JPH08227909A - Method and apparatus for measuring sliding resistance of thin metal wire - Google Patents

Method and apparatus for measuring sliding resistance of thin metal wire

Info

Publication number
JPH08227909A
JPH08227909A JP7031168A JP3116895A JPH08227909A JP H08227909 A JPH08227909 A JP H08227909A JP 7031168 A JP7031168 A JP 7031168A JP 3116895 A JP3116895 A JP 3116895A JP H08227909 A JPH08227909 A JP H08227909A
Authority
JP
Japan
Prior art keywords
capillary
thin metal
metal wire
wire
sliding resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7031168A
Other languages
Japanese (ja)
Inventor
Tomohiro Uno
智裕 宇野
Kohei Tatsumi
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7031168A priority Critical patent/JPH08227909A/en
Publication of JPH08227909A publication Critical patent/JPH08227909A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/786Means for supplying the connector to be connected in the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/851Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector the connector being supplied to the parts to be connected in the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE: To evaluate the clogging frequency of capillary effectively by varying the angle between a capillary and a thin metal wire stretched upward from the tip of the capillary, sweeping the thin metal wire passing through the inner hole of the capillary and then measuring the tensile load by means of a load gauge fixed with one end of the thin metal wire. CONSTITUTION: A load gauge 1 for measuring tension has a hook 2 fixed with one end of a thin metal wire 6. The thin metal wire 6 is passed through the through hole of a capillary 3 and swept by means of a drive system 5 in order to measure the tensile strength. Sliding resistance is then determined based on the tensile strength thus measured. The angle between the capillary 3 and the thin metal wire 6 has a significant effect on the sliding resistance. Preferably, the angle between the capillary and the thin metal wire extending from the tip thereof is set in the range of 20-160 deg.. This arrangement facilitates evaluation of the loop of thin metal wire and clogging of the capillary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子等に用いら
れる金属細線の使用性能評価に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to evaluation of use performance of thin metal wires used for semiconductor devices and the like.

【0002】[0002]

【従来の技術】現在、半導体素子上の電極と外部リード
との間を接続する技術として、金属細線によるワイヤボ
ンディング法が最も一般的であり、金または金合金の細
線(線径20〜50μm)が主として使用されている。
金細線の接合法としてはボール接合方式が一般的であ
る。その接続工程としては、まず金属細線先端を加熱溶
融して形成したボール部を、加熱した半導体素子の電極
上に超音波を印加しながら圧着接合せしめた後に、金属
細線を外部リード側までガイドして、リード上に超音波
圧着する方法である。ここで、金属細線をガイドし、電
極に接合するためには、キャピラリと呼ばれる冶具が必
要であり、これは通常はアルミナおよびルビーで作製さ
れている。
2. Description of the Related Art At present, a wire bonding method using a metal thin wire is the most common technique for connecting an electrode on a semiconductor element and an external lead, and a gold or gold alloy thin wire (wire diameter 20 to 50 μm). Is mainly used.
A ball bonding method is generally used as a method for bonding the thin gold wires. In the connection process, first, the ball portion formed by heating and melting the tip of the thin metal wire is pressure-bonded to the heated electrode of the semiconductor element while applying ultrasonic waves, and then the thin metal wire is guided to the external lead side. Then, ultrasonic bonding is performed on the lead. Here, a jig called a capillary is required to guide the thin metal wire and bond it to the electrode, which is usually made of alumina and ruby.

【0003】最近の半導体素子の高集積化、薄型化の傾
向により、金属細線が満足すべき特性も多様化してお
り、例えば、高密度配線および狭ピッチに対応するため
金属細線の長尺化、細線化あるいは高ループ化、さらに
半導体素子の薄型化を可能にすべく低ループ化などが要
求されている。これらの要求に対応するために、接続さ
れた金属細線のループ形状(高さ、直線性、垂れなど)
を制御することが肝要である。そこで、金属細線の機械
的特性の開発あるいはボンディング技術の向上などが図
られ、ループ形状の改善が進んでいる。
Due to the recent trend toward higher integration and thinner semiconductor devices, the characteristics to be satisfied by metal thin wires are also diversified. For example, the length of metal thin wires is increased to cope with high-density wiring and narrow pitch. There are demands for thinner lines, higher loops, and lower loops to enable thinner semiconductor devices. To meet these demands, the loop shape (height, linearity, sagging, etc.) of connected metal wires.
It is essential to control. Therefore, the development of the mechanical characteristics of the thin metal wire or the improvement of the bonding technique has been attempted to improve the loop shape.

【0004】[0004]

【発明が解決しようとする課題】狭ピッチで金属細線を
接続すると隣接する金属細線の接触による不良や、垂れ
による半導体素子との接触不良などが問題となる場合が
多く、形状のばらつきを数十μmの範囲で抑えることが
要求されている。さらに、強制的なループ形成を繰り返
したときに、金属細線の摩耗に起因するキャピラリの穴
詰まりなどが問題視されている。
When thin metal wires are connected at a narrow pitch, problems often occur due to contact between adjacent thin metal wires, contact failure with a semiconductor element due to sagging, and variations in shape of several tens. It is required to suppress in the range of μm. Furthermore, when forced loop formation is repeated, problems such as clogging of the capillaries due to wear of the thin metal wires are considered a problem.

【0005】ループ形成時における金属細線の制御性の
判断としては、ボンディングを大量に実施し、そのルー
プ形状を測定する方法が一般的であるが、評価に時間を
要し、しかも再現性の良い結果を得るためには、ボンデ
ィング装置の整備および接合条件の確認などが必要であ
る。また、キャピラリの詰まり具合についての判断も、
金属細線のボンディングを大量に行った結果としての詰
まり頻度の調査あるいはキャピラリ観察などに頼らざる
を得なかった。
To determine the controllability of the thin metal wires during loop formation, a method is generally used in which a large amount of bonding is performed and the loop shape is measured, but it takes time to evaluate and good reproducibility is obtained. In order to obtain the results, it is necessary to maintain the bonding equipment and check the bonding conditions. Also, the judgment about the clogging of the capillaries,
There was no choice but to rely on the investigation of the clogging frequency as a result of a large amount of bonding of fine metal wires or the observation of capillaries.

【0006】このような技術の現状から、ループ制御性
およびキャピラリの詰まり頻度などを効果的に評価する
手法が必要であり、本発明はその装置および方法を提供
する。
From the current state of the art, a method for effectively evaluating the loop controllability and the clogging frequency of the capillaries is required, and the present invention provides an apparatus and method therefor.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記の課
題を解決すべく調査を行った結果。金属細線のループ形
状を数十μmの範囲で厳密に制御したり、またキャピラ
リ穴詰まりを抑制するためには、キャピラリ内で金属細
線を掃引したときの抵抗(以下では摺動抵抗と呼ぶ)と
相関があることを確認し、金属細線とキャピラリとの摺
動抵抗を容易に評価できる手法を見出した。
Means for Solving the Problems The present inventors have conducted an investigation to solve the above problems. In order to strictly control the loop shape of the thin metal wire within a range of several tens of μm and to suppress the clogging of the capillary hole, the resistance when sweeping the thin metal wire in the capillary (hereinafter referred to as sliding resistance) It was confirmed that there was a correlation, and a method for easily evaluating the sliding resistance between the thin metal wire and the capillary was found.

【0008】本発明はこのような知見に基づくものであ
って、以下の構成を要旨とする。すなわち、(1)金属
細線を固定する冶具を有する荷重計と、その下方に垂ら
した金属細線を通すキャピラリ、そのキャピラリの角度
を変えられる角度調節系、さらに前記の荷重計もしくは
キャピラリ保持部を駆動する駆動系から構成されること
を特徴とする金属細線の摺動抵抗測定装置、であり、
(2)キャピラリ先端から上方に引張った金属細線とキ
ャピラリのなす角度を20度から160度の範囲に設定
し、キャピラリ内部穴を貫通させた金属細線を掃引させ
て、金属細線の一端を固定した荷重計により引張荷重を
測定することを特徴とする金属細線の摺動抵抗測定方法
である。
The present invention is based on such knowledge and has the following structures. That is, (1) a load meter having a jig for fixing a thin metal wire, a capillary through which a thin metal wire hangs down, an angle adjustment system capable of changing the angle of the capillary, and further the load meter or the capillary holding portion is driven. A sliding resistance measuring device for a thin metal wire, characterized in that it comprises a drive system that
(2) The angle between the thin metal wire pulled upward from the tip of the capillary and the capillary is set in the range of 20 to 160 degrees, and the thin metal wire penetrating the inner hole of the capillary is swept to fix one end of the thin metal wire. A method for measuring sliding resistance of a thin metal wire, which comprises measuring a tensile load with a load meter.

【0009】[0009]

【作用】以下に、半導体素子に関する本発明の構成につ
いてさらに説明する。本発明に係る測定系の構成の一例
を示したものが図1である。荷重計1は張力を測定する
ものであり、そのフック2に金属細線6の一端を結び付
けてある。金属細線6はキャピラリ3の貫通穴を通し、
駆動系5により金属細線を掃引して引張強度を測定し、
その値からキャピラリとの摺動抵抗を判定する。この金
属細線の掃引としては、荷重計1の移動あるいはキャピ
ラリ3の固定部の移動のどちらでも可能である。
The structure of the present invention relating to the semiconductor device will be further described below. FIG. 1 shows an example of the configuration of the measurement system according to the present invention. The load cell 1 measures tension, and one end of a thin metal wire 6 is tied to the hook 2 thereof. The thin metal wire 6 passes through the through hole of the capillary 3,
Sweep the thin metal wire by the drive system 5 to measure the tensile strength,
The sliding resistance with the capillary is determined from the value. The sweep of the thin metal wire can be performed either by moving the load meter 1 or moving the fixed portion of the capillary 3.

【0010】キャピラリ3と金属細線6とのなす角度a
は、摺動抵抗に大きな影響を及ぼす。測定時における、
キャピラリ先端から出ている金属細線とキャピラリとの
なす角度aについて、適正な角度範囲として、20度か
ら160度が好ましい。20度未満では、抵抗の測定値
が0.1gf以下と小さく精度良く測定するのが困難であ
り、160度を超えると抵抗値は非常に大きく、実際の
ボンディング工程において推測される摺動抵抗との差が
大きくなるからである。さらに、金属細線の線径、強
度、表面状態、あるいはキャピラリの材質、先端形状な
どにより、摺動抵抗の角度依存性は大きく異なるが、上
記角度範囲であれば、摺動抵抗の測定が可能である。さ
らに測定中は、一定に保持した状態で測定することが好
ましい。
The angle a formed by the capillary 3 and the thin metal wire 6
Has a great influence on the sliding resistance. At the time of measurement,
With respect to the angle a formed by the thin metal wire protruding from the tip of the capillary and the capillary, a suitable angle range is preferably 20 to 160 degrees. If it is less than 20 degrees, the measured resistance value is 0.1 gf or less and it is difficult to measure it accurately. If it exceeds 160 degrees, the resistance value is very large and the sliding resistance estimated in the actual bonding process is This is because the difference between Furthermore, the angle dependence of the sliding resistance varies greatly depending on the wire diameter, strength, surface condition of the thin metal wire, the material of the capillary, the tip shape, etc., but it is possible to measure the sliding resistance within the above angle range. is there. Further, during the measurement, it is preferable to perform the measurement while keeping it constant.

【0011】ボンディング時の摺動抵抗の要因として
は、金属細線とキャピラリ内壁との摩擦抵抗、金属細線
の変形抵抗などが考えられ、しかもこれらの抵抗は、金
属細線の機械的特性および表面状態、キャピラリの先端
形状、内壁状態などが相互に影響を及ぼし合っており、
個々の因子を分離して評価することは困難である。本発
明に関わる方法は、これらの要因を総合的に評価してい
るものであり、実際のボンディング時の摺動抵抗に近い
挙動を再現している。
The friction resistance between the metal thin wire and the inner wall of the capillary, the deformation resistance of the metal thin wire, and the like are considered as factors of the sliding resistance at the time of bonding, and these resistances are the mechanical characteristics and surface condition of the metal thin wire, The shape of the tip of the capillary and the state of the inner wall affect each other,
It is difficult to separate and evaluate individual factors. The method according to the present invention comprehensively evaluates these factors and reproduces the behavior close to the sliding resistance during actual bonding.

【0012】[0012]

【実施例】以下、実施例について説明する。金属細線と
しては、純度が99.9重量%以上の高純度の金線であ
り、線径が30μmまで伸線した金細線を用いた。本発
明の手法によりキャピラリとの摺動抵抗として測定した
引張強度を用いた。金細線としては強度が大きく異なる
2種類を準備し、キャピラリとしては先端形状および内
壁状態が異なる2種類A,Bを使用した。
EXAMPLES Examples will be described below. As the metal fine wire, a high-purity gold wire having a purity of 99.9% by weight or more, and a gold thin wire drawn to a wire diameter of 30 μm was used. The tensile strength measured as the sliding resistance with the capillary by the method of the present invention was used. Two types of gold wires having significantly different strengths were prepared, and two types of capillaries A and B having different tip shapes and inner wall states were used.

【0013】さらに、上記測定による引張強度とルーピ
ング特性の関係を調べるために、市販の自動ボンディン
グ装置を使用して、金細線の先端に形成したボール部を
アルミ電極とリードフレーム上にそれぞれ接合した。投
影機を用いて、ループ高さとしては最高部位の高さを測
定し、またワイヤ曲がりとしては接合部を結ぶ直線から
のずれを、50本のループで測定した。表1では、ルー
プ高さのばらつきが小さく、しかもループ曲がりが少な
いものを、ループ形状が良好であると判断し、○で表示
し、一方、ループのばらつきがあり不安定であるもの、
またはワイヤ曲がりが50μm以上で顕著なものは、不
良であると判定し、×で表示した。
Further, in order to investigate the relationship between the tensile strength and the looping characteristics measured as described above, a ball portion formed at the tip of the thin gold wire was bonded to the aluminum electrode and the lead frame, respectively, using a commercially available automatic bonding device. . Using a projector, the height of the highest part was measured as the loop height, and the deviation from the straight line connecting the joints was measured as the wire bending with 50 loops. In Table 1, those with a small loop height variation and a small loop bending are judged as having a good loop shape, and are displayed with a circle, while those with a loop variation and being unstable,
Alternatively, when the wire bend is not less than 50 μm and is remarkable, it is judged as defective and indicated by x.

【0014】測定結果を表1に示してあり、金細線とし
ては表面状態および粗度などが異なる4種類A,B,
C,Dで比較し、キャピラリとしては先端形状および内
壁状態が異なる2種類P,Qで比較した。
The measurement results are shown in Table 1, and four types A, B, having different surface states and roughness as the gold fine wire,
C and D were compared, and two types of capillaries P and Q having different tip shapes and inner wall states were compared.

【0015】実施例1から4は金細線による比較であ
り、摺動抵抗が低い場合はループ形状が良好であった。
実施例4の金属細線は引張強度が高く、ボンディング実
験においてもキャピラリ詰まりが発生するまでの接続数
が短く、実施例1の場合の約3割ほど少ない回数でキャ
ピラリ詰まりによる不良が発生した。また、実施例5
で、抵抗値が高いキャピラリを用いると、ループ形状も
不良となる。これらの結果からも、本発明法により測定
した摺動抵抗値はループ特性と相関があることが確認さ
れた。また抵抗測定における、金属細線とキャピラリと
の角度の適正範囲があり、実施例7では抵抗値が小さす
ぎ、また、実施例8,9では抵抗値が高すぎて、金細線
による差を評価することはできない。
Examples 1 to 4 are comparisons using fine gold wires, and when the sliding resistance was low, the loop shape was good.
The thin metal wire of Example 4 had a high tensile strength, and the number of connections before the capillary clogging occurred was short even in the bonding experiment, and the defect due to the capillary clogging occurred about 30% less than in the case of Example 1. Example 5
However, if a capillary having a high resistance value is used, the loop shape also becomes defective. From these results, it was confirmed that the sliding resistance value measured by the method of the present invention has a correlation with the loop characteristics. Further, there is an appropriate range of the angle between the metal thin wire and the capillary in the resistance measurement, the resistance value is too small in Example 7, and the resistance value is too high in Examples 8 and 9, and the difference due to the gold wire is evaluated. It is not possible.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上説明したように本発明法によれば、
金属細線とキャピラリとの摺動抵抗の測定が可能とな
り、金属細線のループ形状およびキャピラリの穴詰まり
などを評価することが容易となる。
As described above, according to the method of the present invention,
It is possible to measure the sliding resistance between the thin metal wire and the capillary, and it becomes easy to evaluate the loop shape of the thin metal wire and the clogging of the capillary.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a measuring device.

【符号の説明】 1 荷重計 2 ワイヤ固定冶具 3 キャピラリ 4 角度調節器 5 駆動系 6 金属細線 7 記録計 a 金属細線とキャピラリとの角度[Explanation of symbols] 1 load meter 2 wire fixing jig 3 capillary 4 angle adjuster 5 drive system 6 metal fine wire 7 recorder a angle between metal fine wire and capillary

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属細線を固定する冶具を有する荷重計
とその下方に垂らした金属細線を通すキャピラリ、その
キャピラリの角度を変えられる角度調節系、さらに前記
の荷重計もしくはキャピラリ保持部を駆動する駆動系か
ら構成されることを特徴とする金属細線の摺動抵抗測定
装置。
1. A load meter having a jig for fixing a thin metal wire, a capillary through which a thin metal wire hangs down, an angle adjusting system capable of changing the angle of the capillary, and further the load meter or the capillary holding portion is driven. A sliding resistance measuring device for a thin metal wire, which comprises a drive system.
【請求項2】 キャピラリ先端から上方に引張った金属
細線とキャピラリのなす角度を20度から160度の範
囲に設定し、キャピラリ内部穴を貫通させた金属細線を
掃引させて、金属細線の一端を固定した荷重計により引
張荷重を測定することを特徴とする金属細線の摺動抵抗
測定方法。
2. The angle between the metal thin wire pulled upward from the tip of the capillary and the capillary is set in the range of 20 degrees to 160 degrees, and the metal thin wire penetrating through the inner hole of the capillary is swept so that one end of the metal thin wire is swept. A method for measuring sliding resistance of a thin metal wire, which comprises measuring a tensile load with a fixed load meter.
JP7031168A 1995-02-20 1995-02-20 Method and apparatus for measuring sliding resistance of thin metal wire Pending JPH08227909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7031168A JPH08227909A (en) 1995-02-20 1995-02-20 Method and apparatus for measuring sliding resistance of thin metal wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7031168A JPH08227909A (en) 1995-02-20 1995-02-20 Method and apparatus for measuring sliding resistance of thin metal wire

Publications (1)

Publication Number Publication Date
JPH08227909A true JPH08227909A (en) 1996-09-03

Family

ID=12323916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7031168A Pending JPH08227909A (en) 1995-02-20 1995-02-20 Method and apparatus for measuring sliding resistance of thin metal wire

Country Status (1)

Country Link
JP (1) JPH08227909A (en)

Similar Documents

Publication Publication Date Title
US4925083A (en) Ball bonding method and apparatus for performing the method
KR100283501B1 (en) Semiconductor device and manufacturing method thereof and semiconductor device and manufacturing method thereof
US7735711B2 (en) Method of testing bonded connections, and a wire bonder
JP5008014B2 (en) Wire bonding apparatus and method for wire clamping, automatic ball forming method, and wire bonding part
JP3504448B2 (en) Semiconductor device
US20150008251A1 (en) Method and apparatus for measuring a free air ball size during wire bonding
EP2208801A1 (en) Bonding wire
JPH08227909A (en) Method and apparatus for measuring sliding resistance of thin metal wire
JPH03208354A (en) Semiconductor device and manufacture thereof
US10607959B2 (en) Discharge examination device, wire-bonding apparatus, and discharge examination method
US20040079790A1 (en) Method for determining optimum bond parameters when bonding with a wire bonder
JPS6369243A (en) Method and apparatus for testing tensile strength of wire bonding of micro-miniature solid state device
Gonzalez et al. The effect of ultrasonic frequency on fine pitch aluminum wedge wirebond
US11515285B2 (en) Methods of optimizing clamping of a semiconductor element against a support structure on a wire bonding machine, and related methods
CN100516826C (en) Method for checking the quality of a wedge bond
TWI534918B (en) Methods and systems for compensating for wire diameter variation on a wire bonding machine
KR101231192B1 (en) Wire bonding monitoring apparatus and wire bonder and method for monitoring bonding height of wire ball
JPH0997822A (en) Method of evaluating bonding wire
JP3514354B2 (en) Bonding wire evaluation method
QIN Wire Bonding Process
JP3650686B2 (en) Fatigue test method and fatigue test apparatus
TW202349532A (en) Manufacturing apparatus and method of semiconductor device capable of controlling the drive of the solder pin, the wire clamp, and the moving mechanism, and avoiding Not-Stick-On-Load or Notail while in wire-bonding
Satish Shah Mechanical and tribological aspects of microelectronic wire bonding
JP2023121542A (en) Semiconductor manufacturing equipment and method for manufacturing semiconductor
JP3573317B2 (en) Bonding wire evaluation method and evaluation instrument

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030729