JPH0823072B2 - Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same - Google Patents

Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same

Info

Publication number
JPH0823072B2
JPH0823072B2 JP2206907A JP20690790A JPH0823072B2 JP H0823072 B2 JPH0823072 B2 JP H0823072B2 JP 2206907 A JP2206907 A JP 2206907A JP 20690790 A JP20690790 A JP 20690790A JP H0823072 B2 JPH0823072 B2 JP H0823072B2
Authority
JP
Japan
Prior art keywords
plating
thickness
copper
water supply
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2206907A
Other languages
Japanese (ja)
Other versions
JPH0499180A (en
Inventor
山田  豊
誠 米光
浩三 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2206907A priority Critical patent/JPH0823072B2/en
Publication of JPH0499180A publication Critical patent/JPH0499180A/en
Publication of JPH0823072B2 publication Critical patent/JPH0823072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、淡水配管系、すなわち建物等の給水・給湯
系に使用される内面Snメッキ複合被覆処理銅管とその製
造方法に関し、特に銅イオン溶出防止と、メッキ層の耐
剥離性に優れた内面Snメッキ複合被覆処理銅管とその製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to an inner surface Sn-plated composite coated copper pipe used for a fresh water piping system, that is, a water supply / hot water supply system for a building and the like, and particularly to a copper manufacturing method. The present invention relates to an inner surface Sn-plated composite-coated copper tube having excellent ion elution prevention and excellent peeling resistance of a plating layer, and a method for producing the same.

[従来の技術] 上水道水の給水用配管材料としては、銅管、鋼管、ス
テンレス鋼管、塩化ビニール管等が使用されている。こ
のなかでも銅管は、長尺であってもコイル状に巻き上
げ、運搬を容易にすることが可能であり、また工事の施
工性や水、温水に対し耐食性が良好であることで広く使
用されており、建築用配管には多く使用されている。
[Prior Art] Copper pipes, steel pipes, stainless steel pipes, vinyl chloride pipes and the like are used as piping materials for supplying tap water. Among them, copper pipes are widely used because they can be rolled up in a coil shape to facilitate transportation even if they are long, and because of their workability in construction and good corrosion resistance to water and hot water. It is widely used for construction piping.

しかし、特殊な水質条件(たとえばpHが比較的低い上
水)では、銅管内表面から銅イオンが溶出し、水中の銅
濃度が厚生省の上水道水質基準である1ppm以上になるこ
とがある。また、銅イオン量が1ppm以下であっても、洗
剤の種類により、青色に着色されることがあり、水柱の
銅イオンの量は少ないほうが望ましい。この銅イオンの
溶出を減少させる方法として、Cu−Mg系合金等の開発ま
たは給水中への薬品の投入が行われてきた。しかし、合
金系では、溶解、鋳造、加工等の製造方法が煩雑とな
り、高価になる。また、給水中への薬剤の投入では薬剤
の補充、投入設備の新設等が必要であった。
However, under special water quality conditions (for example, tap water with a relatively low pH), copper ions may elute from the inner surface of the copper pipe, and the copper concentration in water may exceed 1 ppm, which is the water quality standard for tap water of the Ministry of Health and Welfare. Even if the amount of copper ions is 1 ppm or less, it may be colored blue depending on the type of detergent, and it is desirable that the amount of copper ions in the water column is small. As a method for reducing the elution of copper ions, Cu-Mg alloys have been developed or chemicals have been added to the water supply. However, in the alloy system, manufacturing methods such as melting, casting, and processing are complicated and expensive. In addition, it was necessary to replenish the chemicals and install a new injection facility when the chemicals were injected into the water supply.

これらを解決するために、銅管の内面に低融点の金属
又は合金とフラックスを被覆した後加熱することにより
合金を被覆し、耐食性を向上させたもの(特開昭60−20
0954号公報、特開昭60−200975号公報、特開昭62−6171
7号公報、特開昭62−61718号公報)、内面にCu−Snの合
金層を形成させた銅管(特開昭61−221359号公報)、銅
管内に溶融状態のメッキ金属をフローティングプラグを
用いてメッキする方法(特開昭62−61716号公報)など
が知られている。
In order to solve these problems, the inner surface of a copper tube is coated with a metal or alloy having a low melting point and a flux, and then the alloy is coated by heating to improve the corrosion resistance (JP-A-60-20).
0954, JP-A-60-200975, JP-A-62-6171
No. 7, JP-A-62-61718), a copper tube having a Cu-Sn alloy layer formed on its inner surface (JP-A-61-221359), and a molten plating metal floating in the copper tube. A method of plating using a plug (Japanese Patent Laid-Open No. 62-61716) is known.

また本発明者らは、先に銅管内表面に厚さ3μm以下
に積層されたSn結晶粒からなるSnメッキ皮膜を有する給
水・給湯用内面Snメッキ銅管を提案した(特願平2−15
2844号)。
Further, the present inventors have previously proposed an inner surface Sn-plated copper pipe for water supply / hot water supply having an Sn plating film made of Sn crystal grains laminated to the inner surface of the copper pipe to a thickness of 3 μm or less (Japanese Patent Application No. 2- 15
No. 2844).

[発明が解決しようとする課題] 上述の従来の技術は、いずてもそれなりにそれ相当の
性能が得られるものであるが、メッキ金属粉末とフラッ
クスとを銅管内面に均一に塗着し、加熱を行って皮膜を
形成することは高度な技術・熟練を必要とする作業であ
り、常に一定品質の製品を提供することは困難であっ
た。
[Problems to be Solved by the Invention] Although the above-mentioned conventional technique can obtain a performance comparable to that of the conventional technique, the plated metal powder and the flux are uniformly applied to the inner surface of the copper pipe. Forming a coating by heating requires a high level of skill and skill, and it has been difficult to always provide products of constant quality.

また、このようなメッキ手段は、管の直径に対し長さ
の短い管材には適用できるが、給水・給湯用配管のよう
な管の直径に対し長さの長い管材(通常内径15.88mm長
さ4m以上)には適用できなかった。
In addition, such plating means can be applied to pipes with a length shorter than the diameter of the pipe, but pipes with a length longer than the diameter of the pipe (usually an inner diameter of 15.88mm) 4m or more) was not applicable.

また、銅表面から銅イオンが溶出するのを避けるため
には、銅表面をSnで被覆することは公知である。しかも
ユーリックの著書に「銅イオンによる水の汚染は導管の
内面をSnで被覆することによって(いわゆるtinned cop
per)避けることができる。この被覆に孔(pore)が存
在すると、SnまたはCu−Sn金属間化合物がCuに対してカ
ソードとなって、Cuが露出した部分の腐食が促進される
ので孔は避けなければならない。」 『腐食反応とその制御』−原理と応用− CORROSION AND CORROSION CONTROL H.H.ユーリック著
産業図書(1968)p275とあるように、忌み嫌われてい
た。
Further, it is known to coat the copper surface with Sn in order to avoid elution of copper ions from the copper surface. In addition, Yurick's book states that "contamination of water by copper ions is caused by coating the inner surface of the conduit with Sn (so-called tinned cop).
per) can be avoided. The presence of pores in this coating should be avoided because Sn or Cu-Sn intermetallic compounds become the cathode for Cu and promote corrosion of exposed Cu. "Corrosion reaction and its control" -Principle and application-CORROSION AND CORROSION CONTROL HH by Yurick Sangyo Tosho (1968) p275.

しかし、本発明者らは特願平2−152844号において置
換メッキまたは化学還元メッキで形成された皮膜は、微
小孔があっても、Snの水素過電圧が高くなるため、また
は犠牲陽極効果により、銅イオンが溶出しないことを確
認し、銅管内表面に厚さ3μm以下に積層されたSn結晶
粒からなるSnメッキ皮膜を有する給水・給湯用内面Snメ
ッキ銅管を提案した。しかし、長期間使用すると銅イオ
ンの溶出が検出されることがあった。これは管内面を流
通する液体の速度等を条件が変わるためで、Snメッキ層
がエロージョンにより磨耗・剥離し、Snメッキ層の被服
率が50%以下となっていることが原因である事がわかっ
た。
However, the present inventors have found that the coating formed by displacement plating or chemical reduction plating in Japanese Patent Application No. 2-152844 has a high hydrogen overvoltage of Sn even if it has micropores, or because of the sacrificial anode effect. After confirming that copper ions do not elute, we proposed an inner surface Sn-plated copper pipe for water supply / hot water supply, which has an Sn plating film made of Sn crystal grains laminated to a thickness of 3 μm or less on the inner surface of the copper pipe. However, elution of copper ions was sometimes detected after long-term use. This is because the conditions such as the speed of the liquid flowing through the inner surface of the pipe change, and the cause is that the Sn plating layer wears and peels off due to erosion, and the coverage of the Sn plating layer is 50% or less. all right.

そこで本発明の目的は、銅管の内面を、従来考えられ
ていなかった置換メッキ法または化学還元メッキ法によ
り、厚さ3μm以下のSnメッキ層で被覆しても、長期の
使用に対しても水道水による銅イオンの溶出を軽減し、
しかも安価で取り扱い容易な内面処理銅管およびその製
造方法を提供することにある。
Therefore, an object of the present invention is to cover the inner surface of a copper pipe with a Sn plating layer having a thickness of 3 μm or less by a substitutional plating method or a chemical reduction plating method, which has not been conventionally considered, or even for long-term use. Reduces the elution of copper ions from tap water,
Moreover, it is an object of the present invention to provide an inner surface treated copper pipe which is inexpensive and easy to handle, and a manufacturing method thereof.

[課題を解決するための手段] 上記目的を達成するため、本発明者らは鋭意研究を重
ねた結果、置換メッキまたは化学還元メッキによる極め
て薄い皮膜は、たとえ微小な孔が存在する皮膜であって
も、銅イオンの溶出防止に十分な効果があること、及び
Snメッキ層の表面に酸化処理をして形成した酸化皮膜が
存在すると耐磨耗性と耐剥離性が向上することを知見し
本発明を完成するにいたった。
[Means for Solving the Problems] As a result of intensive studies conducted by the present inventors in order to achieve the above object, an extremely thin film formed by displacement plating or chemical reduction plating is a film having minute holes. However, having a sufficient effect to prevent the elution of copper ions, and
The inventors have found that the presence of an oxide film formed by the oxidation treatment on the surface of the Sn plating layer improves wear resistance and peeling resistance, and have completed the present invention.

すなわち本発明は、 (1)給水・給湯用銅管の内部表面被覆構造において、
母材である銅の上にSn置換メッキまたはSn化学還元メッ
キによるSn結晶粒が積層されたSn層と、該Sn層の上に酸
化処理をして形成したSn酸化皮膜または前記各メッキに
よるSn結晶粒が積層されたSn層を酸化処理して形成した
Sn酸化皮膜のみを有し、かつSn層の厚さとSn酸化皮膜の
厚さとの和が3μm以下ないし0.1μm以上で、Sn酸化
皮膜厚さが0.1μm以上であることを特徴とする給水・
給湯用内面複合被覆銅管。
That is, the present invention provides (1) an inner surface coating structure of a copper pipe for water supply / hot water supply,
A Sn layer in which Sn crystal grains are deposited by Sn displacement plating or Sn chemical reduction plating on copper as a base material, and an Sn oxide film formed by oxidation treatment on the Sn layer or Sn by each plating. Formed by oxidation of Sn layer with stacked crystal grains
Water supply characterized by having only Sn oxide film and having a sum of thickness of Sn layer and thickness of Sn oxide film of 3 μm or less to 0.1 μm or more and Sn oxide film thickness of 0.1 μm or more
Inner surface composite coated copper pipe for hot water supply.

(2)コイル状の銅管の端部開口部から管内部に、メッ
キ前処理液を流通させて管内部を洗浄後、置換メッキ液
または化学還元メッキ液を流通させ、厚さ3μm以下な
いし0.1μm以上のSnメッキ皮膜を銅管内面に形成させ
た後、80〜120℃の温水または水蒸気で10〜100分間前記
メッキ皮膜表面を酸化処理してSnに酸化皮膜を形成する
ことを特徴とする給水・給湯用内面複合被覆銅管の製造
方法。
(2) A plating pretreatment liquid is circulated from the end opening of the coiled copper pipe into the pipe to wash the interior of the pipe, and then a displacement plating liquid or a chemical reduction plating liquid is circulated to obtain a thickness of 3 μm or less to 0.1 μm or less. A Sn plating film having a thickness of μm or more is formed on the inner surface of the copper pipe, and then the plating film surface is oxidized with warm water or steam at 80 to 120 ° C. for 10 to 100 minutes to form an oxide film on Sn. Manufacturing method of inner surface composite coated copper pipe for water and hot water supply.

を要旨としている。Is the gist.

[作用] 本発明の構成と作用を説明する。[Operation] The configuration and operation of the present invention will be described.

本発明は、非常に薄く、たとえ微小孔が存在しても、
Sn結晶粒が積層されたSnメッキ皮膜と、さらにその上に
酸化処理をして形成したSn酸化皮膜が、銅管内面に存在
することが特徴である。
The present invention is very thin, even if micropores are present,
The Sn plating film in which Sn crystal grains are laminated and the Sn oxide film formed by oxidation treatment on the Sn plating film are characterized by being present on the inner surface of the copper tube.

結晶粒が積層されること Snの置換メッキにおいては、銅と錫との置換反応によ
って析出が進行する。第2図に示した走査電子顕微鏡の
写真から、メッキの析出形態は、(a)ないし(e)に
示すような状態で、各時間ごとに結晶粒が積層されたも
のである。この皮膜形成過程を模式的に第1図(a)な
いし(e)に示した。化学還元メッキにおいては、表面
の触媒活性により皮膜が積層される。
Stacking of crystal grains In displacement plating of Sn, precipitation proceeds due to the substitution reaction of copper and tin. From the scanning electron microscope photograph shown in FIG. 2, the deposition pattern of the plating is such that crystal grains are laminated at each time in the states shown in (a) to (e). This film forming process is schematically shown in FIGS. 1 (a) to (e). In chemical reduction plating, a film is laminated due to the catalytic activity of the surface.

メッキ皮膜の厚さ メッキ皮膜の厚さは、銅イオンの溶出を防止するため
には、0.1μm以上存在することが好ましい。また、置
換メッキの場合には、銅と錫との置換反応によって析出
が進行するため、せいぜい3μmが限度である。化学還
元メッキでは、反応が遅く、被着に長時間を要すること
および3μmを超えても銅イオンの溶出防止効果が飽和
するので、3μm以下が好ましい。
Thickness of plating film The thickness of the plating film is preferably 0.1 μm or more in order to prevent the elution of copper ions. Further, in the case of displacement plating, since the precipitation proceeds due to the substitution reaction of copper and tin, the maximum is 3 μm. In the chemical reduction plating, the reaction is slow, it takes a long time to deposit, and the effect of preventing the elution of copper ions is saturated even if the thickness exceeds 3 μm, so 3 μm or less is preferable.

銅イオンの溶出を防止するためには、銅が露出してい
ないことが最も好ましい。たとえば、ユーリックの著書
に「銅の露出部分における腐食が促進されるので孔は避
けなければならない。」とあるように、忌み嫌われてい
た。しかし、置換メッキまたは化学還元メッキで形成さ
れた皮膜は、被覆率が50%以上であれば、Snの水素過電
圧が高くなるため、または犠牲陽極効果により、銅イオ
ンが溶出しないことが推定される。本発明の特徴はたと
え銅が露出していても、置換メッキまたは化学還元メッ
キによるSnメッキをしたことによって溶出を防止できる
点にある。しかし、被覆率が50%以下ではこの効果が得
られなくなる。
In order to prevent the elution of copper ions, it is most preferable that copper is not exposed. For example, he was disliked, as Euric wrote in his book, "Pores should be avoided because they accelerate corrosion in exposed copper." However, it is presumed that the copper ion does not elute in the coating formed by displacement plating or chemical reduction plating if the coverage is 50% or more because the hydrogen overvoltage of Sn becomes high or due to the sacrificial anode effect. . A feature of the present invention is that even if copper is exposed, elution can be prevented by performing Sn plating by displacement plating or chemical reduction plating. However, if the coverage is 50% or less, this effect cannot be obtained.

Sn酸化皮膜 80〜120℃の温水または水蒸気により生成した厚さ0.1
μm以上のSn酸化皮膜は、給水・給湯系の配管に使用さ
れたとき、メッキ皮膜の耐剥離性を向上させる。メッキ
後水洗することにより酸化膜が生成するが、水洗のみで
は酸化膜の厚さが薄く、耐剥離性を向上させない。温水
または水蒸気により生成するSnの酸化皮膜は、活性化さ
れたSn表面に温水により強制的に厚さの厚い、安定な皮
膜が生成するため、耐剥離性が向上するものと考えられ
る。
Sn oxide film thickness 0.1 generated by hot water or steam of 80-120 ℃
The Sn oxide film with a thickness of μm or more improves the peeling resistance of the plating film when it is used for water supply / hot water supply piping. An oxide film is formed by washing with water after plating, but only washing with water does not improve the peeling resistance because the oxide film is thin. It is considered that the Sn oxide film formed by hot water or steam is improved in peeling resistance because the activated Sn surface is forcibly formed by hot water in a thick and stable film.

管内部に処理液を連続的に流通させること 管内部に処理液を連続的に流通させることは、管内面
の処理を行なうのは特には発明力を要しないが、給水、
給湯用銅管のような直径に対する長さの長いものに対し
ては有効である。また、処理液として置換メッキまたは
化学還元メッキを用いるのは、メッキ皮膜の析出速度が
遅いため、銅管の内面に薄い皮膜を均一に形成させる効
果がある。
Continuously circulating the treatment liquid inside the pipe Continuously circulating the treatment liquid inside the pipe does not require the invention to perform the treatment on the inner surface of the pipe.
This is effective for long diameter pipes such as copper pipes for hot water supply. Further, the use of displacement plating or chemical reduction plating as the treatment liquid has an effect of uniformly forming a thin film on the inner surface of the copper tube because the plating film deposition rate is slow.

メッキ液中のSn濃度 Sn濃度は、メッキ厚さに最も影響を及ぼすものであ
り、1g/以下では皮膜形成速度が低く、温度をあげて
長時間必要とするので工業的に不利である。20g/を越
えるとメッキ液の種類によっては溶解が飽和し、液が製
作できなくなる。
Sn Concentration in Plating Solution The Sn concentration has the greatest effect on the plating thickness, and if it is 1 g / g or less, the film formation rate is low, and the temperature is raised and it takes a long time, which is industrially disadvantageous. If it exceeds 20g /, the dissolution will be saturated depending on the type of plating solution and the solution will not be manufactured.

処理時間 置換メッキは、銅と錫との置換反応によって析出が進
行するため、露出した銅部分が少なくなれば、析出が低
下するので、皮膜厚さを制御するには処理時間を調製す
るのが好ましい。また、化学還元メッキは、メッキ液を
新しく更新すれば、厚いメッキ厚さが得られるが、皮膜
厚さを制御するには、析出速度は1μm/hr程度であるの
で、処理時間を調製するのが好ましい。
Treatment time In displacement plating, the precipitation proceeds due to the substitution reaction between copper and tin, so if the exposed copper portion is reduced, the precipitation will decrease, so it is necessary to adjust the treatment time to control the film thickness. preferable. Also, with chemical reduction plating, a thick plating thickness can be obtained by newly updating the plating solution, but in order to control the film thickness, the deposition rate is about 1 μm / hr, so the treatment time should be adjusted. Is preferred.

温度は、メッキ厚さに影響を及ぼし、温度が高いほど
メッキ速度が速くなり好ましいが、80℃以上ではメッキ
液に分解が起こるので好ましくない。
The temperature affects the plating thickness, and the higher the temperature is, the faster the plating speed becomes, which is preferable, but if the temperature is 80 ° C. or higher, the plating solution is decomposed, which is not preferable.

温水または水蒸気処理 温水または水蒸気処理は、メッキ処理された銅管内面
に温水または水蒸気を流通させ行なう。処理温度80℃以
下では酸化膜の生成に時間がかかり、工業的でない。ま
た、120℃以上となるメッキ面に生成した酸化皮膜がエ
ロージョンにより脱落することとなり、結果的に酸化皮
膜の生成が軽減され保護作用がなくなる。
Hot Water or Steam Treatment Hot water or steam treatment is performed by circulating hot water or steam through the inner surface of the plated copper pipe. When the treatment temperature is 80 ° C or lower, it takes time to form an oxide film, which is not industrial. In addition, the oxide film formed on the plated surface at 120 ° C or higher will be removed by erosion, and as a result, the oxide film will be less generated and the protective effect will be lost.

[実施例] 本発明の実施例を説明する。[Examples] Examples of the present invention will be described.

実施例1 一辺の長さが100mmの脱酸銅の板材を用意し、下記に
示す工程で第1表に示す置換メッキ液および化学還元
メッキ液を用い、液温度を60℃とし、処理時間を種々
変えたメッキを行ない、メッキ厚さが種々変化した試験
材を得た。
Example 1 A deoxidized copper plate having a side length of 100 mm was prepared, the displacement plating solution and the chemical reduction plating solution shown in Table 1 were used in the following steps, the solution temperature was 60 ° C., and the treatment time was Various platings were performed to obtain test materials with various plating thicknesses.

アルカリ脱脂→水洗→酸洗(高濃度酸性溶液)→水洗
→中和(希薄酸性溶液)→メッキ→水洗→湯洗→乾燥 得られた試験材の一部を、塩酸溶液で溶解し、重量減
少量からメッキ厚さを計算によって求め、第2表に示す
ようなメッキ厚さを有する試験材を得た。また得られた
試験材の一部を100℃の温水に48時間浸漬し、Sn酸化皮
膜を付与した後、下記の各種試験を行なった。なお、Sn
酸化皮膜の厚さは、オージェ分析装置を用い、表面から
深さ方向にスパッタしながらSnOとの分析を行ない、O
が検出されなくなる深さを測定した。
Alkaline degreasing → Washing → Pickling (high-concentration acidic solution) → Washing → Neutralization (dilute acidic solution) → Plating → Washing → Washing → Drying Some of the test materials obtained were dissolved in hydrochloric acid solution to reduce the weight. The plating thickness was calculated from the amount, and a test material having a plating thickness as shown in Table 2 was obtained. Further, a part of the obtained test material was immersed in warm water at 100 ° C. for 48 hours to apply a Sn oxide film, and then the following various tests were conducted. Note that Sn
The thickness of the oxide film was analyzed with SnO by using an Auger analyzer while sputtering from the surface in the depth direction.
The depth at which was not detected was measured.

これらの試験材を水道水中に24時間浸漬し、水道水中
に溶出した銅イオン量を、原子吸光光度分析法によって
測定した。
These test materials were immersed in tap water for 24 hours, and the amount of copper ions eluted in tap water was measured by atomic absorption spectrophotometry.

耐剥離性試験は、温水槽(15)と冷水槽(15)を
もった温水負荷試験装置(第3図)を用い、Snメッキ銅
板(試験片)を挿入し、Snメッキ側を温水槽にさらし、
温水負荷サイクルを42回行なった。温水負荷サイクル
は、80℃まで約120分間で昇温し、20分間保持した後、
約90分間で常温まで降温するものである。槽内の液はマ
グネットスターラーにより撹拌し常時流動状態とした。
For the peeling resistance test, use a hot water load tester (Fig. 3) with a hot water tank (15) and a cold water tank (15), insert a Sn-plated copper plate (test piece), and put the Sn-plated side into the hot water tank. Exposed
The hot water loading cycle was performed 42 times. In the hot water load cycle, raise the temperature to 80 ° C in about 120 minutes, hold for 20 minutes, and then
It takes about 90 minutes to cool to room temperature. The liquid in the tank was constantly stirred by a magnetic stirrer and kept in a fluid state.

剥離率は、試験片の表面を写真に撮った後、この写真
を、画像回析装置にかけることにより求めた。また温水
負荷試験した試験材を水道水中に24時間浸漬し、水道水
中に溶出した銅イオン量を、原子吸光光度分析法によっ
て測定した。
The peeling rate was determined by taking a photograph of the surface of the test piece and then applying the photograph to an image diffraction apparatus. The test material subjected to the hot water load test was immersed in tap water for 24 hours, and the amount of copper ions eluted in the tap water was measured by an atomic absorption spectrophotometric method.

それらの結果を前記第2表に示した。表中メッキ厚さ
はSn層の厚さとSn酸化皮膜の厚さの和である。
The results are shown in Table 2 above. The plating thickness in the table is the sum of the thickness of the Sn layer and the thickness of the Sn oxide film.

これらから本発明例のNo.1〜7は、Sn酸化皮膜が存在
するSnメッキ皮膜の厚さが、0.1μm以上存在するた
め、銅イオン溶出量が0.08ppm以下で、またメッキ皮膜
の剥離試験を行った後の銅イオン溶出量は、剥離試験前
とほぼ同等であり、良好である。
From these, in Nos. 1 to 7 of the present invention examples, since the Sn plating film having the Sn oxide film has a thickness of 0.1 μm or more, the elution amount of copper ions is 0.08 ppm or less, and the peeling test of the plating film is performed. The amount of copper ions eluted after carrying out the step is almost the same as that before the peeling test, which is good.

これに対し、比較例のNo.8〜11は、メッキ皮膜厚さが
0.05および0.01μmと薄いため、剥離試験後の銅イオン
溶出量が0.1〜0.4ppmと多くなった。No.12〜17は、Sn酸
化膜が存在しないため、いずれも剥離試験した後の銅イ
オン溶出量が0.1〜0.4ppmと多くなった。
On the other hand, in Comparative Examples No. 8 to 11, the plating film thickness is
Since the thickness was as thin as 0.05 and 0.01 μm, the elution amount of copper ions after the peeling test increased to 0.1 to 0.4 ppm. Nos. 12 to 17 had no Sn oxide film, and thus the elution amount of copper ions after the peeling test was as large as 0.1 to 0.4 ppm.

実施例2 外径15.88mm、肉厚0.71mm、長さ50mの脱酸銅管のコイ
ルを用意し、第1表に示した置換メッキ液および化学還
元メッキ液を銅管内部に循環させ、処理時間および処理
温度を種々変化させてメッキ厚さの異なる内面メッキ銅
管を得た。
Example 2 A coil of a deoxidized copper tube having an outer diameter of 15.88 mm, a wall thickness of 0.71 mm and a length of 50 m was prepared, and the displacement plating solution and the chemical reduction plating solution shown in Table 1 were circulated inside the copper tube for treatment. The time and the treatment temperature were variously changed to obtain inner surface plated copper tubes having different plating thicknesses.

得られた銅管について、コイルの両端および中央部か
ら長さ500mmの試験材を切り出し、メッキ皮膜の厚さお
よび銅イオン溶出試験を行なった。
With respect to the obtained copper tube, a test material having a length of 500 mm was cut out from both ends and the central part of the coil, and the thickness of the plating film and the copper ion elution test were conducted.

メッキ被覆の厚さの測定は、銅管内に塩酸溶液を充填
し、Sn層を溶解させ、重量減少量からメッキ厚さを計算
によって求めた。
The thickness of the plating coating was measured by filling a copper tube with a hydrochloric acid solution to dissolve the Sn layer, and calculating the plating thickness from the weight reduction amount.

銅イオン溶出試験は、500mmの銅管に水道水を充填・
密封し、24時間後における銅イオン溶出量を、原子吸光
光度分析法によって測定した。それらの結果を第3表に
示した。
In the copper ion elution test, tap water is filled in a 500 mm copper pipe.
After sealing and 24 hours later, the elution amount of copper ions was measured by atomic absorption spectrophotometry. The results are shown in Table 3.

また耐剥離性は、銅管の内部に温水および水道水を交
互に168時間流通させることによって試験を行ない、そ
れらの結果もまた併せて第3表に示した。表中メッキ厚
さはSn層の厚さとSn酸化皮膜の厚さの和である。
The peel resistance was tested by alternately circulating hot water and tap water inside the copper tube for 168 hours, and the results are also shown in Table 3. The plating thickness in the table is the sum of the thickness of the Sn layer and the thickness of the Sn oxide film.

処理時間および処理温度が発明の範囲内にあるNo.18
〜28は、メッキ厚として0.6μm以上、そのうち酸化皮
膜厚さが0.1μmが得られ、剥離試験後においても銅イ
オン溶出量も0.05ppm以下となり、良好である。
No. 18 with processing time and processing temperature within the scope of the invention
Nos. 28 to 28 have a plating thickness of 0.6 μm or more, of which an oxide film thickness of 0.1 μm is obtained, and the copper ion elution amount is 0.05 ppm or less even after the peeling test, which is good.

これに対し、比較例のNo.29および33は、酸化処理温
度が66℃と低いため、メッキ皮膜中の酸化皮膜の割合は
3%及び0.7%と薄いため、剥離試験後の銅イオン溶出
量が0.21および0.35ppmと高くなった。
On the other hand, in Comparative Examples Nos. 29 and 33, the oxidation treatment temperature was as low as 66 ° C, and the proportion of the oxide film in the plating film was as thin as 3% and 0.7%. Was as high as 0.21 and 0.35 ppm.

No.30ないしNo.32およびNo.34は、いずれも酸化処理
時間が5分と短いため、酸化皮膜の割合が5%以下とな
り、剥離試験後の銅イオン溶出量は0.06ppm以上となっ
た。
In No. 30 to No. 32 and No. 34, the oxidation treatment time was as short as 5 minutes, so the ratio of the oxide film was 5% or less, and the elution amount of copper ions after the peeling test was 0.06 ppm or more. .

[発明の効果] 本発明は以上説明したように構成されているので、簡
単に銅管内面へ薄い酸化皮膜を有するSnメッキ皮膜を形
成させることが可能となり、銅イオンの溶出を防止し、
しかも継手部品も従来のものをそのまま使用できるとい
う効果が奏され、産業上極めて有用である。
[Effects of the Invention] Since the present invention is configured as described above, it becomes possible to easily form a Sn plating film having a thin oxide film on the inner surface of a copper tube, and to prevent elution of copper ions,
Moreover, the effect that the conventional joint parts can be used as they are is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)(b)(c)は、本発明による皮膜の生成
過程を示す模式図であり、Sn結晶が積層される状況を示
し、第2図(a)〜(e)は本発明の置換メッキによる
Sn金属結晶が積層された構造を示す走査型顕微鏡写真図
であって、第2図(a)は1分後、第2図(b)は5分
後、第2図(c)は10分後、第2図(d)は30分後、第
2図(e)は60分後の様子を示し、第3図は、皮膜の剥
離試験を行なった温水負荷試験装置の概要図である。
FIGS. 1 (a), (b) and (c) are schematic diagrams showing a process of forming a film according to the present invention, showing a situation in which Sn crystals are laminated, and FIGS. Inventive displacement plating
FIG. 2 is a scanning micrograph showing a structure in which Sn metal crystals are laminated, wherein FIG. 2 (a) shows 1 minute later, FIG. 2 (b) shows 5 minutes later, and FIG. 2 (c) shows 10 minutes later. After that, FIG. 2 (d) shows the state after 30 minutes, FIG. 2 (e) shows the state after 60 minutes, and FIG. 3 is a schematic view of the hot water load test apparatus for which the peeling test of the film was performed.

フロントページの続き (72)発明者 河野 浩三 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (56)参考文献 特公 昭55−34862(JP,B2)Continuation of the front page (72) Kozo Kono, 3-12-12, Chiennen, Minato-ku, Nagoya, Aichi Prefecture, Sumitomo Light Metal Industry Co., Ltd. Research Laboratory (56)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】給水・給湯用銅管の内部表面被覆構造にお
いて母材である銅の上に、Sn置換メッキまたはSn化学還
元メッキによるSn結晶粒が積層されたSn層と該Sn層の上
に酸化処理して形成したSn酸化皮膜、または前記各メッ
キによるSn結晶粒が積層されたSn層を酸化処理して形成
したSn酸化皮膜のみを有し、かつSn層の厚さとSn酸化皮
膜の厚さとの和が3μm以下ないし0.1μm以上で、Sn
酸化皮膜厚さが0.1μm以上であることを特徴とする給
水・給湯用内面複合被覆銅管。
1. An Sn layer in which Sn crystal grains are deposited by Sn displacement plating or Sn chemical reduction plating on copper, which is a base material in the internal surface coating structure of a water supply / hot water supply copper pipe, and the Sn layer. Sn oxide film formed by oxidation treatment, or having a Sn oxide film formed by oxidation treatment of the Sn layer in which Sn crystal grains are laminated by each plating, and the thickness of the Sn layer and the Sn oxide film If the sum of the thickness and the thickness is 3 μm or less or 0.1 μm or more, Sn
An inner surface composite coated copper pipe for water supply and hot water supply, characterized by an oxide film thickness of 0.1 μm or more.
【請求項2】コイル状の銅管の端部開口部から管内部
に、メッキ前処理液を流通させて管内部を洗浄後、置換
メッキ液または化学還元メッキ液を流通させ、厚さ3μ
m以下ないし0.1μm以上であるSnメッキ皮膜を銅管内
面に形成させた後、80〜120℃の温水または水蒸気で10
〜100分間前記メッキ皮膜表面を酸化処理して厚さ0.1μ
m以上のSn酸化皮膜を形成することを特徴とする給水・
給湯用内面複合被覆銅管の製造方法。
2. A plating pretreatment liquid is circulated from the end opening of the coiled copper pipe into the inside of the pipe to wash the inside of the pipe, and then a displacement plating liquid or a chemical reduction plating liquid is circulated to obtain a thickness of 3 μm.
After forming a Sn plating film of m or less to 0.1 μm or more on the inner surface of the copper tube, warm water or steam at 80 to 120 ° C for 10
~ 100 minutes oxidation treatment on the surface of the plating film to a thickness of 0.1μ
Water supply characterized by forming Sn oxide film of m or more
A method of manufacturing an inner surface composite coated copper pipe for hot water supply.
JP2206907A 1990-08-06 1990-08-06 Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same Expired - Lifetime JPH0823072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206907A JPH0823072B2 (en) 1990-08-06 1990-08-06 Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206907A JPH0823072B2 (en) 1990-08-06 1990-08-06 Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0499180A JPH0499180A (en) 1992-03-31
JPH0823072B2 true JPH0823072B2 (en) 1996-03-06

Family

ID=16531047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206907A Expired - Lifetime JPH0823072B2 (en) 1990-08-06 1990-08-06 Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0823072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404194C2 (en) * 1994-02-10 1996-04-18 Reinecke Alfred Gmbh & Co Kg Fitting made of metal for drinking water, in particular of copper and its alloys with parts of zinc and lead

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534862A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Commutator

Also Published As

Publication number Publication date
JPH0499180A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
WO1997046732A1 (en) Internally tin-plated copper pipe manufacturing method
JP2004502868A (en) Improvement of zinc-aluminum alloy film forming method by immersion in molten metal bath
JPH1129887A (en) Method for preventing elution of lead from metallic piping equipment such as metallic valve and coupling
JPH0436498A (en) Surface treatment of steel wire
Fratesi et al. Corrosion resistance of Zn-Co alloy coatings
JP2544678B2 (en) Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same
JPH0823072B2 (en) Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same
JPH03229846A (en) Galvanized material and galvanizing method
US3674655A (en) Surface preparation of uranium parts
JP3005469B2 (en) Manufacturing method of long copper tube with inner tin plating
CA1153978A (en) Coating aluminium alloy with cyanide-borate before electroplating with bronze
JPH0765190B2 (en) Copper pipe for water / hot water supply having Cu-Sn alloy layer on inner surface and method for manufacturing the same
WO2005014890A1 (en) An electrolyte solution
JP2645837B2 (en) Surface treatment method of wire rope
JP2006502308A (en) Melt coating equipment
JPS61166999A (en) Method for cleaning surface of steel sheet
JP2596211B2 (en) Post-treatment method of zinc-coated steel sheet
JP3341242B2 (en) Corrosion resistant copper tube and its manufacturing method
JPS6011117B2 (en) Manufacturing method of iron-zinc alloy electroplated steel sheet
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JP3212699B2 (en) Oxidation catalyst and method for producing the same
JPH0123555B2 (en)
KR850001441B1 (en) Composition for treatment of steel zinc aluminium and alloy thereof surfaces
JPS6033897B2 (en) Manufacturing method of lead-tin alloy plated steel sheet with excellent corrosion resistance
JPH06240467A (en) Aluminum plate excellent in filiform erosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 15