JPH0822763B2 - Low melting point sealing composition - Google Patents

Low melting point sealing composition

Info

Publication number
JPH0822763B2
JPH0822763B2 JP1050924A JP5092489A JPH0822763B2 JP H0822763 B2 JPH0822763 B2 JP H0822763B2 JP 1050924 A JP1050924 A JP 1050924A JP 5092489 A JP5092489 A JP 5092489A JP H0822763 B2 JPH0822763 B2 JP H0822763B2
Authority
JP
Japan
Prior art keywords
powder
low
pbo
ceramic powder
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1050924A
Other languages
Japanese (ja)
Other versions
JPH02229738A (en
Inventor
元 日方
和義 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP1050924A priority Critical patent/JPH0822763B2/en
Publication of JPH02229738A publication Critical patent/JPH02229738A/en
Publication of JPH0822763B2 publication Critical patent/JPH0822763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低融点封着用組成物に関し、より具体的に
は窒化アルミニウム、窒化珪素、炭化珪素、ムライト等
の低膨張のセラミックからなるICパッケージを機密封着
するのに好適な低融点封着用組成物に関するものであ
る。
TECHNICAL FIELD The present invention relates to a low melting point sealing composition, and more specifically, an IC made of a low expansion ceramic such as aluminum nitride, silicon nitride, silicon carbide or mullite. The present invention relates to a low melting point sealing composition suitable for machine-sealing a package.

[従来技術とその問題点] 窒化アルミニウム等の低膨張セラミックからなるICパ
ッケージを気密封着するのに用いられる封着材に要求さ
れる主な特性としては、低膨張のセラミックの熱膨張係
数(30〜50×10-7/℃)に近似した熱膨張係数を有する
こと、封着後に衝撃を受けた際にクラック等が生じない
ように機械的強度が高いこと、パッケージ内に搭載する
IC素子を保護するためにできるだけ低温で封着できるこ
と等が掲げられる。
[Prior Art and its Problems] The main characteristics required for a sealing material used for hermetically sealing an IC package made of a low expansion ceramic such as aluminum nitride are the thermal expansion coefficient of a low expansion ceramic ( (30 to 50 × 10 -7 / ℃), having a thermal expansion coefficient close to it, high mechanical strength so that cracks do not occur when shocked after sealing, and mounted in the package
To protect the IC element, it is necessary to seal it at the lowest temperature possible.

従来よりICパッケージの封着用として、PbO−B2O3
あるいはPbO−B2O3−SiO2系ガラス粉末が用いられてい
るが、機械的強度、熱膨張係数において不十分な点があ
るため、近年これらのガラスに各種の低膨張フィラー粉
末を加えた封着材が数多く提案されている。
As sealing for conventionally IC package, but PbO-B 2 O 3 -based or PbO-B 2 O 3 -SiO 2 based glass powder is used, mechanical strength, there is insufficient points in the thermal expansion coefficient Therefore, in recent years, many sealing materials have been proposed in which various low expansion filler powders are added to these glasses.

先記したように低膨張セラミックパッケージの封着材
には、熱膨張係数が低膨張セラミックのそれに近似して
いることが要求され、一般に低膨張フィラーの粒径を大
きくしたり、添加量を多くすることによって封着材の熱
膨張係数を低くすることが可能であるが、一方低膨張フ
ィラーの粒径を大きくしたり、添加量を多くすると封着
材の流動性が悪くなり、低温で封着できなくなるという
問題が生じる。
As described above, the sealing material for the low expansion ceramic package is required to have a coefficient of thermal expansion similar to that of the low expansion ceramic, and generally, the particle size of the low expansion filler is increased or the addition amount is increased. It is possible to lower the coefficient of thermal expansion of the sealing material by doing so, but on the other hand, increasing the particle size of the low expansion filler or increasing the addition amount deteriorates the fluidity of the sealing material and seals at low temperature. The problem arises that you cannot wear it.

[発明の目的] 本発明は上記事情に鑑みなされたもので、熱膨張係数
が低膨張セラミックのそれに近似しており、機械的強度
が高く、また低温、具体的には450℃以下で封着可能で
あり、さらにICパッケージ封着材に要求されるその他の
特性、すなわちICパッケージの封着材には、信号電流が
リークしないように絶縁抵抗が高いこと、IC素子にα線
が照射されるとソフトエラーが発生するのでα線を放出
する物質を極力含まないこと、封着後のリード線錫メッ
キ工程でガラスに錫が付着するとリード線同士が電気的
につながるため、錫付着のないこと、すなわちメッキブ
リッジを起こさないこと等の特性も満足する低融点封着
用組成物を提供することを目的とするものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and has a coefficient of thermal expansion similar to that of a low expansion ceramic, high mechanical strength, and sealing at a low temperature, specifically 450 ° C or lower. It is possible, and other characteristics required for the IC package sealing material, that is, the IC package sealing material has a high insulation resistance so that the signal current does not leak, and the IC element is irradiated with α rays. Since a soft error occurs, the substance that emits α-rays should not be included as much as possible, and the lead wires are electrically connected to each other if tin adheres to the glass in the tinning process of the lead wire after sealing, so there is no tin adhesion. That is, it is an object of the present invention to provide a low melting point sealing composition which also satisfies characteristics such as not causing a plating bridge.

[発明の構成] 本発明は低融点ガラス粉末の組成と特定の低膨張フィ
ラー及びそれらの混合割合を限定することによって上記
目的を達成したものであり、すなわち本発明の低融点封
着用組成物は、屈伏点が350℃以下、熱膨張係数が130×
10-7/℃以下の非晶質のPbO−B2O3系低融点ガラス粉末と
とチタン酸鉛系セラミック粉末と低膨張性セラミック粉
末とから成り、これらの割合が重量比で PbO−B2O3系低融点ガラス粉末 45〜80% チタン酸鉛系セラミック粉末 3〜53% 低膨張性セラミック粉末 1〜45% の範囲にあり、上記非晶質のPbO−B2O3系低融点ガラス
粉末は、重量比でPbO 78.0〜87.0%、B2O3 8.0〜15.0
%、ZnO 0.5〜3.0%、Bi2O3 1.0〜4.0%、V2O5 0.1〜1.
5%、SiO2 0〜1.0%、Al2O3 0〜2.0%から成り、上記チ
タン酸鉛系セラミック粉末は、重量比でPbO 60.0〜75.
0%、TiO2 10.0〜35.0%、Fe2O3 0〜10.0%、WO3
0〜12.0%、CaO 0〜10%、Fe2O3+WO3+CaO 1.0〜2
0.0%から成る。
[Structure of the Invention] The present invention achieves the above object by limiting the composition of the low melting point glass powder, the specific low expansion filler and the mixing ratio thereof, that is, the low melting point sealing composition of the present invention , The yield point is 350 ℃ or less, the coefficient of thermal expansion is 130 ×
Consists of a 10 -7 / ° C. or less of amorphous PbO-B 2 O 3 -based low melting glass powder and the lead titanate-based ceramic powder and a low-expansion ceramic powder, PbO-B These proportions are by weight 2 O 3 system low melting glass powder 45-80% Lead titanate ceramic powder 3 53% Low expansion ceramic powder 1-45%, the above amorphous PbO-B 2 O 3 system low melting point glass powder, PbO 78.0 to 87.0% by weight, B 2 O 3 8.0~15.0
%, ZnO 0.5-3.0%, Bi 2 O 3 1.0-4.0%, V 2 O 5 0.1-1.
5%, SiO 2 0~1.0%, consists Al 2 O 3 0~2.0%, the lead titanate-based ceramic powder, PbO by weight 60.0 to 75.
0%, TiO 2 10.0 to 35.0%, Fe 2 O 3 0 to 10.0%, WO 3
0-12.0%, CaO 0-10%, Fe 2 O 3 + WO 3 + CaO 1.0-2
It consists of 0.0%.

本発明におけるPbO−B2O3系低融点ガラス粉末、チタ
ン酸鉛系セラミック粉末、低膨張性セラミック粉末の混
合比を上記のように限定したのは以下の理由による。
The reason for limiting the mixing ratio of the PbO—B 2 O 3 based low melting point glass powder, the lead titanate based ceramic powder, and the low expansion ceramic powder in the present invention as described above is as follows.

すなわち低融点ガラス粉末が45%より少ない場合は封
着用組成物の流動性が悪くなり、450℃以下で封着でき
なくなる。80%より多い場合は熱膨張係数が大きくなり
すぎて耐熱衝撃強度が小さくなる。
That is, when the content of the low melting point glass powder is less than 45%, the fluidity of the composition for sealing becomes poor and the sealing becomes impossible at 450 ° C. or lower. If it exceeds 80%, the coefficient of thermal expansion becomes too large and the thermal shock resistance becomes small.

本発明で用いるチタン酸鉛系セラミック粉末は、PbTi
O3結晶中にFe2O3、WO3またはCaOを固溶したものであ
り、各成分の含有量を上記範囲にすると通常のチタン酸
粉末よりも熱膨張係数を下げる効果が大きくなる。しか
しながらチタン酸鉛系セラミック粉末が3%より少ない
場合はこの効果が得られず、53%より多い場合はガラス
の流動性が悪くなり低温で封着できなくなる。
The lead titanate-based ceramic powder used in the present invention is PbTi
This is a solid solution of Fe 2 O 3 , WO 3 or CaO in O 3 crystal, and when the content of each component is in the above range, the effect of lowering the thermal expansion coefficient becomes larger than that of ordinary titanic acid powder. However, if the content of lead titanate-based ceramic powder is less than 3%, this effect cannot be obtained. If the content of lead titanate-based ceramic powder is more than 53%, the fluidity of the glass deteriorates and sealing cannot be performed at low temperature.

また本発明で用いる低膨張性セラミック粉末は、ウイ
レマイト系セラミック粉末、β−ユークリプタイト粉
末、コーディエライト粉末、ジルコン系セラミック粉
末、スズ固溶体粉末の1者あるいは2者以上である。し
かしながら低膨張性セラミック粉末が1%より少ない場
合は、高い機械的強度が得られず、45%より多い場合は
チタン酸鉛系セラミック粉末の添加量が制限されるため
熱膨張係数が充分下がらなくなる。
The low-expansion ceramic powder used in the present invention is one or more of willemite-based ceramic powder, β-eucryptite powder, cordierite powder, zircon-based ceramic powder, and tin solid solution powder. However, if the low-expansion ceramic powder is less than 1%, high mechanical strength cannot be obtained, and if it is more than 45%, the amount of lead titanate-based ceramic powder added is limited and the thermal expansion coefficient cannot be lowered sufficiently. .

次に本発明で用いるPbO−B2O3系低融点ガラス粉末の
各組成を上記のように限定した理由を示す。
Next, the reason why each composition of the PbO—B 2 O 3 based low melting point glass powder used in the present invention is limited as described above will be shown.

PbOが78.0%より少ない場合はガラスの粘性が大きく
なりすぎ、87.0%より多い場合はガラスが失透しやすく
なる。
If the PbO content is less than 78.0%, the glass becomes too viscous, and if it is more than 87.0%, the glass tends to devitrify.

B2O3が8.0%より少ない場合はガラスが失透しやすく
なり、15.0%より多い場合はガラスの粘性が大きくなり
すぎる。
If B 2 O 3 is less than 8.0%, the glass tends to devitrify, and if it exceeds 15.0%, the viscosity of the glass becomes too large.

ZnOが0.5%より少ない場合はガラスが失透しやすくな
り、3.0%より多い場合はガラスの粘性が大きくなりす
ぎる。
When ZnO is less than 0.5%, the glass tends to devitrify, and when it is more than 3.0%, the viscosity of the glass becomes too large.

Bi2O3が1.0%より少ない場合はガラスが失透しやすく
なり、4.0%より多い場合はガラスの粘性が大きくなり
すぎる。
When Bi 2 O 3 is less than 1.0%, the glass tends to devitrify, and when it exceeds 4.0%, the viscosity of the glass becomes too large.

V2O5はガラスを安定化させるのに効果があるが、0.1
%より少ない場合はその効果が得られず、1.5%より多
い場合はガラスが失透しやすくなる。
V 2 O 5 is effective in stabilizing the glass, but 0.1
If less than 1.5%, the effect cannot be obtained, and if more than 1.5%, the glass tends to devitrify.

SiO2及びAl2O3はガラスを安定化させるのに効果があ
るが、SiO2が1.0%、Al2O3が2.0%より多い場合は粘性
が大きくなりすぎる。
SiO 2 and Al 2 O 3 are effective in stabilizing the glass, but when SiO 2 is more than 1.0% and Al 2 O 3 is more than 2.0%, the viscosity becomes too large.

尚、本発明の低融点ガラス粉末には上記したPbO、B2O
3、ZnO、Bi2O3、V2O5、SiO2、Al2O3以外にもPbF2、Sn
O2、BaO、TeO2等他成分を3.0%まで含有させることが可
能である。
The low melting point glass powder of the present invention contains PbO, B 2 O
3 , ZnO, Bi 2 O 3 , V 2 O 5 , SiO 2 , Al 2 O 3 as well as PbF 2 , Sn
It is possible to contain other components such as O 2 , BaO and TeO 2 up to 3.0%.

[実施例] 以下本発明を実施例に基づいて説明する。[Examples] The present invention will be described below based on Examples.

第1表のガラスA〜Dは本発明に用いる非晶質のPbO
−B2O3系低融点ガラス粉末の実施例である。
Glasses A to D in Table 1 are amorphous PbO used in the present invention.
-B 2 O 3 system is an example of a low-melting glass powder.

第1表に示した低融点ガラス粉末は光明丹、硼酸、亜
鉛華、酸化ビスマス、五酸化バナジウム、珪石粉、水酸
化アルミニウム、フッ化鉛を第1表に示す組成になるよ
うに調合、混合し、白金ルツボに入れて電気炉で約900
℃、30分間溶融した後、薄板状に成型し、アルミナボー
ルミルで粉砕し150メッシュのステンレス篩を通過させ
たものを用いた。
The low-melting glass powder shown in Table 1 is prepared by mixing Komeitan, boric acid, zinc white, bismuth oxide, vanadium pentoxide, silica powder, aluminum hydroxide, and lead fluoride so as to have the composition shown in Table 1. Then, put it in a platinum crucible and about 900 in an electric furnace
After melting at 30 ° C. for 30 minutes, it was molded into a thin plate, pulverized with an alumina ball mill, and passed through a 150-mesh stainless sieve.

各ガラスとも屈伏点が315℃以下であるため良好な封
着特性を有しており、また熱膨張係数が122×10-7/℃以
下であるため封着材としての熱膨張係数を低下させるこ
とが容易である。
Since each glass has a yield point of 315 ° C or less, it has good sealing properties, and since the coefficient of thermal expansion is 122 × 10 -7 / ° C or less, it lowers the coefficient of thermal expansion as a sealing material. It is easy to do.

第2表は上記のようにして得た低融点ガラス粉末にチ
タン酸鉛系セラミック粉末及び低膨張性セラミック粉末
としてウイレマイト系セラミック粉末、β−ユークリプ
タイト粉末、ジルコン系セラミック粉末あるいはスズ固
溶体粉末を混合した実施例を示すものである。
Table 2 shows the low-melting glass powder obtained as described above with lead titanate-based ceramic powder and low-expansion ceramic powder such as willemite-based ceramic powder, β-eucryptite powder, zircon-based ceramic powder or tin solid solution powder. It shows an example of mixing.

以下に第2表に示したチタン酸鉛系セラミック粉末及
び各低膨張性セラミック粉末について以下に説明する。
The lead titanate-based ceramic powder and each low expansion ceramic powder shown in Table 2 will be described below.

まず、本発明で用いるチタン酸鉛系セラミック粉末
は、先記したようにPbTiO3結晶中にFe2O3、WO3またはCa
Oを固溶したものであり、本実施例では次のように作製
した。リサージ、酸化チタン、炭酸カルシウムをPbO 70
%、TiO2 20%、CaO 10%の組成になるように調合し、
混合後、1100℃で5時間焼成し、次いでこの焼成物を粉
砕後350メッシュのステンレス篩を通過させて平均粒径
が約5μの粉末状にした。
First, as described above, the lead titanate-based ceramic powder used in the present invention contains Fe 2 O 3 , WO 3 or Ca in PbTiO 3 crystals.
It is a solid solution of O, and was manufactured as follows in this example. Resurge, titanium oxide, calcium carbonate PbO 70
%, TiO 2 20%, CaO 10%.
After mixing, the mixture was fired at 1100 ° C. for 5 hours, and then the fired product was pulverized and passed through a 350-mesh stainless sieve to obtain a powder having an average particle size of about 5 μm.

ウイレマイト系セラミック粉末は、亜鉛華、光学石
粉、酸化アルミニウムを重量比でZrO2 70.0%、SiO2 2
5.0%、Al2O3 5.0%の組成になるように調合し、混合
後、1440℃で15時間焼成し、次いでアルミナボールミル
で粉砕し、250メッシュのステンレス篩を通過させたも
のを用いた。
Willemite ceramic powder is composed of zinc white, optical stone powder and aluminum oxide in a weight ratio of ZrO 2 70.0%, SiO 2 2
The mixture was prepared to have a composition of 5.0% and Al 2 O 3 5.0%, mixed, baked at 1440 ° C. for 15 hours, ground with an alumina ball mill, and passed through a 250 mesh stainless sieve.

β−ユークリプタイト粉末は、炭酸リチウム、アルミ
ナ、光学ガラス用石粉をLi2O・Al2O3・2SiO2の組成にな
るように調合し、混合後、1250℃で5時間焼成し、次い
でボールミルで粉砕し、250メッシュのステンレス篩を
通過させたものを用いた。
The β-eucryptite powder is prepared by mixing lithium carbonate, alumina, and stone powder for optical glass so as to have a composition of Li 2 O · Al 2 O 3 · 2SiO 2 , and after mixing, firing at 1250 ° C for 5 hours, and then What was crushed with a ball mill and passed through a 250-mesh stainless sieve was used.

ジルコン系セラミック粉末は天然のジルコンサンドを
一旦ソーダ分解し、塩酸に溶解した後、濃縮結晶化を繰
り返すことによって、α線放出物質であるU,Thの極めて
少ないオキシ塩化ジルコニウムにし、アルカリ中和後、
加熱して精製ZrO2を得、これに高純度珪石粉、酸化第2
鉄を重量比でZrO2 66%、SiO2 32%、Fe2O3 2%の組成
になるように調合し、混合した後1400℃で16時間焼成
し、次いでこの焼成物を粉砕し、250メッシュのステン
レス篩を通過させたものを用いた。
Zircon-based ceramic powder is obtained by decomposing natural zircon sand with soda, dissolving it in hydrochloric acid, and repeating concentration crystallization to make zirconium oxychloride, which has extremely low U- and α-ray emitting substances, and after neutralization with alkali. ,
Heat to obtain purified ZrO 2 , which contains high-purity silica powder and oxidized second
Iron was blended to have a composition of ZrO 2 66%, SiO 2 32%, and Fe 2 O 3 2% by weight ratio, mixed and then fired at 1400 ° C. for 16 hours, and then the fired product was crushed to 250 The one passed through a stainless steel mesh sieve was used.

スズ固溶体は、重量比でSnO2 93%、TiO2 2%、MnO2
5%になるように酸化スズ、酸化チタン、二酸化マンガ
ンを調合、混合し、1400℃で16時間焼成後、粉砕し、25
0メッシュのステンレス篩を通過させたものを用いた。
Tin solid solution is SnO 2 93%, TiO 2 2%, MnO 2 by weight.
Prepare and mix tin oxide, titanium oxide, and manganese dioxide to 5%, and burn for 16 hours at 1400 ℃, then crush and
The one passed through a 0 mesh stainless sieve was used.

上記の低融点ガラス粉末、チタン酸鉛粉末及び低膨張
性セラミック粉末を第2表に示す割合に混合した後、所
定の形状に焼成し、これを用いて熱膨張係数、抗折強度
を測定したところ、熱膨張係数は40〜55×10-7/℃、抗
折強度は610kg/cm2以上であり、良好な特性を有してい
た。
The above-mentioned low-melting glass powder, lead titanate powder and low-expansion ceramic powder were mixed in the proportions shown in Table 2 and then fired into a predetermined shape, and the thermal expansion coefficient and flexural strength were measured using this. However, the coefficient of thermal expansion was 40 to 55 × 10 -7 / ° C, and the bending strength was 610 kg / cm 2 or more, indicating good properties.

また上記の混合物を通常行われているようにビークル
を添加してペーストを作成し、熱膨張係数が44×10-7/
℃の窒化アルミニウムからなるパッケージに印刷して封
着し、封着温度を測定したところ440℃以下の低い温度
で封着できた。
Also, the mixture is added to the above-mentioned mixture by adding a vehicle to form a paste, and the coefficient of thermal expansion is 44 × 10 -7 /
When printed on a package made of aluminum nitride at ℃ and sealed, and the sealing temperature was measured, it was possible to seal at a low temperature of 440 ° C or lower.

さらに上記以外にICパッケージに要求される他の特
性、すなわち絶縁抵抗、α線放出量、錫付着の発生率に
ついても各々測定したところ、絶縁抵抗(対数値)は1
3.2以上、α線放出量は0.21count/cm2・hr以下、錫付着
の発生率は0%であり、各特性とも良好であった。
In addition to the above, other characteristics required for IC packages, namely insulation resistance, α-ray emission, and tin deposition rate, were also measured. The insulation resistance (logarithmic value) was 1
It was 3.2 or more, the amount of α-ray emission was 0.21 count / cm 2 · hr or less, and the occurrence rate of tin adhesion was 0%.

尚、熱膨張係数は押棒式熱膨張測定装置を用いて焼成
物について計測し、抗折強度は、焼成物を10×10×50mm
の角柱に成形し、周知の3点荷重測定法によって測定し
た。また絶縁抵抗はメガオームメーターを用いて150℃
における値を測定し、α線放出量はZnSシンチレーショ
ンカウンターを用いて測定し、さらに錫付着の発生率は
28リードパッケージを作成し、このリードに錫メッキし
た後、ガラス表面を28倍の顕微鏡によって観察した結果
である。
The coefficient of thermal expansion was measured for the fired product using a push rod type thermal expansion measuring device, and the bending strength was 10 × 10 × 50 mm for the fired product.
It was molded into a rectangular column and measured by a well-known three-point load measuring method. The insulation resistance is 150 ° C using a mega ohm meter.
The value of α-ray emission was measured using a ZnS scintillation counter.
This is a result of observing the glass surface with a microscope of 28 times after forming a 28-lead package, tin-plating this lead.

[発明の効果] 以上のように本発明の低融点封着用組成物は、低膨張
セラミックからなるICパッケージを気密封着するのに適
しており、具体的には窒化アルミニウム、炭化珪素、窒
化珪素などの低膨張で高い熱伝導性を有するセラミック
からなるパッケージの封着材として好適である。
[Effects of the Invention] As described above, the low melting point sealing composition of the present invention is suitable for hermetically sealing an IC package made of a low expansion ceramic, specifically, aluminum nitride, silicon carbide, silicon nitride. It is suitable as a sealing material for packages made of ceramics having low expansion and high thermal conductivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 23/31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】屈伏点が350℃以下、熱膨張係数が130×10
-7/℃以下の非晶質のPbO−B2O3系低融点ガラス粉末とチ
タン酸鉛系セラミック粉末と低膨張セラミック粉末とか
ら成り、これらの割合が重量比で PbO−B2O3系低融点ガラス粉末 45〜80% チタン酸鉛系セラミック粉末 3〜53% 低膨張性セラミック粉末 1〜45% の範囲にあり、上記非晶質のPbO−B2O3系低融点ガラス
粉末は、重量比でPbO 78.0〜87.0%、B2O3 8.0〜15.0
%、ZnO 0.5〜3.0%、Bi2O3 1.0〜4.0%、V2O5 0.1
〜1.5%、SiO2 0〜1.0%、Al2O3 0〜2.0%から成
り、上記チタン酸鉛系セラミック粉末は重量比でPbO 6
0.0〜75.0%、TiO2 10.0〜35.0%、Fe2O3 0〜10.0
%、WO3 0〜12.0%、CaO 0〜10%、Fe2O3+WO3+Ca
O 1.0〜20.0%から成る低融点封着用組成物。
1. A yield point of 350 ° C. or less and a thermal expansion coefficient of 130 × 10.
Consists of a -7 / ° C. or less of amorphous PbO-B 2 O 3 -based low melting glass powder and lead titanate-based ceramic powder and the low expansion ceramic powders, PbO-B 2 O 3 these proportions by weight system is in the range of the low-melting glass powder 45-80% lead titanate-based ceramic powder 3-53% low expansion ceramic powders 1~45%, PbO-B 2 O 3 based low-melting glass powder of the amorphous , PbO 78.0 to 87.0% by weight, B 2 O 3 8.0 to 15.0
%, ZnO 0.5 to 3.0%, Bi 2 O 3 1.0 to 4.0%, V 2 O 5 0.1
.About.1.5%, SiO 2 0 to 1.0%, Al 2 O 3 0 to 2.0%, and the lead titanate-based ceramic powder is PbO 6 in weight ratio.
0.0 to 75.0%, TiO 2 10.0 to 35.0%, Fe 2 O 3 0 to 10.0
%, WO 3 0 to 12.0%, CaO 0 to 10%, Fe 2 O 3 + WO 3 + Ca
A low melting point sealing composition comprising O 1.0 to 20.0%.
【請求項2】低膨張性セラミック粉末が、ウイレマイト
系セラミック粉末、β−ユークリプタイト粉末、コーデ
ィエライト粉末、ジルコン系セラミック粉末、スズ固溶
体粉末の1者あるいは2者以上である特許請求の範囲第
1項記載の低融点封着用組成物。
2. The low-expansion ceramic powder is one or more of willemite-based ceramic powder, β-eucryptite powder, cordierite powder, zircon-based ceramic powder, and tin solid solution powder. The low melting point sealing composition according to item 1.
JP1050924A 1989-03-01 1989-03-01 Low melting point sealing composition Expired - Lifetime JPH0822763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050924A JPH0822763B2 (en) 1989-03-01 1989-03-01 Low melting point sealing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050924A JPH0822763B2 (en) 1989-03-01 1989-03-01 Low melting point sealing composition

Publications (2)

Publication Number Publication Date
JPH02229738A JPH02229738A (en) 1990-09-12
JPH0822763B2 true JPH0822763B2 (en) 1996-03-06

Family

ID=12872353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050924A Expired - Lifetime JPH0822763B2 (en) 1989-03-01 1989-03-01 Low melting point sealing composition

Country Status (1)

Country Link
JP (1) JPH0822763B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112170997A (en) * 2020-09-25 2021-01-05 西华大学 Glass brazing filler metal for brazing MCT microwave dielectric ceramic and metal and brazing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945620B2 (en) * 1978-10-13 1984-11-07 日本電気硝子株式会社 Low melting point sealing composition
JPS5918132A (en) * 1982-07-23 1984-01-30 Iwaki Glass Kk Glass composition for sealing
JPH07102982B2 (en) * 1987-06-16 1995-11-08 日本電気硝子株式会社 Frit for low temperature sealing

Also Published As

Publication number Publication date
JPH02229738A (en) 1990-09-12

Similar Documents

Publication Publication Date Title
JP3424219B2 (en) Low melting point sealing composition
KR910001103B1 (en) Low temperature sealing composition
US4883777A (en) Sealing glass composition with filler containing Fe and W partially substituted for Ti in PbTiO3 filler
JPH07102982B2 (en) Frit for low temperature sealing
US4704370A (en) Sealing glass composition
JP2002037644A (en) Glass for sealing and sealing material which uses it
JPH0127982B2 (en)
JPH0822763B2 (en) Low melting point sealing composition
JP3149929B2 (en) Low melting point sealing composition
JP3402314B2 (en) Method for producing low melting point sealing composition and method for using the same
JP4573204B2 (en) Glass for sealing and sealing material using the same
JPH05170481A (en) Seal bonding composition having low melting point
JP3151794B2 (en) Low melting point sealing composition
JP3180299B2 (en) Low melting point sealing composition
JPH0597470A (en) Sealing composition having low melting point
JP3760455B2 (en) Adhesive composition
JPH08231242A (en) Low melting point sealing composition
JP2968985B2 (en) Low melting point sealing composition
JP3496687B2 (en) Low melting point sealing composition
JP3425749B2 (en) Sealing material
JPH02229737A (en) Sealing composition having low melting point
JPH06171975A (en) Low melting point sealing composition
JPH08157234A (en) Composition for sealing
JPH028978B2 (en)
JPS5945620B2 (en) Low melting point sealing composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13

EXPY Cancellation because of completion of term