4a,4b,4cの周囲に温度低下した蓄熱材2の固相が生じても、この固相は蓄熱槽1の内部空間を底部まで沈降して、加熱手段3の上側に堆積される。   Since the heat storage tank 1 has a structure in which the heat transfer tubes 4a, 4b, 4c are provided near the upper portion of the internal space, the heat storage material 2 having a lowered temperature around the heat transfer tubes 4a, 4b, 4c is fixed. Even if a phase is generated, this solid phase settles in the inner space of the heat storage tank 1 to the bottom and is deposited on the upper side of the heating means 3.

したがって、蓄熱槽1では、放熱用伝熱管4a,4b,4cの周囲に蓄熱材2の固相が留まることはないため、蓄熱材2と、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5との間の熱伝達の効率が、蓄熱材2の固相の存在によって低下することは抑制される。   Therefore, in the heat storage tank 1, since the solid phase of the heat storage material 2 does not remain around the heat transfer tubes 4a, 4b, and 4c for heat dissipation, the heat dissipation that flows through the heat storage material 2 and the heat transfer tubes 4a, 4b, and 4c for heat dissipation. It is suppressed that the efficiency of heat transfer between the heat storage medium 5 is reduced due to the presence of the solid phase of the heat storage material 2.

蓄熱槽1の側壁1aには、図1(a)(b)に示すように、側壁1aの温度を上昇させるための側壁用ヒータ18が設けられていることが好ましい。   As shown in FIGS. 1A and 1B, the side wall 1a of the heat storage tank 1 is preferably provided with a side wall heater 18 for increasing the temperature of the side wall 1a.

側壁用ヒータ18は、蓄熱槽1の内部空間の下端から、内部空間の上下方向の半分の高さ位置に達する配置で設けられている。又、側壁用ヒータ18は、側壁1aの周方向の全周に亘り設けられていることが好ましい。なお、側壁用ヒータ18は、図1(a)(b)に示すように側壁1aの外面に設ける構成のほか、図示しないが、側壁1aの内面に沿って設けるようにしてもよい。更に、図示しないが、側壁用ヒータ18は、蓄熱槽1の内部空間における蓄熱材2が貯留される上下方向範囲の全体に亘って設けられていてもよい。   The side wall heater 18 is provided so as to reach the height position of a half in the vertical direction of the internal space from the lower end of the internal space of the heat storage tank 1. The side wall heater 18 is preferably provided over the entire circumference of the side wall 1a. 1A and 1B, the side wall heater 18 may be provided along the inner surface of the side wall 1a, although not shown, in addition to the configuration provided on the outer surface of the side wall 1a. Further, although not shown, the side wall heater 18 may be provided over the entire range in the vertical direction in which the heat storage material 2 in the internal space of the heat storage tank 1 is stored.

側壁用ヒータ18は、たとえば、電気ヒータを用いるようにすればよい。あるいは、側壁用ヒータ18は、加熱手段3と同様に、スチームやその他の液相の熱媒体を流通させる熱媒体流路を備えた構成のヒータとしてもよい。   As the side wall heater 18, for example, an electric heater may be used. Or the heater 18 for side walls is good also as a heater of the structure provided with the heat-medium flow path which distribute | circulates steam and another liquid-phase heat medium similarly to the heating means 3. FIG.

更に、側壁用ヒータ18は、加熱手段3による蓄熱材2の加熱時、すなわち、蓄熱槽1への蓄熱時に、側壁用ヒータ18による側壁1aの加熱も一緒に行うように設定されている。   Further, the side wall heater 18 is set so that the side wall 1 a is also heated by the side wall heater 18 when the heat storage material 2 is heated by the heating means 3, that is, when heat is stored in the heat storage tank 1.

側壁用ヒータ18による側壁1aの加熱温度は、蓄熱材2が固相から液相になる温度に設定されていればよい。   The heating temperature of the side wall 1a by the side wall heater 18 may be set to a temperature at which the heat storage material 2 changes from a solid phase to a liquid phase.

これにより、加熱手段3による加熱時には、加熱手段3の上側に堆積している蓄熱材2の固相が下方から加熱されて、先ず、加熱手段3の上面に接している部分から融解して液相となる。   Thereby, at the time of the heating by the heating means 3, the solid phase of the heat storage material 2 deposited on the upper side of the heating means 3 is heated from below, and first melts from the portion in contact with the upper surface of the heating means 3 to be liquid Become a phase.

このとき、側壁用ヒータ18を一緒に運転することにより、側壁1aの内面近傍に存在している蓄熱材2の固相が溶融して、液相になる。このため、蓄熱材2の固相の堆積物は、側壁1aの内面への固着が解消される。更に、加熱手段3の上面に接する部分で生じる蓄熱材2の液相は、側壁1aの内周に沿う位置で流動して、蓄熱材2の固相の堆積物の上方へ移動する。   At this time, by operating the side wall heater 18 together, the solid phase of the heat storage material 2 existing in the vicinity of the inner surface of the side wall 1a is melted into a liquid phase. For this reason, the solid phase deposit of the heat storage material 2 is eliminated from the inner surface of the side wall 1a. Further, the liquid phase of the heat storage material 2 generated at the portion in contact with the upper surface of the heating means 3 flows at a position along the inner periphery of the side wall 1 a and moves above the solid deposit of the heat storage material 2.

その結果、蓄熱槽1では、蓄熱材2の固相の堆積物を、自重により加熱手段3の上面に押し付けることができ、その際、加熱手段3の上面と堆積物との間に形成される蓄熱材2の液相の層を薄くすることができる。これにより、加熱手段3から蓄熱材2の固相への熱伝達の効率を高めることが可能になる。   As a result, in the heat storage tank 1, the solid-phase deposit of the heat storage material 2 can be pressed against the upper surface of the heating means 3 by its own weight, and at that time, it is formed between the upper surface of the heating means 3 and the deposit. The liquid phase layer of the heat storage material 2 can be thinned. Thereby, the efficiency of heat transfer from the heating means 3 to the solid phase of the heat storage material 2 can be increased.

更に、加熱手段3の上面に接する部分に存在している蓄熱材2に、固相から液相への相変化に伴って体積膨張が生じるとしても、その体積変化分は、蓄熱材2の液相の固相上方への移動によって容易に吸収させることができる。したがって、蓄熱材2の加熱時に、側壁1aや蓄熱槽1全体に対して局所的に過大な圧力が作用する虞は防止される。   Furthermore, even if volume expansion occurs with the phase change from the solid phase to the liquid phase in the heat storage material 2 existing in the portion in contact with the upper surface of the heating means 3, the volume change is the liquid storage material 2 liquid. It can be easily absorbed by moving the phase above the solid phase. Therefore, the possibility that an excessively large pressure acts on the side wall 1a or the entire heat storage tank 1 when the heat storage material 2 is heated is prevented.

更に、不測の事態により、万一、蓄熱槽1全体が、蓄熱温度範囲(Tmin<T<Tmax)よりも温度低下して、蓄熱材2がすべて固相になった場合であっても、側壁用ヒータ18を運転することにより、蓄熱材2を上下方向の広い範囲で融解させながら、蓄熱槽1内を昇温させて、蓄熱温度範囲まで復帰させることが可能になる。 Furthermore, due to an unexpected situation, even if the entire heat storage tank 1 is lowered in temperature from the heat storage temperature range (T min <T <T max ), and the heat storage material 2 is all in a solid phase. By operating the heater 18 for the side wall, it is possible to raise the temperature in the heat storage tank 1 and return it to the heat storage temperature range while melting the heat storage material 2 in a wide range in the vertical direction.

次に、蓄熱材2について説明する。   Next, the heat storage material 2 will be described.

蓄熱材2の保有する熱を、放熱用伝熱管4a,4b,4cを流通する放熱用熱媒体5を用いて放熱させる際、放熱用伝熱管4a,4b,4cの周囲で凝固する蓄熱材2の固相が放熱用伝熱管4a,4b,4cの表面に付着すると、蓄熱材2の固相の存在によって伝熱効率が低下する。   The heat storage material 2 that solidifies around the heat transfer tubes 4a, 4b, 4c for heat dissipation when the heat stored in the heat storage material 2 is dissipated using the heat dissipation heat medium 5 flowing through the heat transfer tubes 4a, 4b, 4c. If the solid phase adheres to the surface of the heat transfer tubes 4a, 4b, 4c for heat radiation, the heat transfer efficiency is lowered due to the presence of the solid phase of the heat storage material 2.

このような伝熱効率の低下に対する対策の研究結果として、特許文献1に示されているように、放熱用伝熱管4a,4b,4cの表面へ蓄熱材2の固相が付着し難くなるようにするためには、蓄熱材2として、蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の2成分混合塩からなるものを用いることが有利であるという知見が得られている。 As a result of research on countermeasures against such a decrease in heat transfer efficiency, as shown in Patent Document 1, it is difficult for the solid phase of the heat storage material 2 to adhere to the surfaces of the heat transfer tubes 4a, 4b, 4c for heat radiation. to as thermal storage material 2, the use of those made from the heat storage temperature range (T min <T <T max ) 2 -component mixed salt of a non-eutectic composition as the solid-liquid coexisting state at the heat storage minimum temperature T min of Has been found to be advantageous.

たとえば、太陽熱発電等の高温のシステムに適用することを想定する場合、蓄熱システムに所望される蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminは150℃以上、好ましくは200℃以上となる。 For example, when assuming application to a high-temperature system such as solar thermal power generation, the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ) desired for the heat storage system is 150 ° C. or higher, preferably 200 ℃ or more.

そこで、一例として、本実施形態の蓄熱システムにおける蓄熱槽1の蓄熱温度範囲(Tmin<T<Tmax)は、蓄熱最高温度Tmaxが400℃、蓄熱最低温度Tminが250℃に設定される場合の例を以下に示す。 Therefore, as an example, the heat storage temperature range (T min <T <T max ) of the heat storage tank 1 in the heat storage system of the present embodiment is set such that the maximum heat storage temperature T max is 400 ° C. and the minimum heat storage temperature T min is 250 ° C. An example of this is shown below.

この条件に好適な蓄熱材2としては、前記特許文献1に示されている2成分系の混合塩の組み合わせのうち、たとえば、硝酸カリウム(KNO)と硝酸ナトリウム(NaNO)とを、非共晶となる組成で混合した2成分混合塩がある。 As a heat storage material 2 suitable for this condition, for example, potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) are used in combination of the binary mixed salt shown in Patent Document 1 as a non-co-polymer. There is a binary mixed salt mixed in a composition that forms crystals.

この硝酸カリウムと硝酸ナトリウムの混合物では、硝酸ナトリウムのモル分率が0.49となる組成で共晶となるので、この共晶となる組成以外の組成とし、且つ、蓄熱最低温度Tminである250℃において固液共存状態となるようにする。具体的な組成例としては、硝酸ナトリウムのモル分率が0.786(質量分率が0.755)となる組成のものを、蓄熱材2として用いる例について説明する。 In this mixture of potassium nitrate and sodium nitrate, a eutectic is formed with a composition in which the molar fraction of sodium nitrate is 0.49. Therefore, a composition other than the composition that becomes the eutectic is used, and the heat storage minimum temperature T min is 250. A solid-liquid coexistence state is established at ° C. As a specific composition example, an example in which a composition having a molar fraction of sodium nitrate of 0.786 (mass fraction of 0.755) is used as the heat storage material 2 will be described.

この蓄熱材2は、蓄熱最高温度Tmaxである400℃では、液相のみとなっており、この状態から徐々に冷却されると、274℃で固相が生じる。蓄熱材2は、更に冷却されると、固相の割合が徐々に増加しながら蓄熱最低温度Tminである250℃まで温度低下する。この冷却の際、蓄熱材2は、最も低温となる放熱用伝熱管4a,4b,4cの表面で固相を生じ、その固相が放熱用伝熱管4a,4b,4cの表面に沿って成長するが、固相は放熱用伝熱管4a,4b,4cの表面に付着し難くなっているため、蓄熱材2の流動等によって剥がれ落ちる。なお、蓄熱材2は、蓄熱最低温度Tminである250℃から更に冷却されると、234℃で蓄熱材2全体が固相になる。 The heat storage material 2 is only in the liquid phase at 400 ° C., which is the maximum heat storage temperature T max , and when it is gradually cooled from this state, a solid phase is generated at 274 ° C. When the heat storage material 2 is further cooled, the temperature decreases to 250 ° C., which is the minimum heat storage temperature T min , while the ratio of the solid phase gradually increases. During this cooling, the heat storage material 2 generates a solid phase on the surface of the heat radiating heat transfer tubes 4a, 4b, 4c having the lowest temperature, and the solid phase grows along the surface of the heat radiating heat transfer tubes 4a, 4b, 4c. However, since the solid phase is difficult to adhere to the surfaces of the heat transfer tubes 4a, 4b, and 4c for heat radiation, the solid phase is peeled off by the flow of the heat storage material 2 or the like. In addition, if the heat storage material 2 is further cooled from 250 degreeC which is the heat storage minimum temperature Tmin , the whole heat storage material 2 will be in a solid phase at 234 degreeC.

したがって、この蓄熱材2を用いた蓄熱槽1は、蓄熱最低温度Tminの250℃から274℃までの温度域では、蓄熱材2の顕熱と、蓄熱材2が固相から融解して液相になるときの潜熱とによって蓄熱が行われ、274℃から蓄熱最高温度Tmaxの400℃の温度域では、蓄熱材2の顕熱によって蓄熱が行われるようになる。 Therefore, in the heat storage tank 1 using the heat storage material 2, the sensible heat of the heat storage material 2 and the heat storage material 2 melt from the solid phase in the temperature range from 250 ° C. to 274 ° C. of the minimum heat storage temperature T min. Heat storage is performed by the latent heat at the time of phase, and heat storage is performed by sensible heat of the heat storage material 2 in a temperature range of 274 ° C. to 400 ° C. from the maximum heat storage temperature T max .

なお、蓄熱材2としては、前記と同様に蓄熱最高温度Tmaxが400℃、蓄熱最低温度Tminが250℃に設定される場合は、前記特許文献1に示されている2成分系の混合塩の組み合わせのうち、たとえば、CsNOとNaNOの混合物、LiNOとNaNOの混合物、NaNOとRbNOの混合物を用いることも可能である。 In addition, as the heat storage material 2, when the maximum heat storage temperature T max is set to 400 ° C. and the minimum heat storage temperature T min is set to 250 ° C. as described above, the mixture of the two components shown in Patent Document 1 is used. Of the salt combinations, for example, a mixture of CsNO 3 and NaNO 3, a mixture of LiNO 3 and NaNO 3, and a mixture of NaNO 3 and RbNO 3 can be used.

CsNOとNaNOの混合物を用いる場合は、NaNOのモル分率を0.902(質量分率を0.801)とし、LiNOとNaNOの混合物を用いる場合は、NaNOのモル分率を0.877(質量分率を0.898)とし、NaNOとRbNOの混合物を用いる場合は、RbNOのモル分率を0.105(質量分率を0.169)とすることにより、蓄熱最低温度Tminである250℃において固液共存状態とすることができる。 When a mixture of CsNO 3 and NaNO 3 is used, the molar fraction of NaNO 3 is 0.902 (mass fraction is 0.801), and when a mixture of LiNO 3 and NaNO 3 is used, the molar fraction of NaNO 3 When the ratio is 0.877 (mass fraction is 0.898) and a mixture of NaNO 3 and RbNO 3 is used, the molar fraction of RbNO 3 is 0.105 (mass fraction is 0.169). Thus, a solid-liquid coexistence state can be obtained at 250 ° C., which is the lowest heat storage temperature T min .

更に、蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminが280℃に設定される場合には、蓄熱材2として、前記特許文献1に示されている2成分系の混合塩の組み合わせのうち、LiBrとNaNOの混合物を用いることが可能である。この場合は、NaNOのモル分率を0.964(質量分率を0.963)とすることにより、蓄熱最低温度Tminである280℃において固液共存状態とすることができる。 Further, when the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ) is set to 280 ° C., the heat storage material 2 is a mixture of two components shown in Patent Document 1 above. Of the salt combinations, it is possible to use a mixture of LiBr and NaNO 3 . In this case, by setting the molar fraction of NaNO 3 to 0.964 (mass fraction of 0.963), a solid-liquid coexistence state can be achieved at 280 ° C., which is the lowest heat storage temperature T min .

前記のような非共晶組成の2成分混合塩を蓄熱材2として用いると、放熱用伝熱管4a,4b,4cの周囲で凝固して生じた蓄熱材2の固相は、冷却面となる伝熱面である放熱用伝熱管4a,4b,4cの表面に強く付着せず、容易にはがれ落ちるようになる。   When a binary mixed salt having a non-eutectic composition as described above is used as the heat storage material 2, the solid phase of the heat storage material 2 generated by solidification around the heat transfer tubes 4a, 4b, 4c for heat dissipation becomes a cooling surface. It does not adhere strongly to the surface of the heat transfer tubes 4a, 4b, 4c, which are heat transfer surfaces, and easily comes off.

これは、凝固しはじめる際に冷却面付近の固相率が局所的に大きくなるため、融点が比較的低い液相を形成している溶融塩が、冷却面と固相との間に入り込みながら凝固が進行するためであると考えられ、非共晶の溶融塩の固液共存領域が温度幅をもって存在することに起因すると考えられる。   This is because the solid fraction near the cooling surface increases locally when it begins to solidify, so that the molten salt forming a liquid phase with a relatively low melting point enters between the cooling surface and the solid phase. This is thought to be due to the progress of solidification, and is attributed to the existence of a solid-liquid coexistence region of non-eutectic molten salt with a temperature range.

したがって、本実施形態の蓄熱システムは、蓄熱槽1内で、蓄熱材2が液相の状態から徐々に固相が増加するように、すなわち、徐々に温度を低下させるように制御を行うことで、固相となった蓄熱材2が放熱用伝熱管4a,4b,4cの表面に固着(密着)することを、抑制することが可能になる。   Therefore, the heat storage system of the present embodiment performs control in the heat storage tank 1 so that the solid phase gradually increases from the liquid phase state of the heat storage material 2, that is, the temperature is gradually decreased. It becomes possible to suppress that the heat storage material 2 that has become a solid phase adheres (adheres) to the surface of the heat transfer tubes 4a, 4b, 4c for heat radiation.

温度計測器11は、放熱用熱媒体送出ライン10に設けられているため、放熱用伝熱管4a,4b,4cを流通した後に集合管9に一旦回収され、その後、放熱用熱媒体送出ライン10を通して熱負荷Xに送られる放熱用熱媒体5の温度を直接計測することができる。   Since the temperature measuring instrument 11 is provided in the heat-dissipating heat medium delivery line 10, it is once collected in the collecting tube 9 after flowing through the heat-dissipating heat transfer tubes 4 a, 4 b, 4 c, and then the heat-dissipating heat medium delivery line 10. The temperature of the heat-dissipating heat medium 5 sent to the heat load X through can be directly measured.

次に、制御装置12の機能の説明に沿って、本実施形態の蓄熱システムによる放熱処理について説明する。   Next, the heat dissipation process by the heat storage system of the present embodiment will be described along the description of the function of the control device 12.

制御装置12は、先ず、熱負荷Xに送る放熱用熱媒体5に所望される温度(以下、送出熱媒体温度T0という)が設定される。たとえば、前述したように、蓄熱槽1の蓄熱温度範囲が250℃から400℃、蓄熱槽1に供給される前の放熱用熱媒体5の温度が200℃である場合に、送出熱媒体温度T0は250℃というように設定される。この際、制御装置12には、送出熱媒体温度T0に対して、250℃−α℃というように、許容される温度のずれ量を設定しておくことが好ましい。これは、後述するように、放熱用熱媒体5を供給する放熱用伝熱管4a,4b,4cの数を変えると、放熱用熱媒体5と蓄熱材2が熱交換する伝熱面積が段階的に変化するため、放熱用熱媒体5の連続的な温度制御が難しいためである。   First, the control device 12 sets a desired temperature (hereinafter referred to as “sending heat medium temperature T0”) for the heat dissipating heat medium 5 sent to the heat load X. For example, as described above, when the heat storage temperature range of the heat storage tank 1 is 250 ° C. to 400 ° C. and the temperature of the heat dissipation heat medium 5 before being supplied to the heat storage tank 1 is 200 ° C., the delivery heat medium temperature T0 Is set to 250 ° C. At this time, it is preferable to set an allowable amount of temperature deviation in the control device 12 such as 250 ° C.-α ° C. with respect to the delivery heat medium temperature T0. As will be described later, when the number of heat-dissipating heat transfer tubes 4a, 4b, 4c supplying the heat-dissipating heat medium 5 is changed, the heat-transfer area in which the heat-dissipating heat medium 5 and the heat storage material 2 exchange heat is stepwise. This is because it is difficult to continuously control the temperature of the heat dissipating heat medium 5.

なお、送出熱媒体温度T0は、蓄熱槽1が蓄熱最高温度(Tmax=400℃)の状態で、放熱用熱媒体供給手段より供給される放熱用熱媒体5の全量を、放熱用伝熱管4a,4b,4cのうちの一本に流通させるときに、熱負荷Xに送られる放熱用熱媒体5の温度が、送出熱媒体温度T0となるように設定されている。 It should be noted that the heat transfer medium temperature T0 is the same as the heat transfer tube for heat dissipation, in the state where the heat storage tank 1 is at the maximum heat storage temperature ( Tmax = 400 ° C.). When circulating through one of 4a, 4b, and 4c, the temperature of the heat-dissipating heat medium 5 sent to the heat load X is set to be the sending heat medium temperature T0.

制御装置12は、本実施形態の蓄熱システムにより放熱処理を行うときには、温度計測器11より放熱用熱媒体5の温度計測値が入力されると、ある時間間隔で温度計測値と送出熱媒体温度T0との差を求め、その差が設定された温度の振れ幅(±α℃)を超過すると、弁7a,7b,7cへ開閉指令を与える機能を備える。   When the control device 12 performs the heat dissipation process by the heat storage system of the present embodiment, when the temperature measurement value of the heat dissipation heat medium 5 is input from the temperature measuring device 11, the temperature measurement value and the temperature of the heat transfer medium to be delivered at a certain time interval. A function of obtaining an opening / closing command to the valves 7a, 7b, and 7c is obtained when a difference from T0 is obtained and the difference exceeds a set temperature fluctuation range (± α ° C.).

具体的には、蓄熱槽1が蓄熱最高温度(Tmax=400℃)の状態から放熱処理を開始するときには、制御装置12は、図2(a)に示すように、放熱用伝熱管4a,4b,4cのうちの1本、たとえば、放熱用伝熱管4aに対応する弁7aのみを開状態とし、その他の弁7b,7cは閉状態とする。なお、図2(a)(b)(c)では、弁7a,7b,7cについて、開状態のものは白抜きで、閉状態のものは黒塗りで示してある。 Specifically, when the heat storage tank 1 starts the heat radiation process from the state of the maximum heat storage temperature (T max = 400 ° C.), the controller 12, as shown in FIG. Only one of 4b and 4c, for example, the valve 7a corresponding to the heat transfer tube 4a for heat dissipation is opened, and the other valves 7b and 7c are closed. In FIGS. 2A, 2B, and 2C, the valves 7a, 7b, and 7c are shown as white in the open state and black in the closed state.

この状態では、放熱用熱媒体供給手段より供給される放熱用熱媒体5は、その全量が、分配管6から放熱用伝熱管4aへ供給される。そのため、放熱用熱媒体5は、放熱用伝熱管4aを流通する間に400℃の蓄熱材2との熱交換が行われて、送出熱媒体温度T0である250℃まで加熱された状態で、集合管9に回収され、その後、放熱用熱媒体送出ライン10を経て熱負荷Xに供給される。   In this state, the entire amount of the heat dissipating heat medium 5 supplied from the heat dissipating heat medium supplying means is supplied from the distribution pipe 6 to the heat dissipating heat transfer pipe 4a. Therefore, the heat-dissipating heat medium 5 is subjected to heat exchange with the heat storage material 2 at 400 ° C. while flowing through the heat-dissipating heat transfer tube 4a, and is heated to 250 ° C., which is the sending heat medium temperature T0. It is collected in the collecting pipe 9 and then supplied to the heat load X through the heat dissipation heat medium delivery line 10.

このとき、制御装置12には、温度計測器11より、放熱用熱媒体5の250℃の温度計測値が入力される。   At this time, a temperature measurement value of 250 ° C. of the heat dissipation heat medium 5 is input to the control device 12 from the temperature measuring device 11.

前記のように、放熱用熱媒体5を1本の放熱用伝熱管4aに流通させた状態での放熱処理を継続して行うと、蓄熱材2の温度は徐々に低下する。このため、蓄熱材2と放熱用伝熱管4aを流通する放熱用熱媒体5との温度差は次第に小さくなるため、伝熱性能が低下し、蓄熱材2から放熱用熱媒体5への放熱速度が低下する。そのため、放熱用伝熱管4aを通過した後に回収される放熱用熱媒体5の温度は次第に低下するので、制御装置12に温度計測器11より入力される放熱用熱媒体5の温度計測値も250℃から徐々に低下することになる。   As described above, when the heat dissipation process is continuously performed in a state where the heat dissipation heat medium 5 is circulated through the single heat dissipation heat transfer tube 4a, the temperature of the heat storage material 2 gradually decreases. For this reason, since the temperature difference between the heat storage material 2 and the heat-dissipating heat medium 5 flowing through the heat-dissipating heat transfer tube 4a is gradually reduced, the heat transfer performance is reduced, and the heat dissipation rate from the heat storage material 2 to the heat-dissipating heat medium 5 is reduced. Decreases. Therefore, the temperature of the heat-dissipating heat medium 5 collected after passing through the heat-dissipating heat transfer tube 4a gradually decreases, so that the temperature measurement value of the heat-dissipating heat medium 5 input from the temperature measuring device 11 to the control device 12 is also 250. It gradually decreases from ℃.

その後、たとえば、蓄熱材2が350℃まで温度低下したときに、温度計測器11による放熱用熱媒体5の温度計測値が250℃−α℃未満まで低下した場合は、制御装置12は、温度計測器11からの入力に基づいて、それまで閉状態となっていた弁7b,7cのうちの一つ、たとえば、弁7bに開操作指令を与えて、図2(b)に示すように、弁7bを開操作する。   Thereafter, for example, when the temperature of the heat storage material 2 is lowered to 350 ° C., and the temperature measurement value of the heat dissipation heat medium 5 by the temperature measuring device 11 is lowered to less than 250 ° C.−α ° C., the control device 12 Based on the input from the measuring instrument 11, an opening operation command is given to one of the valves 7b and 7c that have been closed until then, for example, the valve 7b, and as shown in FIG. The valve 7b is opened.

これにより、放熱用熱媒体供給手段より分配管6へ供給される放熱用熱媒体5は、2本の放熱用伝熱管4a,4bに分配して供給されて、この2本の放熱用伝熱管4a,4bを流通する間に350℃の蓄熱材2との熱交換が行われるようになる。   Thereby, the heat dissipation heat medium 5 supplied from the heat dissipation heat medium supply means to the distribution pipe 6 is distributed and supplied to the two heat dissipation heat transfer tubes 4a and 4b, and the two heat dissipation heat transfer tubes are supplied. During the circulation of 4a and 4b, heat exchange with the heat storage material 2 at 350 ° C. is performed.

この場合、放熱用熱媒体5が蓄熱材2と熱交換する伝熱面積は、放熱処理開始時に1本の放熱用伝熱管4aのみで伝熱を行っていたときに比べて2倍に拡大される。そのため、蓄熱材2と供給される放熱用熱媒体5との温度差は放熱処理開始時よりも小さくなっていて、伝熱性能が低下しているとしても、蓄熱材2から放熱用熱媒体5への放熱速度を引き上げることができる。   In this case, the heat transfer area in which the heat-dissipating heat medium 5 exchanges heat with the heat storage material 2 is doubled compared to when heat transfer is performed with only one heat-dissipating heat transfer tube 4a at the start of heat-dissipating treatment. The Therefore, even if the temperature difference between the heat storage material 2 and the supplied heat-dissipation heat medium 5 is smaller than that at the start of the heat-dissipation process and the heat transfer performance is reduced, the heat storage material 2 and the heat-dissipation heat medium 5 The heat dissipation rate can be increased.

これにより、放熱用伝熱管4a,4bを通過した後に回収される放熱用熱媒体5の温度は、たとえば、250℃まで上昇する。この場合、制御装置12に温度計測器11より入力される放熱用熱媒体5の温度計測値も250℃に回復する。   Thereby, the temperature of the heat-dissipating heat medium 5 collected after passing through the heat-radiating heat transfer tubes 4a and 4b rises to 250 ° C., for example. In this case, the temperature measurement value of the heat dissipating heat medium 5 input to the control device 12 from the temperature measuring device 11 is also recovered to 250 ° C.

次いで、放熱用熱媒体5を2本の放熱用伝熱管4a,4bに流通させた状態での放熱処理を継続して行うと、蓄熱材2の温度は徐々に低下する。このため、蓄熱材2と放熱用伝熱管4a,4bを流通する放熱用熱媒体5との温度差はより小さくなるため、伝熱性能が低下し、蓄熱材2から放熱用熱媒体5への放熱速度が更に低下する。そのため、放熱用伝熱管4a,4bを通過した後に回収される放熱用熱媒体5の温度は次第に低下するので、制御装置12に温度計測器11より入力される放熱用熱媒体5の温度計測値も250℃から徐々に低下することになる。   Subsequently, when the heat dissipation process is continuously performed in a state where the heat dissipation heat medium 5 is circulated through the two heat dissipation heat transfer tubes 4a and 4b, the temperature of the heat storage material 2 gradually decreases. For this reason, since the temperature difference between the heat storage material 2 and the heat-dissipating heat medium 5 flowing through the heat-dissipating heat transfer tubes 4a and 4b becomes smaller, the heat transfer performance is lowered, and the heat-transfer material 2 to the heat-dissipating heat medium 5 is reduced. The heat dissipation rate is further reduced. Therefore, the temperature of the heat-dissipating heat medium 5 collected after passing through the heat-dissipating heat transfer tubes 4a and 4b gradually decreases, so the temperature measurement value of the heat-dissipating heat medium 5 input from the temperature measuring device 11 to the control device 12 The temperature gradually decreases from 250 ° C.

その後、たとえば、蓄熱材2が300℃まで温度低下したときに、温度計測器11による放熱用熱媒体5の温度計測値が250℃−α℃未満まで低下したとすると、制御装置12は、温度計測器11からの入力に基づいて、それまで閉状態となっていた弁7cに開操作指令を与えて、図2(c)に示すように、弁7cを開操作する。   Thereafter, for example, when the temperature of the heat storage material 2 is lowered to 300 ° C., if the temperature measurement value of the heat dissipation heat medium 5 by the temperature measuring instrument 11 is lowered to less than 250 ° C.−α ° C., the control device 12 Based on the input from the measuring instrument 11, an opening operation command is given to the valve 7c that has been closed until then, and the valve 7c is opened as shown in FIG.

これにより、放熱用熱媒体供給手段より分配管6へ供給される放熱用熱媒体5は、3本の放熱用伝熱管4a,4b,4cに分配して供給されて、この3本の放熱用伝熱管4a,4b,4cを流通する間に300℃の蓄熱材2との熱交換が行われるようになる。   As a result, the heat dissipation heat medium 5 supplied from the heat dissipation heat medium supply means to the distribution pipe 6 is distributed and supplied to the three heat dissipation heat transfer tubes 4a, 4b, 4c. Heat exchange with the heat storage material 2 at 300 ° C. is performed while flowing through the heat transfer tubes 4a, 4b, and 4c.

この場合、放熱用熱媒体5が蓄熱材2と熱交換する伝熱面積は、放熱処理開始時に1本の放熱用伝熱管4aのみで伝熱を行っていたときに比べて3倍に拡大される。そのため、蓄熱材2と供給される放熱用熱媒体5との温度差は放熱処理開始時よりも小さくなっていて、伝熱性能が低下しているとしても、蓄熱材2から放熱用熱媒体5への放熱速度を引き上げることができる。   In this case, the heat transfer area in which the heat-dissipating heat medium 5 exchanges heat with the heat storage material 2 is expanded by a factor of three compared to when heat transfer is performed with only one heat-dissipating heat transfer tube 4a at the start of heat-dissipating treatment. The Therefore, even if the temperature difference between the heat storage material 2 and the supplied heat-dissipation heat medium 5 is smaller than that at the start of the heat-dissipation process and the heat transfer performance is reduced, the heat storage material 2 and the heat-dissipation heat medium 5 The heat dissipation rate can be increased.

これにより、放熱用伝熱管4a,4b,4cを通過した後に回収される放熱用熱媒体5の温度は、たとえば、250℃まで上昇する。この場合、制御装置12に温度計測器11より入力される放熱用熱媒体5の温度計測値も250℃に回復する。   Thereby, the temperature of the heat-dissipating heat medium 5 collected after passing through the heat-radiating heat transfer tubes 4a, 4b, 4c rises to 250 ° C., for example. In this case, the temperature measurement value of the heat dissipating heat medium 5 input to the control device 12 from the temperature measuring device 11 is also recovered to 250 ° C.

その後は、放熱用熱媒体5を3本の放熱用伝熱管4a,4b,4cに流通させた状態での放熱処理が行われる。   Thereafter, the heat dissipation process is performed in a state where the heat dissipation heat medium 5 is circulated through the three heat dissipation heat transfer tubes 4a, 4b, and 4c.

したがって、本実施形態の蓄熱システムによれば、蓄熱槽1の蓄熱量の変化に伴って蓄熱材2の温度が変化しても、放熱用熱媒体5を流通させて蓄熱材2との熱交換を行わせる放熱用伝熱管4a,4b,4cの数を制御することで、蓄熱材2との熱交換後に回収する放熱用熱媒体5の温度の変化を、長時間に亘り250℃−α℃の範囲に保持することができる。したがって、本実施形態の蓄熱システムは、蓄熱材2との熱交換後に回収する放熱用熱媒体5の温度の安定化を図ることができて、熱負荷Xに供給する放熱用熱媒体5の温度を安定させることができる。   Therefore, according to the heat storage system of this embodiment, even if the temperature of the heat storage material 2 changes with a change in the amount of heat stored in the heat storage tank 1, the heat storage material 2 is circulated to exchange heat with the heat storage material 2. By controlling the number of heat transfer tubes 4a, 4b, and 4c for heat dissipation, the temperature change of the heat dissipation heat medium 5 recovered after the heat exchange with the heat storage material 2 can be changed to 250 ° C-α ° C over a long period of time. Can be kept in the range. Therefore, the heat storage system of the present embodiment can stabilize the temperature of the heat dissipation heat medium 5 collected after heat exchange with the heat storage material 2, and the temperature of the heat dissipation heat medium 5 supplied to the heat load X can be achieved. Can be stabilized.

なお、放熱処理が行われた本実施形態の蓄熱システムに蓄熱を行う場合は、加熱手段3の熱媒体流路14に、加熱用熱媒体供給手段より加熱用熱媒体供給ライン16を通して供給される加熱用熱媒体15を流通させるようにすればよい。これにより、加熱用熱媒体15により蓄熱槽1内の蓄熱材2が加熱される。この蓄熱処理は、熱や電力等による余剰のエネルギーがあるときに行うようにすればよい。   When heat is stored in the heat storage system of the present embodiment that has been subjected to heat dissipation processing, the heat is supplied to the heat medium flow path 14 of the heating means 3 from the heating heat medium supply means through the heating heat medium supply line 16. The heating heat medium 15 may be circulated. Thereby, the heat storage material 2 in the heat storage tank 1 is heated by the heating heat medium 15. This heat storage heat treatment may be performed when there is surplus energy such as heat or electric power.

なお、この蓄熱処理は、余剰のエネルギーの有無や、放熱処理の需要に応じて、必ずしも蓄熱槽1が蓄熱最高温度Tmaxに達するまで継続して行われなくてもよい。 In addition, this heat storage heat processing does not necessarily need to be performed continuously until the heat storage tank 1 reaches the maximum heat storage temperature Tmax depending on the presence or absence of surplus energy and the demand for heat radiation.

たとえば、蓄熱処理によって蓄熱材2の温度が350℃まで加熱された状態から放熱処理を開始する場合は、放熱処理を開始すると、図2(b)に示したように、その時点で温度計測器11による放熱用熱媒体5の温度計測値が250℃−α℃未満となる。よって、この場合、制御装置12は、温度計測器11からの入力に基づいて、弁7aに加えて弁7bも開操作した状態で、放熱処理を開始するようになる。   For example, in the case where the heat dissipation process is started from the state where the temperature of the heat storage material 2 is heated to 350 ° C. by the heat storage process, when the heat dissipation process is started, as shown in FIG. 11 is less than 250 ° C.-α ° C. Therefore, in this case, the control device 12 starts the heat dissipation process with the valve 7b opened as well as the valve 7a based on the input from the temperature measuring device 11.

[第1実施形態の第1応用例]
図3は、第1実施形態の第1応用例を示すもので、図3(a)は概略切断側面図、図3(b)は図3(a)のB−B方向矢視図、図3(c)は図3(a)のC−C方向矢視図である。
[First Application Example of First Embodiment]
3A and 3B show a first application example of the first embodiment, in which FIG. 3A is a schematic cut side view, FIG. 3B is a BB direction view of FIG. 3 (c) is a view in the direction of the arrow CC in FIG. 3 (a).

なお、図3(a)(b)(c)において、第1実施形態に示したものと同一のものには同一符号を付して、その説明を省略する。   In FIGS. 3A, 3B, and 3C, the same components as those shown in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本応用例の蓄熱システムは、第1実施形態と同様の構成において、放熱用伝熱管4a,4b,4cの表面に付着する固相の蓄熱材2を剥落させるための固相剥落手段19を更に備える構成としたものである。   The heat storage system of this application example further includes solid-phase stripping means 19 for stripping off the solid-phase heat storage material 2 adhering to the surface of the heat radiating heat transfer tubes 4a, 4b, 4c in the same configuration as the first embodiment. It is set as the structure provided.

固相剥落手段19は、蓄熱槽1の内部空間における各放熱用伝熱管4a,4b,4cの下方となる位置にそれぞれ配置された個別の窒素吹き出し管20a,20b,20cと、外部から供給される窒素を圧縮するコンプレッサ21と、コンプレッサ21の窒素送出側と各窒素吹き出し管20a,20b,20cとを接続する分岐した窒素供給ライン22と、窒素供給ライン22の各分岐部分に窒素吹き出し管20a,20b,20cに個別に対応させて設けた開閉弁23a,23b,23cとを備えた構成とされている。開閉弁23a,23b,23cは図示しない制御器に接続されていて、開閉操作が個別に制御される。   The solid-phase stripping means 19 is supplied from the outside with individual nitrogen blowing pipes 20a, 20b, and 20c respectively arranged at positions below the heat-radiating heat transfer pipes 4a, 4b, and 4c in the internal space of the heat storage tank 1. A compressor 21 for compressing nitrogen, a branched nitrogen supply line 22 connecting the nitrogen delivery side of the compressor 21 and the nitrogen blowing pipes 20a, 20b, 20c, and a nitrogen blowing pipe 20a at each branch portion of the nitrogen supply line 22. , 20b, 20c are provided with on-off valves 23a, 23b, 23c provided individually. The on-off valves 23a, 23b, 23c are connected to a controller (not shown), and the opening / closing operation is individually controlled.

窒素吹き出し管20a,20b,20cは、たとえば、図3(a)(c)に示すように、蓄熱槽1の側壁1a付近に、上方に気泡25を吹き出す吹出口24を備えている。これにより、窒素吹き出し管20a,20b,20cの吹出口24より気泡25を吹き出すと、窒素吹き出し管20a,20b,20cの上方の蓄熱材2の液相中に、図3(a)に白抜きの矢印で示すように、蓄熱槽1の側壁1a付近で気泡25の浮上に伴われて上昇し、その後、蓄熱槽1の中央付近で下降する流れが発生する。よって、この蓄熱材2の液相の流れを放熱用伝熱管4a,4b,4cに当てることで、放熱用伝熱管4a,4b,4cの表面に付着する固相の蓄熱材2の剥落を促すことができる。   For example, as shown in FIGS. 3A and 3C, the nitrogen blowing pipes 20 a, 20 b, and 20 c include a blower outlet 24 that blows out bubbles 25 in the vicinity of the side wall 1 a of the heat storage tank 1. Thereby, when the bubble 25 is blown out from the blowout port 24 of the nitrogen blowing pipes 20a, 20b, and 20c, the liquid phase of the heat storage material 2 above the nitrogen blowing pipes 20a, 20b, and 20c is outlined in FIG. As shown by the arrow, a flow that rises with the rising of the bubbles 25 near the side wall 1a of the heat storage tank 1 and then descends near the center of the heat storage tank 1 occurs. Therefore, by applying the liquid phase flow of the heat storage material 2 to the heat-dissipating heat transfer tubes 4a, 4b, 4c, the solid-state heat storage material 2 adhering to the surface of the heat-dissipating heat transfer tubes 4a, 4b, 4c is promoted. be able to.

更に、固相剥落手段19は、蓄熱槽1の内部空間で各窒素吹き出し管20a,20b,20cよりも上側で、且つ隣接する放熱用伝熱管4a,4b,4c同士の間となる位置に、仕切板26を備えて、放熱用伝熱管4a,4b,4cが配置されている領域同士を仕切ることが好ましい。この仕切板26を備える構成によれば、それぞれの窒素吹き出し管20a,20b,20cの上方で発生させる蓄熱材2の液相の流れは、仕切板26によって放熱用伝熱管4a,4b,4cが配列されている水平方向への拡散が抑制される。よって、各窒素吹き出し管20a,20b,20cでの気泡25の吹き出しに伴って発生させる蓄熱材2の液相の流れを、それぞれの上方に位置する放熱用伝熱管4a,4b,4cにより効率よく当てて、放熱用伝熱管4a,4b,4cの表面からの固相の蓄熱材2の剥落をより促進させることができる。   Furthermore, the solid phase peeling means 19 is located above the nitrogen blowing tubes 20a, 20b, 20c in the internal space of the heat storage tank 1 and at a position between the adjacent heat transfer tubes 4a, 4b, 4c for heat radiation. It is preferable to provide the partition plate 26 and partition the regions where the heat transfer tubes 4a, 4b, 4c for heat radiation are arranged. According to the configuration including the partition plate 26, the liquid phase flow of the heat storage material 2 generated above each of the nitrogen blowing tubes 20 a, 20 b, and 20 c causes the heat transfer tubes 4 a, 4 b, and 4 c for heat radiation to flow through the partition plate 26. The spread in the arranged horizontal direction is suppressed. Therefore, the flow of the liquid phase of the heat storage material 2 generated when the bubbles 25 are blown out from the nitrogen blowing pipes 20a, 20b, and 20c is efficiently performed by the heat-dissipating heat transfer pipes 4a, 4b, and 4c located above each of the heat blowing materials. It is possible to further promote the peeling of the solid-state heat storage material 2 from the surfaces of the heat transfer tubes 4a, 4b, 4c for heat radiation.

本応用例の蓄熱システムを使用して放熱処理を行う場合は、第1実施形態と同様に、蓄熱槽1から回収された放熱用熱媒体5の温度計測値が、温度計測器11より制御装置12に入力される。制御装置12は、その温度計測値に応じて、弁7a,7b,7cへ指令を与えて、放熱用熱媒体5を流通させる放熱用伝熱管4a,4b,4cの数を適宜制御する。   When performing heat dissipation processing using the heat storage system of this application example, the temperature measurement value of the heat-dissipating heat medium 5 recovered from the heat storage tank 1 is controlled by the temperature measuring device 11 as in the first embodiment. 12 is input. The control device 12 gives commands to the valves 7a, 7b, 7c according to the temperature measurement values, and appropriately controls the number of heat radiating heat transfer tubes 4a, 4b, 4c through which the heat radiating heat medium 5 flows.

更に、本応用例では、前記のように制御装置12によって放熱用熱媒体5を流通させる放熱用伝熱管4a,4b,4cの数が制御されるときには、図示しない制御器により開閉弁23a,23b,23cを開閉操作して、放熱用熱媒体5が流通する放熱用伝熱管4a,4b,4cの下方に位置する窒素吹き出し管にのみコンプレッサ21から窒素供給ライン22を通して窒素が供給されるようにする。   Further, in this application example, when the number of the heat radiating heat transfer tubes 4a, 4b, 4c through which the heat radiating heat medium 5 is circulated is controlled by the control device 12 as described above, the on / off valves 23a, 23b are controlled by a controller (not shown). , 23c is opened and closed so that nitrogen is supplied from the compressor 21 through the nitrogen supply line 22 only to the nitrogen blowing pipes located below the heat radiating heat transfer pipes 4a, 4b, 4c through which the heat radiating heat medium 5 flows. To do.

これにより、放熱用熱媒体5が流通して蓄熱材2の固相が表面で発生する放熱用伝熱管4a,4b,4cについては、窒素吹き出し管20a,20b,20cでの気泡25の吹き出しに伴って発生させる蓄熱材2の液相の流れを当てて、固相の蓄熱材2の剥落を促進させることができる。   Thereby, about the heat-radiation heat exchanger tubes 4a, 4b, and 4c in which the heat-radiating heat medium 5 flows and the solid phase of the heat storage material 2 is generated on the surface, the bubbles 25 are blown out by the nitrogen blowing tubes 20a, 20b, and 20c. The flow of the liquid phase of the heat storage material 2 to be generated can be applied to promote the peeling of the solid phase heat storage material 2.

この際、窒素供給が行われる窒素吹き出し管20a,20b,20cは、放熱用熱媒体5が流通する放熱用伝熱管4a,4b,4cの下方に位置するもののみであるため、固相剥落手段19の運転に要するエネルギーを、蓄熱槽1の内部空間の全体に蓄熱材2の液相の流れを発生させる場合に比して低減させることができる。   At this time, the nitrogen blowing pipes 20a, 20b, and 20c to which nitrogen is supplied are only located below the heat radiating heat transfer pipes 4a, 4b, and 4c through which the heat radiating heat medium 5 circulates. The energy required for the operation of 19 can be reduced as compared with the case where the liquid phase flow of the heat storage material 2 is generated in the entire internal space of the heat storage tank 1.

なお、固相剥落手段19は、間欠的に気泡25の発生量を高めて、効率よく固相の蓄熱材2を放熱用伝熱管4a,4b,4cから剥落させることがより好ましい。又、窒素を吹き出して気泡25を発生させる場合を説明したが、窒素に限らず、アルゴン等の不活性ガスを用いてもよい。   More preferably, the solid phase stripping means 19 intermittently increases the amount of bubbles 25 generated and efficiently strips the solid phase heat storage material 2 from the heat transfer tubes 4a, 4b, 4c. Moreover, although the case where the bubble 25 was blown out and the bubble 25 was generated was demonstrated, you may use inert gas, such as not only nitrogen but argon.

又、固相剥落手段19はこれに限定されるものではなく、たとえば、図示しないが、蓄熱槽1内の蓄熱材2の液相を吸入すると共に、吸入した蓄熱材2の液相を蓄熱槽1内に吐出する循環ポンプを備えて、この循環ポンプより吐出する蓄熱材2の液相によって、蓄熱材2の液相中に図3(a)に白抜きの矢印で示したと同様の流れを形成するようにしてもよい。この構成の固相剥落手段19によっても、前記と同様の効果を得ることができる。   Further, the solid phase peeling means 19 is not limited to this. For example, although not shown, the liquid phase of the heat storage material 2 in the heat storage tank 1 is sucked and the liquid phase of the sucked heat storage material 2 is stored in the heat storage tank. 1 is provided with a circulation pump that discharges the inside of the heat storage material 2, and the liquid phase of the heat storage material 2 discharged from the circulation pump causes a flow similar to that indicated by the white arrow in FIG. You may make it form. The same effect as described above can also be obtained by the solid phase peeling means 19 having this configuration.

[第1実施形態の第2応用例]
図4は第1実施形態の第2応用例を示す概要図である。
[Second Application Example of First Embodiment]
FIG. 4 is a schematic diagram showing a second application example of the first embodiment.

なお、図4において、第1実施形態に示したものと同一のものには同一符号を付して、その説明を省略する。   In FIG. 4, the same components as those shown in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本応用例の蓄熱システムは、第1実施形態と同様の構成における熱負荷Xを、放熱用熱媒体5と、別の熱媒体27との熱交換を行う熱交換器X1としたものである。   In the heat storage system of this application example, the heat load X having the same configuration as that of the first embodiment is a heat exchanger X1 that performs heat exchange between the heat dissipation heat medium 5 and another heat medium 27.

すなわち、第1実施形態で述べたように、放熱用熱媒体5は、弁7a,7b,7cが閉操作された状態のときに放熱用伝熱管4a,4b,4cの管内に滞留することを考慮して、蓄熱槽1に設定される蓄熱最高温度Tmaxにおいても性状が安定した材質のものを使用する。 That is, as described in the first embodiment, the heat dissipation heat medium 5 stays in the heat dissipation heat transfer tubes 4a, 4b, 4c when the valves 7a, 7b, 7c are closed. Considering this, a material having a stable property is used even at the maximum heat storage temperature T max set in the heat storage tank 1.

そのため、たとえば、蓄熱最高温度Tmaxが400℃である場合、その温度は、広く一般的に使用されている油系の熱媒体では使用可能な温度範囲のほぼ上限温度となる。よって、この場合は、放熱用熱媒体5として、一般的な油系の熱媒体に代えて、より高い温度で使用可能な熱媒体として、たとえば、溶融塩等を使用する必要がある。 Therefore, for example, when the maximum heat storage temperature T max is 400 ° C., the temperature is almost the upper limit temperature of the temperature range that can be used in a widely used oil-based heat medium. Therefore, in this case, it is necessary to use, for example, a molten salt as a heat medium that can be used at a higher temperature, instead of a general oil-based heat medium, as the heat dissipation heat medium 5.

一方、熱利用側の機器については、一般的な油系の熱媒体の供給が望まれる場合がある。すなわち、溶融塩は一般的に100℃程度で凝固するため、熱利用側の機器の一部分が100℃程度に温度が下がるおそれがあると、熱媒体である溶融塩が機器内で凝固する。一方、油系の熱媒体は100℃程度においても凝固することが少なく、安定的に運転できるためである。   On the other hand, for equipment on the heat utilization side, it may be desired to supply a general oil-based heat medium. That is, since the molten salt is generally solidified at about 100 ° C., if there is a risk that the temperature of a part of the device on the heat utilization side is lowered to about 100 ° C., the molten salt as a heat medium is solidified in the device. On the other hand, the oil-based heat medium is less likely to solidify even at about 100 ° C. and can be stably operated.

そこで、本応用例は、熱交換器X1が、第1流体と第2流体という2つの流体同士の熱交換を行うものとしてあり、放熱用熱媒体送出ライン10の下流側が、熱交換器X1の第1流体入口28に接続された構成となっている。   Therefore, in this application example, the heat exchanger X1 performs heat exchange between the two fluids of the first fluid and the second fluid, and the downstream side of the heat dissipation heat medium delivery line 10 is connected to the heat exchanger X1. The first fluid inlet 28 is connected.

熱交換器X1の第1流体出口29には、たとえば、循環ポンプ30を介して放熱用熱媒体供給ライン8の上流側が接続されている。したがって、本応用例では、蓄熱槽1に対する放熱用熱媒体供給手段が、この熱交換器X1及び循環ポンプ30となっている。   The first fluid outlet 29 of the heat exchanger X1 is connected, for example, to the upstream side of the heat dissipation heat medium supply line 8 via a circulation pump 30. Therefore, in this application example, the heat-dissipating heat medium supply means for the heat storage tank 1 is the heat exchanger X1 and the circulation pump 30.

熱交換器X1の第2流体入口31には、たとえば、油系としてある熱媒体27の図示しない供給手段が熱媒体供給ライン32を介して接続され、第2流体出口33には、熱媒体送出ライン34を介して図示しない熱利用側の機器が接続された構成とされている。   The second fluid inlet 31 of the heat exchanger X1 is connected to, for example, a supply means (not shown) of a heat medium 27 as an oil system via a heat medium supply line 32, and the second fluid outlet 33 is supplied with a heat medium delivery. A heat utilization side device (not shown) is connected via a line 34.

以上の構成としてある本応用例の蓄熱システムによれば、蓄熱槽1から放熱用熱媒体5への放熱処理と、蓄熱槽1への蓄熱処理は、第1実施形態と同様に行うことができて、第1実施形態と同様の効果を得ることができる。   According to the heat storage system of this application example having the above-described configuration, the heat radiation processing from the heat storage tank 1 to the heat dissipation heat medium 5 and the heat storage heat treatment to the heat storage tank 1 can be performed in the same manner as in the first embodiment. Thus, the same effect as in the first embodiment can be obtained.

更に、本応用例によれば、蓄熱槽1からの放熱によって加熱された放熱用熱媒体5は、熱交換器X1に送られて、熱媒体27を加熱する熱源として利用される。この熱交換により、熱媒体27は加熱されるが、その到達温度は、熱交換器X1に供給される放熱用熱媒体5よりも低くなる。したがって、熱媒体27は、蓄熱槽1の蓄熱最高温度Tmaxのような高温になることがないため、熱媒体27としては、一般的な油系の熱媒体を用いることができる。 Furthermore, according to this application example, the heat dissipation heat medium 5 heated by heat dissipation from the heat storage tank 1 is sent to the heat exchanger X1 and used as a heat source for heating the heat medium 27. Although the heat medium 27 is heated by this heat exchange, the temperature reached is lower than that of the heat dissipation heat medium 5 supplied to the heat exchanger X1. Therefore, since the heat medium 27 does not reach a high temperature such as the maximum heat storage temperature T max of the heat storage tank 1, a general oil-based heat medium can be used as the heat medium 27.

したがって、熱交換器X1の第2流体出口33の下流側の熱利用側の機器には、蓄熱槽1の蓄熱材2より放熱された熱を、放熱用熱媒体5と油系の熱媒体27とを介して間接的に与えることができる。しかも、熱利用側の機器についても、一般的な油系の熱媒体27の供給という要望を満たすことができる。   Accordingly, heat radiated from the heat storage material 2 of the heat storage tank 1 is transferred to the heat utilization side device downstream of the second fluid outlet 33 of the heat exchanger X1 from the heat dissipation heat medium 5 and the oil-based heat medium 27. And can be given indirectly through. Moreover, the demand for supplying a general oil-based heat medium 27 can also be satisfied for the equipment on the heat utilization side.

[第1実施形態の第3応用例]
図5は第1実施形態の第3応用例を示す概要図である。
[Third application example of the first embodiment]
FIG. 5 is a schematic diagram showing a third application example of the first embodiment.

なお、図5において、第1実施形態に示したものと同一のものには同一符号を付して、その説明を省略する。   In FIG. 5, the same components as those shown in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本応用例の蓄熱システムは、第1実施形態と同様の構成において、放熱用伝熱管4a,4b,4cを流通した後に回収される放熱用熱媒体5の温度を求める手段を、放熱用熱媒体5の温度を直接計測する温度計測器11とする構成に代えて、蓄熱材2の温度を計測する温度計測器35と、この温度計測器35からの入力を基に回収される放熱用熱媒体5の温度を演算する演算器36とにより構成したものである。   The heat storage system of this application example has the same configuration as that of the first embodiment, and means for obtaining the temperature of the heat dissipating heat medium 5 collected after flowing through the heat dissipating heat transfer tubes 4a, 4b, 4c is a heat dissipating heat medium. In place of the configuration of the temperature measuring device 11 that directly measures the temperature 5, the temperature measuring device 35 that measures the temperature of the heat storage material 2 and the heat dissipation heat medium that is recovered based on the input from the temperature measuring device 35 And a calculator 36 for calculating the temperature of 5.

ところで、図示しない放熱用熱媒体供給手段から供給される放熱用熱媒体5の初期温度が一定であれば、蓄熱材2の温度の高低に依存して、蓄熱材2と放熱用熱媒体5との温度差は決まる。又、蓄熱材2と放熱用熱媒体5との伝熱面積が一定であれば、蓄熱材2と放熱用熱媒体5との温度差の大小に依存して、蓄熱材2から放熱用熱媒体5への放熱速度は決まる。この放熱速度が決まれば、放熱用伝熱管4a,4b,4cを流通した後に回収される放熱用熱媒体5の温度は算出できる。   By the way, if the initial temperature of the heat-dissipating heat medium 5 supplied from the heat-dissipating heat medium supplying means (not shown) is constant, the heat storage material 2 and the heat-dissipating heat medium 5 depend on the temperature of the heat storage material 2. The temperature difference is determined. Further, if the heat transfer area between the heat storage material 2 and the heat dissipation heat medium 5 is constant, the heat storage material 2 and the heat dissipation heat medium depend on the temperature difference between the heat storage material 2 and the heat dissipation heat medium 5. The heat release rate to 5 is determined. If this heat dissipation rate is determined, the temperature of the heat dissipation heat medium 5 recovered after flowing through the heat transfer tubes 4a, 4b, 4c for heat dissipation can be calculated.

又、ある時点における蓄熱材2と放熱用熱媒体5との伝熱面積は、放熱用伝熱管4a,4b,4cの一本当たりの伝熱面積に、その時点で放熱用熱媒体5を流通させている放熱用伝熱管4a,4b,4cの数を掛けることで求めることができる。   In addition, the heat transfer area between the heat storage material 2 and the heat dissipation heat medium 5 at a certain time is the heat transfer area per heat transfer tube 4a, 4b, 4c for heat dissipation, and the heat transfer heat medium 5 is circulated at that time. It can be obtained by multiplying the number of the heat transfer tubes 4a, 4b, 4c for radiation.

したがって、放熱用熱媒体5の初期温度と、蓄熱材2の温度と、放熱用熱媒体5を流通させている放熱用伝熱管4a,4b,4cの数の情報を基に、放熱用伝熱管4a,4b,4cを流通した後に回収される放熱用熱媒体5の温度は演算可能になる。   Therefore, based on the information on the initial temperature of the heat-dissipating heat medium 5, the temperature of the heat storage material 2, and the number of heat-dissipating heat transfer tubes 4a, 4b, 4c through which the heat-dissipating heat medium 5 is distributed, The temperature of the heat-dissipating heat medium 5 collected after passing through 4a, 4b, 4c can be calculated.

そこで、演算器36には、前記の演算を行う演算式を入力しておく。   Therefore, an arithmetic expression for performing the above calculation is input to the calculator 36.

又、演算器36には、放熱用熱媒体5の初期温度も入力しておく。なお、放熱用熱媒体5について、初期温度の変動が想定される場合は、たとえば、放熱用熱媒体供給ライン8や分配管6に設けた図示しない温度計測器から放熱用熱媒体5の初期温度の実測値を入力するようにしてもよい。   Further, the initial temperature of the heat radiating heat medium 5 is also input to the calculator 36. In addition, when the fluctuation | variation of initial temperature is assumed about the thermal medium 5 for thermal radiation, the initial temperature of the thermal medium 5 for thermal radiation is shown, for example from the temperature measuring device which is not shown in the thermal medium supply line 8 or the distribution pipe 6 for thermal radiation. You may make it input the measured value of.

更に、演算器36は、制御装置12から、開操作状態となっている弁7a,7b,7cの数、すなわち、放熱用熱媒体5を流通させている放熱用伝熱管4a,4b,4cの数の情報が入力されるようにしてある。   Further, the calculator 36 receives the number of the valves 7a, 7b, 7c in the open operation state from the control device 12, that is, the heat transfer heat transfer tubes 4a, 4b, 4c through which the heat transfer heat medium 5 is circulated. Number information is entered.

したがって、演算器36は、温度計測器35より蓄熱材2の温度計測値が入力されると、その温度計測値と、放熱用熱媒体5の初期温度と、放熱用熱媒体5を流通している放熱用伝熱管4a,4b,4cの数の情報とを基に、放熱用伝熱管4a,4b,4cを流通した後に回収される放熱用熱媒体5の温度を算出する。その後、その算出結果が、演算器36から制御装置12に送られる。   Therefore, when the temperature measurement value of the heat storage material 2 is input from the temperature measuring device 35, the computing unit 36 distributes the temperature measurement value, the initial temperature of the heat dissipation heat medium 5, and the heat dissipation heat medium 5. Based on the information on the number of heat transfer tubes 4a, 4b, and 4c for heat dissipation, the temperature of the heat dissipating heat medium 5 collected after flowing through the heat transfer tubes 4a, 4b, and 4c for heat dissipation is calculated. Thereafter, the calculation result is sent from the computing unit 36 to the control device 12.

したがって、本応用例においても、制御装置12は、演算器36より入力される放熱用伝熱管4a,4b,4cを流通した後に回収される放熱用熱媒体5の温度の算出結果を基に、第1実施形態と同様の放熱処理を行うことができる。   Therefore, also in this application example, the control device 12 is based on the calculation result of the temperature of the heat-dissipating heat medium 5 collected after flowing through the heat-dissipating heat transfer tubes 4a, 4b, 4c input from the calculator 36. The heat dissipation process similar to 1st Embodiment can be performed.

そのため、本応用例の蓄熱システムは、第1実施形態と同様に使用して、同様の効果を得ることができる。   Therefore, the heat storage system of this application example can be used in the same manner as in the first embodiment to obtain the same effect.

なお、前記各実施形態の蓄熱システムは、蓄熱槽1に、放熱用伝熱管4a,4b,4cの表面に付着する固相の蓄熱材2を機械的に剥落させるための固相剥落手段として、特許文献1に示されたと同様の機械的な固相剥落手段を備える構成としてもよい。固相剥落手段は、たとえば、放熱用伝熱管4a,4b,4cを通す伝熱管挿通穴が形成されたスライド板や、先端が先細となったスライド部材や、先端にベアリングを設けたスライド部材を、アクチュエータにより放熱用伝熱管4a,4b,4cの表面に沿わせて往復運動させて、固相となった蓄熱材2を機械的に放熱用伝熱管4a,4b,4cの表面から剥落させる形式、等を採用すればよい。なお、この場合、放熱用伝熱管4a,4b,4cごとに個別に往復運動する固相剥落手段を備えることが好ましい。   In addition, the heat storage system of each said embodiment is as a solid-phase peeling means for mechanically peeling off the solid-phase heat storage material 2 adhering to the surface of the heat transfer tubes 4a, 4b, 4c for heat radiation in the heat storage tank 1. It is good also as a structure provided with the same mechanical solid-phase exfoliation means as was shown by patent document 1. FIG. The solid phase stripping means includes, for example, a slide plate having a heat transfer tube insertion hole through which the heat transfer tubes 4a, 4b, and 4c for heat radiation are formed, a slide member having a tapered tip, and a slide member having a bearing at the tip. The actuator is made to reciprocate along the surfaces of the heat radiating heat transfer tubes 4a, 4b, 4c and mechanically peel off the solid state heat storage material 2 from the surface of the heat radiating heat transfer tubes 4a, 4b, 4c. , Etc. may be adopted. In this case, it is preferable to provide solid-state stripping means that reciprocates individually for each of the heat transfer tubes 4a, 4b, 4c for heat radiation.

又、本発明は、前記第1実施形態と各応用例にのみ限定されるものではなく、各図に示した蓄熱槽1の上下寸法や径寸法、放熱用伝熱管4a,4b,4cの太さ、その他の各部の寸法は、図示するための便宜上のものであり、実際の寸法を反映したものではない。   Further, the present invention is not limited to the first embodiment and each application example, but the vertical size and diameter size of the heat storage tank 1 shown in each drawing, the thickness of the heat transfer tubes 4a, 4b, 4c for heat radiation. The dimensions of other parts are for convenience of illustration and do not reflect actual dimensions.

第1応用例、第2応用例、第3応用例の構成を、任意の組み合わせで複数備えた構成としてもよい。   The first application example, the second application example, and the third application example may have a plurality of configurations in arbitrary combinations.

蓄熱槽1は、放熱用伝熱管4a,4b,4cが側壁を貫通するように配置されている構成を示したが、放熱用伝熱管4a,4b,4cの配管経路は任意に設定してよい。又、蓄熱槽1の内部空間の上部寄りにおける放熱用伝熱管4a,4b,4cの配管経路は、内部空間のサイズや形状等に応じて、図示した以外の任意の配管経路としてよい。   Although the heat storage tank 1 showed the structure arrange | positioned so that the heat exchanger tube 4a, 4b, 4c for heat radiation may penetrate a side wall, you may set the piping path | route of the heat exchanger tubes 4a, 4b, 4c for heat radiation arbitrarily. . Also, the piping paths of the heat transfer tubes 4a, 4b, 4c near the upper portion of the internal space of the heat storage tank 1 may be any piping paths other than those illustrated depending on the size and shape of the internal space.

弁7a,7b,7cは、放熱用伝熱管4a,4b,4cに対する放熱用熱媒体5の供給と供給停止との切り替えを行うことができれば、開閉弁、流量調節弁等、任意の形式の弁を用いるようにしてよい。   The valves 7a, 7b, and 7c may be any type of valve such as an on-off valve and a flow rate control valve as long as the heat dissipation heat medium 5 can be supplied to and stopped from the heat transfer tubes 4a, 4b, and 4c. May be used.

弁7a,7b,7cの下流側に1本ずつの放熱用伝熱管4a,4b,4cが接続された構成を示したが、弁7a,7b,7cに複数本ずつの放熱用伝熱管を接続した構成としてもよい。   The configuration in which one heat-dissipating heat transfer tube 4a, 4b, 4c is connected to the downstream side of the valves 7a, 7b, 7c is shown, but a plurality of heat-dissipating heat transfer tubes are connected to the valves 7a, 7b, 7c. It is good also as a structure.

又、蓄熱槽1に備える放熱用伝熱管の数は、蓄熱槽1のサイズ等に応じて2本、又は、4本以上としてもよい。なお、弁によって放熱用熱媒体5の供給と供給停止とを個別に切り替えることができる放熱用伝熱管の数が多ければ多いほど、蓄熱材2と放熱用熱媒体5との伝熱面積を増減するときの段階的な変化幅を小さくするという点では好ましい。   Further, the number of heat transfer tubes for heat radiation provided in the heat storage tank 1 may be two, or four or more, depending on the size of the heat storage tank 1 or the like. In addition, the heat transfer area of the heat storage material 2 and the heat-dissipating heat medium 5 increases or decreases as the number of heat-dissipating heat transfer tubes that can be individually switched between supply and stop of the heat-dissipating heat medium 5 by the valve. This is preferable in that the stepwise change width is small.

又、放熱用熱媒体5を流通させる放熱用伝熱管4a,4b,4cの数を切り替えたときに、熱負荷Xや熱負荷としての熱交換器X1に送られる放熱用熱媒体5の急な温度変化を緩和するという観点では、集合管9の容積は大きくすることが好ましい。   Further, when the number of heat-dissipating heat transfer tubes 4a, 4b, 4c through which the heat-dissipating heat medium 5 is circulated is switched, the heat-dissipating heat medium 5 sent to the heat exchanger X1 as the heat load X or the heat load is suddenly changed. From the viewpoint of relaxing the temperature change, it is preferable to increase the volume of the collecting pipe 9.

放熱用伝熱管4a,4b,4cは、蓄熱槽1内に水平方向に配列された構成を示したが、図6(a)(b)に示すように、上下に積層配置した構成としてもよい。   Although the heat transfer tubes 4a, 4b, 4c for heat radiation have been shown to be arranged in the heat storage tank 1 in the horizontal direction, as shown in FIGS. .

蓄熱槽1の加熱手段3は、熱媒体流路14に外部から加熱用熱媒体供給ライン16と加熱用熱媒体戻しライン17を接続した構成を示したが、加熱用熱媒体供給ライン16と加熱用熱媒体戻しライン17のいずれか一方又は双方を、蓄熱槽1の中を通して配置するようにしてもよい。   The heating means 3 of the heat storage tank 1 has a configuration in which the heating medium supply line 16 and the heating medium return line 17 are connected to the heating medium channel 14 from the outside. Either or both of the heat medium return lines 17 may be arranged through the heat storage tank 1.

蓄熱材2としては、例示した非共晶組成の2成分混合塩からなるものを用いることが好ましいが、蓄熱槽1の蓄熱温度範囲で固液の相変化を生じるものであり、且つ固相の密度が液相の密度よりも大きいものであれば、単成分の塩(溶融塩)、非共晶組成の3成分以上の混合塩、共晶組成の複数成分の混合塩、その他、塩以外の任意の蓄熱材を用いるようにしてもよい。   As the heat storage material 2, it is preferable to use a material composed of the two-component mixed salt of the exemplified non-eutectic composition. However, a solid-liquid phase change occurs in the heat storage temperature range of the heat storage tank 1, and If the density is larger than the density of the liquid phase, a single component salt (molten salt), a mixed salt of three or more components of a non-eutectic composition, a mixed salt of a plurality of components of a eutectic composition, other than salts Any heat storage material may be used.

蓄熱温度範囲は、熱源、及び、熱負荷Xや、熱交換器X1に接続される熱利用機器の種類等に応じて自在に変更してよい。又、同様に、熱負荷Xや熱交換器X1に送る放熱用熱媒体5に所望される温度(送出熱媒体温度T0)も、自在に変更してよい。   The heat storage temperature range may be freely changed according to the heat source, the heat load X, the type of heat utilization device connected to the heat exchanger X1, and the like. Similarly, the temperature desired for the heat-dissipating heat medium 5 sent to the heat load X or the heat exchanger X1 (sending heat medium temperature T0) may be freely changed.

蓄熱槽1は、蓄熱温度範囲で固液の相変化を生じる蓄熱材2を入れたものであることが好ましいが、相変化を生じない蓄熱材を入れたものであってもよい。   The heat storage tank 1 preferably includes a heat storage material 2 that causes a solid-liquid phase change in a heat storage temperature range, but may include a heat storage material that does not cause a phase change.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

1 蓄熱槽、2 蓄熱材、3 加熱手段、4a,4b,4c 放熱用伝熱管、5 放熱用熱媒体、7a,7b,7c 弁、11 温度計測器(放熱用熱媒体の温度を求める手段)、12 制御装置、19 固相剥落手段、35 温度計測器(放熱用熱媒体の温度を求める手段)、36 演算器(放熱用熱媒体の温度を求める手段) DESCRIPTION OF SYMBOLS 1 Heat storage tank, 2 Thermal storage material, 3 Heating means, 4a, 4b, 4c Heat-radiation heat transfer tube, 5 Heat-radiation heat medium, 7a, 7b, 7c Valve, 11 Temperature measuring device (Means for calculating | requiring the temperature of the heat-radiation heat medium) , 12 Control device, 19 Solid phase peeling means, 35 Temperature measuring device (means for obtaining the temperature of the heat dissipation heat medium), 36 Calculator (means for obtaining the temperature of the heat dissipation heat medium)

Claims (4)

蓄熱槽と、
前記蓄熱槽に入れた蓄熱材と、
前記蓄熱槽の槽内で、前記蓄熱材よりも低温の放熱用熱媒体を流通させて前記蓄熱材との熱交換を行う複数の放熱用伝熱管と、
前記複数の放熱用伝熱管に対する前記放熱用熱媒体の供給と供給停止とを切り替える複数の弁と、
前記蓄熱槽に設けられて、前記蓄熱材に対し蓄熱用の加熱を行う加熱手段と、
前記放熱用伝熱管を流通した後に回収される前記放熱用熱媒体の温度を求める手段と、
該手段からの入力を基に、前記弁に個別の制御指令を与える制御装置とを備えること
を特徴とする蓄熱システム。
A heat storage tank,
A heat storage material placed in the heat storage tank;
In the tank of the heat storage tank, a plurality of heat dissipation heat transfer tubes that circulate a heat-dissipating heat medium lower in temperature than the heat storage material and exchange heat with the heat storage material,
A plurality of valves for switching between supply and supply stop of the heat dissipation heat medium to the plurality of heat dissipation heat transfer tubes;
A heating means provided in the heat storage tank for heating the heat storage material for heat storage;
Means for determining the temperature of the heat-dissipating heat medium recovered after circulating the heat-dissipating heat transfer tube;
A heat storage system comprising: a control device that gives an individual control command to the valve based on an input from the means.
前記蓄熱材は、前記蓄熱槽の蓄熱温度範囲で固液の相変化を生じるものとし、
前記蓄熱槽は、前記蓄熱材を入れた内部空間の上部寄りに前記放熱用伝熱管を備え、該内部空間の底部側に前記加熱手段を備えること
を特徴とする請求項1記載の蓄熱システム。
The heat storage material shall produce a solid-liquid phase change in the heat storage temperature range of the heat storage tank,
2. The heat storage system according to claim 1, wherein the heat storage tank includes the heat-dissipating heat transfer tube near an upper portion of the internal space containing the heat storage material, and includes the heating unit on a bottom side of the internal space.
前記各弁により前記放熱用熱媒体の供給と供給停止とが切り替えられる各放熱用伝熱管は、蓄熱槽の内部空間に水平方向に配列されていること
を特徴とする請求項2記載の蓄熱システム。
The heat storage system according to claim 2, wherein the heat transfer tubes for heat radiation, which are switched between supply and stop of the heat dissipation heat medium by the valves, are arranged in the horizontal direction in the internal space of the heat storage tank. .
前記各弁により前記放熱用熱媒体の供給と供給停止とが切り替えられる各放熱用伝熱管は、固相剥落手段を個別に備えること
を特徴とする請求項3記載の蓄熱システム。
4. The heat storage system according to claim 3, wherein each heat radiation heat transfer tube, which is switched between supply and stop of supply of the heat radiation heat medium by the valves, individually includes solid phase peeling means.
JP2015105233A 2015-05-25 2015-05-25 Heat storage system Active JP6477249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105233A JP6477249B2 (en) 2015-05-25 2015-05-25 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105233A JP6477249B2 (en) 2015-05-25 2015-05-25 Heat storage system

Publications (2)

Publication Number Publication Date
JP2016217663A JP2016217663A (en) 2016-12-22
JP6477249B2 true JP6477249B2 (en) 2019-03-06

Family

ID=57578228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105233A Active JP6477249B2 (en) 2015-05-25 2015-05-25 Heat storage system

Country Status (1)

Country Link
JP (1) JP6477249B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108240675A (en) * 2018-02-13 2018-07-03 天津大学 A kind of coal changes TV university capacity low temperature phase change heat reservoir and central heating system
CN109340876B (en) * 2018-11-20 2024-03-26 赵春雷 Dual-phase electromagnet heat storage device and use method thereof
JP2023000368A (en) * 2021-06-17 2023-01-04 株式会社東芝 Heat storage power generation system and power generation control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007626B4 (en) * 2011-04-18 2013-05-29 Sgl Carbon Se Latent heat storage device and operating method for a latent heat storage device
JP2014066416A (en) * 2012-09-25 2014-04-17 Sharp Corp Heat storage panel, heat storage system and construction
AU2014266638B2 (en) * 2013-05-17 2016-06-09 Ihi Corporation Heat storage system

Also Published As

Publication number Publication date
JP2016217663A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
Zhai et al. A review on phase change cold storage in air-conditioning system: Materials and applications
CN110165327B (en) Battery pack heat treatment device and phase-change material manufacturing method
Griffiths et al. Performance of chilled ceiling panels using phase change material slurries as the heat transport medium
JP7477180B2 (en) Fluid flow in the thermal storage vessel
JP6477249B2 (en) Heat storage system
JP6132015B2 (en) Heat storage system
JP6308051B2 (en) Heat storage system
CN106347702B (en) A kind of gas-jetting flow-guiding plate
CN111373204A (en) Thermal energy storage array
JP2007107773A (en) Heat accumulator, heat pump system and solar system
CN109802195A (en) Battery system and temperature control method thereof
JP6921971B2 (en) Local thermal energy consumption assembly and local thermal energy generation assembly for regional thermal energy distribution system
EP3465053B1 (en) Heat exchanger device comprising a phase-change material
Liang et al. Towards idealized thermal stratification in a novel phase change emulsion storage tank
US20200166291A1 (en) Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system
Momeni et al. Thermal performance evaluation of a compact two-fluid finned heat exchanger integrated with cold latent heat energy storage
JP2006234310A (en) Heat storage device
CN107204562A (en) A kind of high power laser heat abstractor
Zhong et al. Experimental study of downward facing boiling on a structured hemispherical surface
JP6427852B2 (en) Adjustment method of heat storage and release speed of heat storage agent
Nithyanandam et al. Design and analysis of metal foam enhanced latent thermal energy storage with embedded heat pipes for concentrating solar power plants
JP2016217664A (en) Heat storage system
JP4766428B2 (en) Boiling cooling method, boiling cooling apparatus and applied products thereof
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
JP2006105452A (en) Cogeneration system and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6477249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151