JPH08233212A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH08233212A JPH08233212A JP3647995A JP3647995A JPH08233212A JP H08233212 A JPH08233212 A JP H08233212A JP 3647995 A JP3647995 A JP 3647995A JP 3647995 A JP3647995 A JP 3647995A JP H08233212 A JPH08233212 A JP H08233212A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- cylindrical body
- heat exchanger
- tube
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、原子力及び火力発電プ
ラントに用いられる熱通過率を向上させた熱交換器に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in nuclear power plants and thermal power plants with improved heat transfer coefficient.
【0002】[0002]
【従来の技術】熱交換器の従来技術として、原子力発電
プラントに用いられている熱交換器の一種の給水加熱器
を例として取り上げて説明する。2. Description of the Related Art As a conventional heat exchanger technology, a feed water heater, which is a kind of heat exchanger used in a nuclear power plant, will be described as an example.
【0003】給水加熱器の熱通過率の向上の方法とし
て、(1)伝熱管支持板に蒸気流通孔を設ける方法(日
本原子力学会「1994年春の年会」予稿集p.44
2),(2)伝熱管にローフィン管を用いる方法(日本
機械学会論文集第427号P.527〜534)の二つ
が提案されているので、これを図2ないし図4を用いて
説明する。As a method of improving the heat transmission rate of the feed water heater, (1) a method of providing a steam flow hole in the heat transfer tube support plate (Atomic Energy Society of Japan 1994 Spring Annual Meeting Proceedings p.44)
2) and (2) two methods of using a low fin tube as a heat transfer tube (Proceedings of the Japan Society of Mechanical Engineers No. 427, P. 527 to 534) have been proposed, which will be described with reference to FIGS. 2 to 4. .
【0004】図2は原子力発電所で使用されている給水
加熱器、図3は伝熱効率向上のため中央部に蒸気流通孔
が設けられた伝熱管支持板、図4はローフィン管の横断
面図である。FIG. 2 is a feed water heater used in a nuclear power plant, FIG. 3 is a heat transfer tube support plate having a steam passage hole in the center for improving heat transfer efficiency, and FIG. 4 is a cross-sectional view of a low fin tube. Is.
【0005】図2に示すように、給水加熱器1は胴体2
の内部に伝熱管群7と伝熱管支持板3で構成されてい
る。タービンより抽出された蒸気は抽出蒸気配管14を
通って給水加熱器1内に流入する。蒸気の入口には蒸気
流入時の衝撃を緩和するために、穴開きのバッフル板1
1が設けられている。As shown in FIG. 2, the feed water heater 1 has a body 2
The heat transfer tube group 7 and the heat transfer tube support plate 3 are formed inside the. The steam extracted from the turbine flows into the feed water heater 1 through the extraction steam pipe 14. A baffle plate 1 with a hole at the steam inlet in order to absorb the impact at the time of steam inflow.
1 is provided.
【0006】一方、給水は給水入口12より流入し、伝
熱管群7を通過する間に伝熱管壁を隔てて蒸気により加
熱され、高温の給水となり、給水出口13より流出す
る。凝縮した蒸気は、ドレン水配管15aより排出され
る。On the other hand, the feed water flows in through the feed water inlet 12, is heated by the steam across the heat transfer tube wall while passing through the heat transfer tube group 7, becomes hot feed water, and flows out through the feed water outlet 13. The condensed steam is discharged from the drain water pipe 15a.
【0007】給水加熱器1を軸方向に各セクションに分
割する伝熱管支持板3の縦断面図を図3に示す。伝熱管
支持板3は、胴体2との間に、上部隙間8と周辺隙間9
を設けて、蒸気入口側のセクションから他のセクション
に蒸気が流れるようにしてあるのに加え、給水入口側伝
熱管群用孔4bと給水出口側伝熱管群用孔5bとの間に
蒸気流通孔10を設けて、蒸気を中心部に均一に流入さ
せることにより熱通過率を向上させている。FIG. 3 shows a longitudinal sectional view of a heat transfer tube support plate 3 which divides the feed water heater 1 into sections in the axial direction. The heat transfer tube support plate 3 is provided between the body 2 and the upper gap 8 and the peripheral gap 9 between them.
Is provided to allow the steam to flow from the section on the steam inlet side to the other section, and in addition, the steam flows between the heat transfer tube group hole 4b for the water supply inlet side and the heat transfer tube group hole 5b for the water supply outlet side. The holes 10 are provided to allow the steam to uniformly flow into the central portion, thereby improving the heat transmission rate.
【0008】また、図4に示すローフィン管16はフィ
ン17を多数設けることにより、伝熱面積を平滑管に比
べ3〜4倍にして熱通過率を向上させている。Further, the low fin tube 16 shown in FIG. 4 has a large number of fins 17 so that the heat transfer area is 3 to 4 times as large as that of the smooth tube to improve the heat transfer rate.
【0009】この熱通過率の向上分を、伝熱管の長さを
1/K倍に短縮することや、管径を変えずに伝熱管の本
数を1/K倍に削減することで、機器の小型化に利用す
ることが提案されている。The improvement of the heat transfer rate is achieved by shortening the length of the heat transfer tube by 1 / K times or by reducing the number of heat transfer tubes by 1 / K times without changing the tube diameter. Has been proposed for use in miniaturization.
【0010】[0010]
【発明が解決しようとする課題】しかし、熱通過率の向
上分は熱交換器の小型化に利用することに着目されてい
るが、圧力損失が増大する問題や信頼性の向上について
は考えられていない。また、機器の小型化は、熱通過率
の向上分の1乗しか効果がなく、熱通過率の向上分を十
分に活かした方法とは言えない。However, although attention is paid to the use of the improvement in heat transfer rate for downsizing of the heat exchanger, the problem of increased pressure loss and the improvement of reliability are considered. Not not. Further, the miniaturization of the device is effective only for the first power of the improvement of the heat transfer rate, and cannot be said to be a method which makes full use of the improvement of the heat transfer rate.
【0011】管径を変えずに伝熱管の本数を減らす小型
化の方法では、全流路断面積が減少するので、従来と同
じ流量を確保しようとすると流速を上げなければなら
ず、圧力損失が増大し、伝熱管やポンプに対する負荷が
大きくなる問題がある。In the miniaturization method in which the number of heat transfer tubes is reduced without changing the tube diameter, the total flow passage cross-sectional area is reduced. Therefore, in order to secure the same flow rate as in the conventional case, the flow velocity must be increased, resulting in pressure loss. And the load on the heat transfer tubes and pumps increases.
【0012】また、熱交換器内には三千ないし四千本も
の伝熱管が存在するが、伝熱管全体の健全性を考慮する
と、伝熱管の本数が少ない方がより信頼性がある。Although there are 3,000 to 4,000 heat transfer tubes in the heat exchanger, considering the soundness of the entire heat transfer tubes, the smaller number of heat transfer tubes is more reliable.
【0013】さらに、定期点検時に数千本におよぶ伝熱
管を1本1本点検していく作業は時間がかかりかつ根気
の要る作業であり、点検作業者に大きな負担がかかるた
め、点検作業を軽減し、メンテナンス性も向上させる必
要がある。Furthermore, the work of inspecting thousands of heat transfer tubes one by one at the time of regular inspection is time-consuming and patience-intensive work, and a heavy burden is placed on the inspection worker. Need to be reduced and maintainability should be improved.
【0014】本発明の目的は、熱交換率の向上分を十分
に活かし、伝熱管の本数を大幅に削減して信頼性を向上
させ、メンテナンスが容易な熱交換器の構造を提供する
ことにある。An object of the present invention is to provide a structure of a heat exchanger in which the improvement of heat exchange rate is fully utilized, the number of heat transfer tubes is greatly reduced to improve reliability, and maintenance is easy. is there.
【0015】[0015]
【課題を解決するための手段】熱交換率を向上させた熱
交換器において、熱交換器の熱通過率増倍係数Kに対
し、伝熱管の管径をt倍(1<t≦K)にし、全流路断
面積を変化させないように伝熱管の本数を従来の1/t
2 倍にまで大幅に削減した構造にすること。In a heat exchanger having an improved heat exchange rate, the heat transfer rate multiplication coefficient K of the heat exchanger is t times the diameter of the heat transfer tube (1 <t ≦ K). The number of heat transfer tubes is 1 / t of the conventional one so as not to change the total flow passage cross-sectional area.
Use a structure that has been drastically reduced to twice.
【0016】[0016]
【作用】本発明の熱交換器の構造では、伝熱管の管径を
従来のt倍にする。したがって、伝熱管1本の伝熱面積
はt倍となる。全流路断面積を変えないという条件か
ら、伝熱管の本数は1/t2 倍にまで削減されることと
なる。これにより、伝熱管全体の伝熱面積は従来に比べ
1/t倍となるが、熱通過率がK(t≦K)倍になって
いるので従来の性能は十分維持される。このように熱交
換率の向上分を十分に活かして伝熱管の本数を大幅に削
減することにより、信頼性を向上させる。In the structure of the heat exchanger of the present invention, the diameter of the heat transfer tube is t times that of the conventional one. Therefore, the heat transfer area of one heat transfer tube becomes t times. The number of heat transfer tubes is reduced to 1 / t 2 times under the condition that the total flow passage cross-sectional area is not changed. As a result, the heat transfer area of the entire heat transfer tube is 1 / t times that of the conventional one, but since the heat transfer rate is K (t ≦ K) times, the conventional performance is sufficiently maintained. In this way, the reliability is improved by fully utilizing the improvement of the heat exchange rate and greatly reducing the number of heat transfer tubes.
【0017】[0017]
【実施例】第一実施例として、本発明を、伝熱管支持板
に蒸気流通孔を設け、蒸気を中心部に均一に流入させる
ことにより、熱通過率を16%(K=1.16)向上させ
た原子炉の給水加熱器に適用した場合について以下に説
明する。なお、以下の実施例において用いる伝熱管は、
JIS規格に沿ったものを使用することとする。EXAMPLE As a first example, in the present invention, a heat transfer coefficient is 16% (K = 1.16) by providing steam passage holes in a heat transfer tube support plate and allowing steam to uniformly flow into the central portion. The case of application to the improved reactor feedwater heater will be described below. The heat transfer tubes used in the following examples are
The one that conforms to the JIS standard should be used.
【0018】図1は本実施例における伝熱管支持板の概
略図である。図1が図3と異なる点は、伝熱管群用孔4
a,5aの径が大きく、かつ孔数が大幅に削減されてい
ることである。なお、図1は左右対称となるので、1/
2対称図を用いている(図3についても同様)。FIG. 1 is a schematic view of a heat transfer tube support plate in this embodiment. 1 is different from FIG. 3 in that the heat transfer tube group hole 4 is provided.
That is, the diameters of a and 5a are large, and the number of holes is greatly reduced. In addition, since FIG. 1 is symmetrical, 1 /
A two-symmetry diagram is used (the same applies to FIG. 3).
【0019】従来の給水加熱器には外径15.88mm,
内径13.08mmの伝熱管が、全長約9mの円筒状胴体
2の内部に3600本取り付けられている。The conventional feed water heater has an outer diameter of 15.88 mm,
3,600 heat transfer tubes having an inner diameter of 13.08 mm are installed inside the cylindrical body 2 having a total length of about 9 m.
【0020】この伝熱管の代わりに、熱通過率増倍係数
K=1.16に対して外径18.0mm,内径15.2mm
(内径に対しt=1.16)の太い伝熱管を用いると、
全流路断面積を変化させないという条件から、伝熱管の
本数は926本削減できて、2674本となる。これによ
り、本実施例では図1に示すように図3の伝熱管支持板
に比べ、伝熱管支持板3の伝熱管群用孔4a,5aも径
が大きく、孔数も大幅に削減されたものとなる。Instead of this heat transfer tube, the outer diameter of 18.0 mm and the inner diameter of 15.2 mm with respect to the heat transfer coefficient multiplication coefficient K = 1.16.
If you use a thick heat transfer tube (t = 1.16 for inner diameter),
The number of heat transfer tubes can be reduced by 926 to 2674, provided that the cross-sectional area of the entire flow path is not changed. As a result, in this embodiment, as shown in FIG. 1, as compared with the heat transfer tube support plate of FIG. 3, the heat transfer tube group holes 4a and 5a of the heat transfer tube support plate 3 also have a large diameter, and the number of holes is greatly reduced. Will be things.
【0021】また、本実施例では、太くした伝熱管は従
来と同じ肉厚の伝熱管を使用している。そのため、内径
を1.16倍にしたのに対し、外径は1.13倍にとどま
っている。これにより、伝熱面積が熱効率向上分より約
3%上回って減少するので、従来の性能を維持するため
に本実施例では管長を3%長くすることで対応する。し
たがって、従来全長約9mだった給水加熱器は約9.2
7m となる。本実施例により、管径を大きくした伝熱
管6を図1に示す伝熱管支持板3の伝熱管群用孔4a,
5aにそれぞれ通して約9.27m の円筒状胴体2に取
り付けた状態を図5に示す。給水は、給水入口12を経
て給水加熱器1内に流入し、伝熱管6の管内を通って給
水出口13から後段の給水加熱器に流出するようになっ
ている。給水は、伝熱管6を通過していく過程で、抽出
蒸気配管14から給水加熱器1に導かれた抽出蒸気によ
り加熱されて、高温の給水となる。Further, in the present embodiment, the thickened heat transfer tube uses the same thickness as the conventional one. Therefore, the inner diameter was increased by 1.16 times, while the outer diameter was reduced by 1.13 times. As a result, the heat transfer area is reduced by about 3% more than the improvement in thermal efficiency, so in order to maintain the conventional performance, the pipe length is increased by 3% in this embodiment. Therefore, the conventional water heater, which had a total length of about 9 m, is about 9.2.
It will be 7m. According to the present embodiment, the heat transfer tube 6 having a large tube diameter is provided in the heat transfer tube support plate 3 shown in FIG.
FIG. 5 shows a state in which the cylindrical body 2 having a length of about 9.27 m is attached through each of the 5a. The feed water flows into the feed water heater 1 through the feed water inlet 12, passes through the inside of the heat transfer pipe 6, and flows out from the feed water outlet 13 to the feed water heater in the subsequent stage. The feed water is heated by the extraction steam guided from the extraction steam pipe 14 to the feed water heater 1 in the process of passing through the heat transfer pipe 6, and becomes high temperature feed water.
【0022】このようにして伝熱管の本数を大幅に削減
することにより、伝熱管全体で見た信頼性が大幅に向上
する。また、定期点検時に3600本の伝熱管を1本1
本点検していたのが約2700本に減少することで、大
幅に点検時間を短縮し、点検作業者の負担を小さくする
ことができる。By greatly reducing the number of heat transfer tubes in this way, the reliability of the heat transfer tube as a whole is significantly improved. In addition, at the time of regular inspection, one 3600 heat transfer tubes
By reducing the number of the actual inspections to about 2,700, the inspection time can be significantly shortened and the burden on the inspection operator can be reduced.
【0023】次に、熱通過率の向上分を給水加熱器の小
型化に利用する場合と比較すると、管径を変えずに伝熱
管を減らす方法では約500本削減することが可能であ
るが、給水加熱器の全流路断面積が変わるため従来通り
の給水流量を確保しようとすると流速を上げなければな
らず、圧力損失が増大し、伝熱管やポンプに対する負荷
が大きくなってしまう。また、伝熱管の管長を短縮する
方法では約9mの全長が約7.8m になるだけである。Next, as compared with the case where the improvement in heat transfer rate is used for downsizing of the feed water heater, it is possible to reduce about 500 tubes by the method of reducing the heat transfer tubes without changing the tube diameter. Since the cross-sectional area of the entire flow path of the feed water heater changes, it is necessary to increase the flow velocity in order to secure the conventional feed water flow rate, which increases pressure loss and increases the load on the heat transfer tubes and pumps. Also, with the method of shortening the tube length of the heat transfer tube, the total length of about 9 m is only about 7.8 m.
【0024】これら二つの方法では、熱交換率の向上分
の1乗しか効果がないのに対し、本発明では、tをKに
近い値に設定することで、熱交換率の向上分のほぼ2乗
の効果があり、メンテナンス性も良くなる。In these two methods, only the first power of the improvement of the heat exchange rate is effective, whereas in the present invention, by setting t to a value close to K, the improvement of the heat exchange rate is almost the same. There is a squared effect, and maintainability is also improved.
【0025】次に、第二実施例として、平滑な伝熱管を
図4に示すローフィン管16に置き換えることにより、
熱通過率を30%(K=1.30)向上させた原子炉の給
水加熱器に本発明を適用した場合について説明する。Next, as a second embodiment, by replacing the smooth heat transfer tube with the low fin tube 16 shown in FIG. 4,
A case where the present invention is applied to a feedwater heater of a nuclear reactor having a heat transfer rate improved by 30% (K = 1.30) will be described.
【0026】熱通過率増倍係数K=1.30に対し、フ
ィン元径19.05mm,フィン管内径16.25mm(内径
に対しt=1.24),フィン高さ1.42mm のローフ
ィン管を用いると、全流路断面積を変えないという条件
から、伝熱管の本数は1267本削減できて2338本
となる。この第二実施例でも第一実施例のように外径の
増分が内径の増分に比べて小さいが、K=1.30に対
しt=1.24とtに余裕があるため、伝熱面積の減少
分と熱通過率の増加分がほぼ等しくなり、伝熱管の管長
を変える必要がないため、従来の全長約9mの円筒状胴
体2にそのまま収納することができる。A low fin tube having a fin base diameter of 19.05 mm, a fin tube inner diameter of 16.25 mm (t = 1.24 for the inner diameter), and a fin height of 1.42 mm for a heat transfer coefficient multiplication factor K = 1.30. If the above is used, the number of heat transfer tubes can be reduced by 1267 to 2338 because the cross-sectional area of the entire flow path is not changed. Also in the second embodiment, the increment of the outer diameter is smaller than that of the inner diameter as in the first embodiment, but there is a margin of t = 1.24 with respect to K = 1.30. Is substantially equal to the increase in heat transfer rate, and since it is not necessary to change the tube length of the heat transfer tube, it can be stored as it is in the conventional cylindrical body 2 having a total length of about 9 m.
【0027】第二実施例において、熱通過率の向上分を
機器の小型化に利用した場合と比較すると、管径を変え
ずに伝熱管を減らす方法では約830本しか削減できな
い。伝熱管の管長を短縮する方法では約9mの全長が約
7mになるだけである。In the second embodiment, as compared with the case where the improvement of the heat transfer rate is used for downsizing of the equipment, the method of reducing the heat transfer tubes without changing the tube diameter can reduce only about 830 tubes. With the method of shortening the tube length of the heat transfer tube, the total length of about 9 m is only about 7 m.
【0028】このように、本発明の構造を持つ熱交換器
は、伝熱管の本数を大幅に削減することによって、メン
テナンス性を向上させているのに加え、全流路断面積が
変化していないので従来のシステムに容易に組み込むこ
とができる。また、熱交換器の製造工程で最も時間を要
する伝熱管の取り付け作業が大幅に減少するので、製造
に要する時間が大幅に短縮され、熱交換器の低コスト化
が図れる。As described above, in the heat exchanger having the structure of the present invention, the maintainability is improved by greatly reducing the number of heat transfer tubes, and the total flow passage cross-sectional area is changed. Since it does not exist, it can be easily incorporated into a conventional system. Further, since the work of mounting the heat transfer tube, which requires the most time in the manufacturing process of the heat exchanger, is greatly reduced, the time required for the manufacturing is significantly shortened, and the cost of the heat exchanger can be reduced.
【0029】[0029]
【発明の効果】本発明によれば、メンテナンスが容易で
あり、従来のシステムにも容易に組み込むことができ
る。According to the present invention, maintenance is easy and it can be easily incorporated into a conventional system.
【図1】本発明における給水加熱器の伝熱管支持板の縦
断面図。FIG. 1 is a vertical cross-sectional view of a heat transfer tube support plate of a feed water heater according to the present invention.
【図2】従来技術における給水加熱器の縦断面図。FIG. 2 is a vertical sectional view of a feed water heater according to a conventional technique.
【図3】従来技術における給水加熱器の伝熱管支持板の
縦断面図。FIG. 3 is a vertical cross-sectional view of a heat transfer tube support plate of a feed water heater according to a conventional technique.
【図4】本発明で用いるローフィン管の横断面図。FIG. 4 is a cross-sectional view of a low fin tube used in the present invention.
【図5】本発明における給水加熱器の縦断面図。FIG. 5 is a vertical cross-sectional view of the feed water heater according to the present invention.
1…給水加熱器、2…胴体、3…伝熱管支持板、4a,
4b…入口側伝熱管群用孔、5a,5b…出口側伝熱管
群用孔、6…管径を大きくした伝熱管または伝熱管群、
7…従来径の伝熱管または伝熱管群、8…上部隙間、9
…周辺隙間、10…蒸気流通孔。1 ... Water heater, 2 ... Body, 3 ... Heat transfer tube support plate, 4a,
4b ... Inlet-side heat transfer tube group hole, 5a, 5b ... Outlet-side heat transfer tube group hole, 6 ... Heat transfer tube or heat transfer tube group with increased tube diameter,
7 ... Conventional heat transfer tube or heat transfer tube group, 8 ... Upper gap, 9
… Ground gaps, 10… Steam circulation holes.
Claims (3)
多数の伝熱管、及び前記円筒状胴体の内部にあって、前
記円筒状胴体に固着し、多数の貫通孔を設けてあり、前
記貫通孔に前記多数の伝熱管をそれぞれ通すことによ
り、前記多数の伝熱管を前記円筒状胴体に支持させる機
能を持つ伝熱管支持板を有し、前記伝熱管支持板に蒸気
流通孔を設け熱通過率を向上させた熱交換器において、
前記熱交換器の熱通過率増倍係数Kに対し、前記多数の
伝熱管の管径をt倍(1<t≦K)にし、全流路断面積
を変化させないように前記伝熱管の本数を従来の1/t
2 倍にまで大幅に削減したことを特徴とする熱交換器。1. A cylindrical body, a large number of heat transfer tubes existing in the cylindrical body, and inside the cylindrical body, fixed to the cylindrical body and provided with a plurality of through holes, The heat transfer tube support plate has a function of supporting the plurality of heat transfer tubes on the cylindrical body by passing the plurality of heat transfer tubes through the through holes, and the heat transfer tube support plate is provided with a steam flow hole. In a heat exchanger with improved heat transfer rate,
The heat transfer coefficient multiplication coefficient K of the heat exchanger is increased by t times (1 <t ≦ K) the diameters of the plurality of heat transfer tubes, and the number of the heat transfer tubes is changed so as not to change the total flow passage cross-sectional area. 1 / t
Heat exchanger, characterized in that it has reduced significantly up to twice.
多数の伝熱管、及び前記円筒状胴体の内部にあって、前
記円筒状胴体に固着し、多数の貫通孔を設けてあり、前
記貫通孔に前記多数の伝熱管をそれぞれ通すことによ
り、前記多数の伝熱管を前記円筒状胴体に支持させる機
能を持つ伝熱管支持板を有し、前記伝熱管として伝熱面
積を拡大するための多数のフィンを設けたローフィン管
を用いることによって熱通過率を向上させた熱交換器に
おいて、前記熱交換器の熱通過率増倍係数Kに対し、前
記ローフィン管の管径をt倍(1<t≦K)にし、全流
路断面積を変化させないように前記ローフィン管の本数
を従来の1/t2 倍にまで大幅に削減したことを特徴と
する熱交換器。2. A cylindrical body, a large number of heat transfer tubes existing in the cylindrical body, and inside the cylindrical body, fixed to the cylindrical body and provided with a plurality of through holes. To increase the heat transfer area as the heat transfer tube by having a heat transfer tube support plate having a function of supporting the plurality of heat transfer tubes on the cylindrical body by respectively passing the plurality of heat transfer tubes through the through holes. In a heat exchanger whose heat transfer rate is improved by using a low fin tube having a large number of fins, the tube diameter of the low fin tube is multiplied by t times the heat transfer rate multiplication coefficient K of the heat exchanger. The heat exchanger is characterized in that 1 <t ≦ K) and the number of the low fin tubes is greatly reduced to 1 / t 2 times that of the conventional one so as not to change the total flow passage cross-sectional area.
面積を拡大するための多数のフィンを設けたローフィン
管を用いた熱交換器の構造。3. The structure of a heat exchanger according to claim 1, wherein a low fin tube provided with a large number of fins for expanding a heat transfer area is used as the heat transfer tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3647995A JPH08233212A (en) | 1995-02-24 | 1995-02-24 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3647995A JPH08233212A (en) | 1995-02-24 | 1995-02-24 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08233212A true JPH08233212A (en) | 1996-09-10 |
Family
ID=12470960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3647995A Pending JPH08233212A (en) | 1995-02-24 | 1995-02-24 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08233212A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116146970A (en) * | 2023-04-24 | 2023-05-23 | 厦门铭光能源科技有限公司 | Welded plate-type coal economizer |
-
1995
- 1995-02-24 JP JP3647995A patent/JPH08233212A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116146970A (en) * | 2023-04-24 | 2023-05-23 | 厦门铭光能源科技有限公司 | Welded plate-type coal economizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4191246A (en) | Device to reduce local heat flux through a heat exchanger tube | |
US5850831A (en) | Loose-tight-loose twist, twisted-tape insert solar central receiver | |
US5579836A (en) | Heat-exchanger coil assembly and complex thereof | |
JPS59122803A (en) | Reheater for steam turbine | |
JP4636906B2 (en) | Nuclear power generation system | |
KR102199055B1 (en) | System for passive heat removal from the pressurized water reactor through the steam generator | |
US4289196A (en) | Modular heat exchangers for consolidated nuclear steam generator | |
US3130780A (en) | Live steam reheater | |
JPH08233212A (en) | Heat exchanger | |
KR100286518B1 (en) | Separate Perfusion Spiral Steam Generator | |
RU2534396C1 (en) | Heat exchanger and displacer used in it | |
US4713213A (en) | Nuclear reactor plant housed in a steel pressure vessel with a gas cooled small high temperature reactor | |
Bailey | Understand spiral heat exchangers | |
Fraas | Design precepts for high-temperature heat exchangers | |
JPS6337880B2 (en) | ||
JP2963586B2 (en) | Steam generator | |
JP2006200789A (en) | Heater | |
Zorin et al. | The new generation of high-pressure heaters for steam turbine units at nuclear power plants | |
Eoh et al. | Thermal Sizing of a forced draft sodium-to-air heat exchanger and its operation strategy in KALIMER | |
JPS6086394A (en) | Heat exchanger | |
Bolton et al. | Sectional replacement of high pressure feedwater heater tubing | |
SE9702474D0 (en) | A nuclear fuel assembly | |
JPS6057290A (en) | Tank type fast breeder reactor | |
KR20000031887A (en) | Perfusion type vapor generator using double heat transfer tube | |
Huet | IMPROVEMENTS IN OR RELATING TO HEAT EXCHANGE APPARATUS |