JPH08227639A - Simulation method for multiple reignition surge - Google Patents

Simulation method for multiple reignition surge

Info

Publication number
JPH08227639A
JPH08227639A JP7033434A JP3343495A JPH08227639A JP H08227639 A JPH08227639 A JP H08227639A JP 7033434 A JP7033434 A JP 7033434A JP 3343495 A JP3343495 A JP 3343495A JP H08227639 A JPH08227639 A JP H08227639A
Authority
JP
Japan
Prior art keywords
switch
voltage
current
ignition
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033434A
Other languages
Japanese (ja)
Inventor
Sachihiro Fukatsu
祥弘 深津
Yoshihiko Matsui
芳彦 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7033434A priority Critical patent/JPH08227639A/en
Publication of JPH08227639A publication Critical patent/JPH08227639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE: To enable a faithful simulation of spiking voltage, which is frequently generated in the actually measured waveform, so as to simulate the multiple reignition by turning off a switch, which equivalently operates a breaker, when the high frequency current passes through the zero pint. CONSTITUTION: The condition for turning ON (generation of multiple reignition) and OFF a switch for simulating a breaker is set as follows. Intensity of the electric field between electrodes is obtained on the basis of the voltage of both ends of a switch per each computing step. When this electric field intensity exceeds the flash-over level, the flash-over condition is generated, and the switch-on signal is generated in the switch control signal so as to obtain the switch closing signal. At this stage, the processing for deciding the flash-over level is decided on the basis of the static withstand voltage, which depends on the gap length of a breaker, and the withstand voltage restoring characteristic, which depends on the passing time after the current is cut-off. High frequency current is cut-off when it passes through the zero point independently of the di/dt value. The current flowing in the switch is monitored, and the cut-off signal is generated on the basis of the detection of passing of the current through the zero point, and the control signal for opening the switch is thereby obtained. The restoring signal of the cut-off signal is obtained by the generation of the flash-over level from the flash-over level deciding process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空遮断器で発生する
多重再発弧サージのシミュレーション方法に係り、特に
汎用過渡解析プログラムEMTPを用いたシミュレーシ
ョン方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simulating multiple re-ignition surges generated in a vacuum circuit breaker, and more particularly to a simulation method using a general-purpose transient analysis program EMTP.

【0002】[0002]

【従来の技術】誘導性負荷電流を真空遮断器で遮断する
場合、適当な条件下では発弧と遮断を繰り返す多重再発
弧サージが発生し、電圧のビルドアップが発生する。こ
れを以下に詳細に説明する。
2. Description of the Related Art When an inductive load current is interrupted by a vacuum circuit breaker, multiple re-ignition surges occur in which arcing and interruption are repeated under appropriate conditions, and voltage buildup occurs. This will be described in detail below.

【0003】図4は、発弧サージ発生時の電圧と電流波
形を示す。通常、開閉器への遮断命令は、遮断電流の位
相とは無関係に出力されるため、開閉器の電極が機械的
に離れ始めてから電流が遮断されるまでの時間(アーク
時間)は様々な値を取ることになる。
FIG. 4 shows voltage and current waveforms when an arcing surge occurs. Normally, the breaking command to the switch is output regardless of the phase of the breaking current, so the time (arc time) from the moment when the electrodes of the switch start to mechanically separate to the breaking of the current has various values. Will be taken.

【0004】同図の開極点aのように、アーク時間が長
い場合には、電流が実際に遮断されるまでに電極の間隔
が充分に開いているため、遮断後の極間に発生する電圧
に耐えることができる。
When the arc time is long, as in the case of the open contact point a in the figure, the voltage between the electrodes after the interruption is sufficient because the electrodes are sufficiently open before the current is actually interrupted. Can withstand.

【0005】しかし、開極点bのようにアーク時間が短
いと、電極の間隔が充分に広がる前に発生電圧が電極間
の耐圧を上回り、極間が閃絡して再びアークでつながっ
てしまう(同図のc点)。この現象が発弧サージと呼ば
れるもので、電極間には開閉器周辺の回路を流れる高周
波電流(発弧電流)と電源からの商用周波電流が流れる
ことになる。
However, if the arc time is short as in the open contact point b, the generated voltage exceeds the withstand voltage between the electrodes before the electrode interval is sufficiently widened, and the electrodes are flashed and connected again by the arc ( (Point c in the figure). This phenomenon is called an arc surge, and a high frequency current (arc current) flowing through the circuit around the switch and a commercial frequency current from the power source flow between the electrodes.

【0006】発弧電流が電流零点を作り出すため、流れ
始めた発弧電流は再び遮断され(同図のd点)、電極間
に電圧が発生する。この電圧により再び極間が閃絡し
(同図のe点)、同様の過程を繰り返しながら発生電圧
が上昇して行く。これが、多重再発弧サージと呼ばれ
る。
Since the arcing current creates a current zero point, the arcing current that has started to flow is interrupted again (point d in the figure), and a voltage is generated between the electrodes. This voltage causes a flashover between the poles again (point e in the figure), and the generated voltage rises while repeating the same process. This is called a multiple recurrence surge.

【0007】図5と図6は、多重再発弧サージによる電
圧上昇を説明するための回路図と波形図を示す。商用電
源から開閉器SWを介して負荷となるインダクタンスL
に電流を流す回路において、負荷側の電圧は負荷側のキ
ャパシタンスCとインダクタンスLがつくるL−Cのル
ープの振動電流で発生する。この変動は裁断サージの発
生メカニズムと同様であり、これを裁断ループと呼ぶ。
FIG. 5 and FIG. 6 show a circuit diagram and a waveform diagram for explaining the voltage rise due to multiple re-ignition surges. Inductance L which is a load from the commercial power source via switch SW
In the circuit for passing a current to the load side, the load side voltage is generated by the oscillating current in the loop of LC formed by the load side capacitance C and the inductance L. This fluctuation is similar to the cutting surge generation mechanism and is called a cutting loop.

【0008】図6のa点で発弧が発生すると図5のコン
デンサCS−SW−Cのループ(発弧ループと呼ぶ)に
発弧電流が流れ、この発弧電流は数サイクル流れて遮断
される場合が多く、発弧電流が流れている間は電極間が
アークでつながっており、発弧ループだけでなく、電源
−SW−Lのループ(メインループ)にも電流が流れ
る。
When an arc occurs at point a in FIG. 6, an arc current flows through the loop of capacitor C S -SW-C (referred to as an arc loop) in FIG. 5, and this arc current flows for several cycles and is cut off. In many cases, the electrodes are connected by an arc while the arcing current is flowing, and the current flows not only in the arcing loop but also in the loop of the power supply-SW-L (main loop).

【0009】このメインループを通じて電源からLに商
用周波電流が流れ、Lにエネルギーが注入される。Lを
流れる電流の変化は、期間T1ではメインループを通じ
てLへエネルギーが注入され、期間T2では発弧電流が
遮断されて裁断ループでCからLへエネルギーが移動
し、期間T3ではLを流れる電流がピークを迎えてか
ら、次の発弧が起きるまでにLからCへエネルギーが移
動する。
A commercial frequency current flows from the power source to L through this main loop, and energy is injected into L. The change in the current flowing through L is such that energy is injected into L through the main loop during the period T1, the arcing current is cut off during the period T2 and energy is transferred from C to L through the cutting loop, and the current flowing through L during the period T3. Energy reaches from L to C after the peak of the peak and before the next arc occurs.

【0010】これら期間T1〜T3までの1サイクルの
間でのLのエネルギーの増加分は、期間T1とT2で受
け取るエネルギーから期間T3で放出するエネルギーを
差し引いたものとなる。
The increment of the energy of L during one cycle from these periods T1 to T3 is the energy received in the periods T1 and T2 minus the energy released in the period T3.

【0011】多重再発弧サージで発生電圧が上昇してい
くのは、上記のサイクルが繰り返されてLのエネルギー
(電流)が増加し、期間T3でエネルギーを電圧に変え
たときに発生し得る上限が増加して行くためであり、こ
れと開閉器のギャップ長の増加による極間の耐圧上昇と
によって発生電圧の上昇を生じる。
The voltage generated by the multiple re-ignition surge rises because the energy (current) of L increases as the above cycle is repeated and the energy can be changed to voltage during the period T3. Is increased, and this and the breakdown voltage between the electrodes due to the increase in the gap length of the switch increase the generated voltage.

【0012】以上までのように、発弧サージは、複雑な
現象であり、多様な回路構成について解析的に求めよう
とするのは困難である。このため、シミュレーション手
法の開発が行われている。
As described above, the arcing surge is a complicated phenomenon, and it is difficult to analytically obtain various circuit configurations. Therefore, simulation methods are being developed.

【0013】発弧サージのシミュレーションには、遮断
器の耐圧特性と高周波電流(発弧サージ)遮断特性及び
回路のモデル化が必要となる。
Simulation of the arcing surge requires modeling of the withstand voltage characteristic of the circuit breaker, the high frequency current (arcing surge) interruption characteristic, and the circuit.

【0014】このうち、汎用過渡解析プログラムEMT
Pを用いて発弧サージシミュレーションを行う場合、遮
断器をスイッチに置き換え、発弧した状態をスイッチの
閉、遮断した状態をスイッチの開で模擬する。
Of these, a general-purpose transient analysis program EMT
When performing an arcing surge simulation using P, the circuit breaker is replaced with a switch, and the state of firing is simulated by closing the switch and the state of breaking is simulated by opening the switch.

【0015】図7は、従来のスイッチ制御信号発生処理
のブロック図を示す。スイッチが開いている状態では、
各計算ステップ毎にスイッチ両端の電圧から電極間の電
界強度を求め(S1)、この電界強度が実験により得ら
れる閃絡レベルを越えたときに閃絡状態の発生を得(S
2)、これによりスイッチ制御信号にスイッチのオン信
号を発生し(S3)、スイッチを閉じる制御信号を得
る。
FIG. 7 shows a block diagram of conventional switch control signal generation processing. With the switch open,
The electric field strength between the electrodes is obtained from the voltage across the switch for each calculation step (S1), and when the electric field strength exceeds the flashing level obtained by the experiment, a flashing state is generated (S1).
2) As a result, a switch ON signal is generated as a switch control signal (S3), and a control signal for closing the switch is obtained.

【0016】スイッチが閉じている状態では、高周波電
流を零点でなければ遮断されないため、スイッチを流れ
る電流を監視し、これが零点を通過したかどうかを検出
し(S4)、さらに電流変化率di/dtが設定レベル
以下にあることを検出し(S5)、両検出の同時成立で
遮断信号を発生し(S6)、スイッチを開く制御信号を
得る。なお、遮断信号の復帰は設定する遮断レベルを越
えたときに得る。
When the switch is closed, the high-frequency current cannot be cut off unless it is at the zero point. Therefore, the current flowing through the switch is monitored to detect whether it has passed the zero point (S4), and the current change rate di / It is detected that dt is below the set level (S5), a cutoff signal is generated by simultaneous establishment of both detections (S6), and a control signal for opening the switch is obtained. The cutoff signal is restored when the set cutoff level is exceeded.

【0017】[0017]

【発明が解決しようとする課題】図8は、発弧サージ試
験回路の例を示し、充電したコンデンサC1からメイン
スイッチMSの投入でリアクトルL1を通して放電する
ことで商用周波を模擬し、この状態で遮断器CBtを開
極し、その位相を制御することで再発弧サージを発生さ
せる。C2とL2は、発弧サージ電流の周波数(高周波)
を調整するものである。
8 [SUMMARY OF THE INVENTION] shows an example of arcing surge test circuit, simulating the commercial frequency by discharging through the reactor L 1 from the capacitor C 1 which is charged with on of the main switch MS, the In this state, the circuit breaker CBt is opened and its phase is controlled to cause a re-ignition surge. C 2 and L 2 are the frequency (high frequency) of the arcing surge current
To adjust.

【0018】上記の試験回路を使って多重再発弧サージ
を測定すると、極間電圧は図9に示すように、発弧から
遮断までの間にスパイク状電圧を含んだ電圧が発生す
る。この電圧波形のうち、V0は電圧印加後に最初に閃
絡する初期閃絡電圧、VSPは電流通電中に発生するスパ
イク状電圧、VRは高周波電流遮断後に発生する電圧が
再閃絡する再発弧電圧である。
When multiple re-ignition surges are measured using the above test circuit, a voltage including a spike-like voltage is generated between the firing and the interruption as shown in FIG. In this voltage waveform, V 0 is the initial flashing voltage that first flashes after the voltage is applied, V SP is the spike-like voltage that occurs during current application, and V R is the flashing voltage that occurs after the high-frequency current is interrupted. It is the re-ignition voltage.

【0019】スパイク状電圧VSPは、発弧電流の零点に
対応していることから、電流が遮断した直後の高周波サ
ージ電圧に極間電圧が耐えられずに即座に発弧したもの
と考えられる。
Since the spike-like voltage V SP corresponds to the zero point of the arcing current, it is considered that the high-frequency surge voltage immediately after the interruption of the current could not withstand the high voltage surge voltage and immediately ignited. .

【0020】しかし、従来のシミュレーション方法にな
るスイッチ制御信号発生処理では、発弧電流の零点にお
けるdi/dt値が設定レベル以下かどうかで遮断を判
定しているため、実際には頻繁に発生するスパイク状電
圧を模擬することができない。
However, in the switch control signal generating process according to the conventional simulation method, the interruption is determined depending on whether the di / dt value at the zero point of the arcing current is less than or equal to the set level, so that it actually occurs frequently. Unable to simulate spike voltage.

【0021】また、遮断器の等価回路は、図10に示す
ように、スイッチSWで置き換え、対地に接続したCR
で不要な振動を防止する処理を行っているが、これでは
スパイク状電圧が計算の刻み時間(1ステップ)で立ち
上がってしまう。これは、スイッチに直列にLが接続さ
れた場合(多重再発弧のような高周波を扱う場合には残
留ンダクタンスも考慮する必要がある)、Ldi/dt
に対応した電圧のシフトが極間に発生するためである。
Also, the equivalent circuit of the circuit breaker is replaced by a switch SW as shown in FIG. 10, and the CR is connected to the ground.
However, the spike-like voltage rises in the calculation time interval (1 step). This means that when L is connected in series to the switch (when dealing with high frequency such as multiple recurrence, it is necessary to consider the residual conductance), Ldi / dt
This is because a voltage shift corresponding to is generated between the electrodes.

【0022】実際のスパイク状電圧は、ある時定数で立
ち上がって行く波形を示すのに対して、従来の等価回路
ではスイッチのオフで振動防止用CR回路等で決まる固
定の時定数で立ち上がってしまい、スパイク状電圧の立
ち上がりについて厳密に模擬することができない。
The actual spike-like voltage shows a waveform that rises with a certain time constant, whereas in the conventional equivalent circuit, it rises with a fixed time constant determined by the vibration preventing CR circuit or the like when the switch is turned off. , It is not possible to exactly simulate the rise of spike voltage.

【0023】また、初期閃絡電圧V0及び再発弧電圧VR
の初期の立ち上がりについても、スパイク状電圧の立ち
上がりと同様に、厳密な模擬がなされていない。
The initial flashover voltage V 0 and the re-ignition voltage V R
Similarly to the rise of the spike-shaped voltage, the initial rise of is not strictly simulated.

【0024】本発明の目的は、汎用過渡解析プログラム
EMTPを用いた真空遮断器の多重再発弧サージのシミ
ュレーションにおいて、実測波形を忠実に模擬したシミ
ュレーション波形を得るシミュレーション方法を提供す
ることにある。
It is an object of the present invention to provide a simulation method for obtaining a simulation waveform faithfully simulating an actually measured waveform in the simulation of multiple re-ignition surges of a vacuum circuit breaker using a general-purpose transient analysis program EMTP.

【0025】[0025]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、真空遮断器で負荷を遮断する時に発生す
る多重再発弧サージを汎用過渡解析プログラムEMTP
を用いてシミュレーションするにおいて、遮断器の等価
回路は、スイッチに並列にコンデンサと抵抗の直列回路
を設定し、該コンデンサの容量は遮断器のギャップ間静
電容量に合わせ、該抵抗の抵抗値は該コンデンサとの時
定数を多重再発弧の初期閃絡電圧及び再発弧電圧の立ち
上がり時定数に合わせ、多重再発弧の発弧は、前記スイ
ッチのオンにより模擬し、遮断器にかかる静耐圧と電流
遮断後の経過時間に依存する耐圧回復特性で閃絡レベル
を決定し、該スイッチの電極間電圧が該閃絡レベルを越
えたときに該スイッチのオン信号を得、多重再発弧の遮
断は、前記スイッチのオフにより模擬し、該スイッチを
流れる電流が零点を通過したときに該スイッチのオフ信
号を得ることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a general-purpose transient analysis program EMTP for detecting multiple recurrence surges that occur when a load is cut off by a vacuum circuit breaker.
In the simulation using, the equivalent circuit of the circuit breaker sets a series circuit of a capacitor and a resistor in parallel with the switch, the capacitance of the capacitor is adjusted to the gap capacitance of the circuit breaker, and the resistance value of the resistor is Matching the time constant with the capacitor to the initial flashover voltage of multiple re-ignition and the rising time constant of re-ignition voltage, the multiple re-ignition ignition is simulated by turning on the switch, and the static breakdown voltage and current applied to the circuit breaker The flashover level is determined by the withstand voltage recovery characteristic that depends on the elapsed time after the cutoff, and when the inter-electrode voltage of the switch exceeds the flashover level, the ON signal of the switch is obtained, and the multiple re-ignition is cut off. This is simulated by turning off the switch, and an off signal of the switch is obtained when a current flowing through the switch passes through a zero point.

【0026】[0026]

【作用】多重再発弧をシミュレーションするために、遮
断器を等価するスイッチは、高周波電流が零点を通過す
るときにスイッチを必ずオフにすることにより、実測波
形で頻繁に発生するスパイク状電圧を忠実に模擬できる
ようにする。
In order to simulate multiple re-ignitions, the switch equivalent to the circuit breaker must be turned off when the high-frequency current passes through the zero point, so that the spiked voltage that frequently occurs in the measured waveform can be faithfully reproduced. To be able to simulate.

【0027】スイッチのオン条件になる閃絡レベルは、
遮断器のギャップ長に依存する静耐圧と電流遮断後の経
過時間に依存する耐圧回復特性により決定することによ
り、遮断器の閃絡を忠実に模擬できるようにする。
The flashover level which is the condition for turning on the switch is
By determining the static breakdown voltage depending on the gap length of the circuit breaker and the breakdown voltage recovery characteristic depending on the elapsed time after current interruption, the flashover of the circuit breaker can be faithfully simulated.

【0028】遮断器の等価回路を構成するスイッチには
並列にCR直列回路を設け、コンデンサの容量は遮断器
のギャップ間静電容量に合わせ、抵抗との時定数を初期
閃絡電圧及び再発弧電圧の立ち上がり時定数に合わせる
ことにより、電流遮断後に発生するスパイク状電圧の初
期の波形を忠実に模擬できるようにする。
A CR series circuit is provided in parallel with the switch constituting the equivalent circuit of the circuit breaker, the capacity of the capacitor is adjusted to the gap capacitance of the circuit breaker, and the time constant with the resistor is set to the initial flash voltage and the re-ignition. By adjusting the rising time constant of the voltage, it is possible to faithfully simulate the initial waveform of the spike-like voltage generated after the current interruption.

【0029】[0029]

【実施例】図1は、本発明の一実施例を示すスイッチ制
御信号発生処理のブロック図である。同図中、図7と同
じ処理は同一符号で示す。
1 is a block diagram of a switch control signal generation process showing an embodiment of the present invention. In the figure, the same processes as those in FIG.

【0030】本実施例では、遮断器を模擬するスイッチ
のオン(多重再発弧の発弧)・オフ(多重再発弧の遮
断)条件を以下のようにする。
In the present embodiment, the conditions for turning on the switch simulating the circuit breaker (ignition of multiple re-ignitions) and off (breaking multiple re-ignitions) are as follows.

【0031】(1)スイッチのオン条件 各計算ステップ毎にスイッチ両端の電圧から電極間の電
界強度を求め(S1)、この電界強度が閃絡レベルを越
えたときに閃絡状態の発生を得(S2)、これによりス
イッチ制御信号にスイッチのオン信号を発生し(S
3)、スイッチを閉じる制御信号を得る。
(1) Switch on condition The electric field strength between the electrodes is obtained from the voltage across the switch at each calculation step (S1), and when the electric field strength exceeds the flashover level, a flashover state is generated. (S2), which generates a switch ON signal in the switch control signal (S2).
3) Get the control signal to close the switch.

【0032】ここで、閃絡レベルを決定する処理(S
7)は、遮断器のギャップ長に依存する静耐圧と電流遮
断後の経過時間に依存する耐圧回復特性により決定す
る。この閃絡レベルVSPKは、例えば、次式で決定でき
る。
Here, the process of determining the flashover level (S
7) is determined by the static withstand voltage that depends on the gap length of the circuit breaker and the withstand voltage recovery characteristic that depends on the elapsed time after current interruption. The flashover level V SPK can be determined, for example, by the following equation.

【0033】[0033]

【数】VSPK=V0×exp(−Δt/τ) V0:静耐圧 τ:耐圧上昇時定数 Δt:電流0からの経過時間 (2)スイッチのオフ条件 高周波電流はdi/dt値に拘わらず、零点を通過する
ときに必ず遮断する。このため、スイッチを流れる電流
を監視し、これが零点を通過したかどうかを検出し(S
4)、この零点通過の検出で遮断信号を発生し(S
6)、スイッチを開く制御信号を得る。なお、遮断信号
の復帰信号は、閃絡レベル決定処理(S7)からの閃絡
レベルの発生で得る。
[ Formula ] V SPK = V 0 × exp (-Δt / τ) V 0 : Static breakdown voltage τ: Time constant of breakdown voltage increase Δt: Elapsed time from current 0 (2) Switch off condition High frequency current is di / dt value Regardless, it always shuts off when passing through the zero point. Therefore, the current flowing through the switch is monitored to detect whether it has passed the zero point (S
4) Generates a cutoff signal upon detection of this zero point passage (S
6) Get the control signal to open the switch. The return signal of the cutoff signal is obtained by the occurrence of the flashover level from the flashover level determination process (S7).

【0034】以上のように、スイッチのオン・オフ条件
を決定することにより、極間電圧が閃絡レベルを越えた
ときにスイッチのオンが発生し、このオン後の電流零点
ではスイッチのオフにより必ず電流が遮断し、このタイ
ミングでスパイク状電圧を発生させることができる。
As described above, by determining the on / off condition of the switch, the switch is turned on when the inter-electrode voltage exceeds the flashover level, and the switch is turned off at the current zero point after turning on. The current is always cut off, and a spike-like voltage can be generated at this timing.

【0035】また、従来のシミュレーション方法では、
電流零点におけるdi/dt値を求め、これから遮断レ
ベルを設定している。このdi/dt値は高周波電流の
周波数に依存するため、遮断器回りの回路定数に影響さ
れる。すなわち、従来の方法では、回路によってdi/
dt値の遮断レベルを変える必要があり、このためには
試験等で遮断レベルを予め求めておく必要があった。
In the conventional simulation method,
The di / dt value at the current zero point is obtained, and the cutoff level is set from this. Since this di / dt value depends on the frequency of the high frequency current, it is affected by the circuit constant around the circuit breaker. That is, in the conventional method, di /
It is necessary to change the interruption level of the dt value, and for this purpose it is necessary to obtain the interruption level in advance by a test or the like.

【0036】これに対し、本実施例では遮断の判定条件
によりdi/dt値は無視できるようになり、簡素化さ
れる。
On the other hand, in the present embodiment, the di / dt value can be ignored depending on the cutoff determination condition, which is simplified.

【0037】次に、本実施例では、遮断器の等価回路を
図2に示すように、スイッチSWに並列にコンデンサC
0と抵抗R0の直列回路を設定する。このうち、コンデン
サC0の静電容量はギャップ間静電容量の値に対応付け
て決定し、抵抗R0の抵抗値はコンデンサC0との時定数
が初期閃絡電圧V0及び再発弧電圧VRの立ち上がり時定
数に合わせて決定する。
Next, in this embodiment, as shown in FIG. 2, an equivalent circuit of the circuit breaker is connected in parallel with the switch SW and the capacitor C.
A series circuit of 0 and resistance R 0 is set. Of these, the capacitance of the capacitor C 0 is determined in association with the value of the gap capacitance, and the resistance value of the resistor R 0 has a time constant with the capacitor C 0 that is the initial flashover voltage V 0 and the re-ignition voltage. determined in accordance with the time constant for the rise of V R.

【0038】これにより、本実施例では、初期閃絡電圧
0及び再発弧電圧VRの立ち上がりを模擬できるように
なり、実際に生じる多重再発弧サージ現象を厳密にシミ
ュレーションできる。
As a result, in this embodiment, the rising of the initial flash voltage V 0 and the re-ignition voltage V R can be simulated, and the actual multiple re-ignition surge phenomenon can be strictly simulated.

【0039】図3は、本実施例に基づいて、EMTPで
計算した多重再発弧サージ波形例を示し、図9の実測波
形をよく模擬した波形を得ることができた。
FIG. 3 shows an example of multiple re-ignition surge waveforms calculated by EMTP based on the present embodiment, and a waveform well simulating the actually measured waveform of FIG. 9 could be obtained.

【0040】[0040]

【発明の効果】以上のとおり、本発明によれば、遮断器
を等価するスイッチは、高周波電流が零点を通過すると
きにスイッチを必ずオフにし、スイッチのオン条件にな
る閃絡レベルは、遮断器のギャップ長に依存する静耐圧
と電流遮断後の経過時間に依存する耐圧回復特性により
決定し、スイッチには並列にCR直列回路を設け、コン
デンサの容量は遮断器のギャップ間静電容量に合わせ、
抵抗との時定数を初期閃絡電圧V0及び再発弧電圧VR
立ち上がり時定数に合わせるようにしたため、以下の効
果がある。
As described above, according to the present invention, the switch equivalent to the circuit breaker always turns off the switch when the high-frequency current passes through the zero point, so that the flashover level which is the on condition of the switch is cut off. Determined by the static breakdown voltage that depends on the gap length of the circuit breaker and the breakdown voltage recovery characteristics that depend on the elapsed time after the current is cut off, a CR series circuit is installed in parallel with the switch, and the capacitance of the capacitor is the capacitance between the gaps of the circuit breaker. Together,
Since the time constant with the resistor is adapted to the rising time constants of the initial flashover voltage V 0 and the re-ignition voltage V R , the following effects are obtained.

【0041】(1)実測波形で頻繁に発生するスパイク
状電圧を忠実に模擬できる。
(1) It is possible to faithfully simulate the spike-like voltage that frequently occurs in the actually measured waveform.

【0042】(2)遮断器の閃絡を忠実に模擬できる。(2) The flashover of the circuit breaker can be faithfully simulated.

【0043】(3)電流遮断後に発生する初期閃絡電圧
0及び再発弧電圧VRの初期波形を忠実に模擬できる。
(3) The initial waveforms of the initial flash voltage V 0 and the re-ignition voltage V R generated after the current interruption can be faithfully simulated.

【0044】(4)遮断信号発生のためのdi/dt値
が不要になり、遮断レベルを求める試験等が不要にな
る。
(4) The di / dt value for generating the cutoff signal is unnecessary, and the test for determining the cutoff level is unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すスイッチ制御信号発生
処理のブロック図。
FIG. 1 is a block diagram of switch control signal generation processing according to an embodiment of the present invention.

【図2】実施例の遮断器等価回路。FIG. 2 is an equivalent circuit of a circuit breaker according to an embodiment.

【図3】実施例に基づいたシミュレーションによる多重
再発弧計算波形例。
FIG. 3 shows an example of multiple re-arcing calculation waveforms by simulation based on the embodiment.

【図4】発弧サージの説明図。FIG. 4 is an explanatory diagram of an arcing surge.

【図5】発弧サージの発生を伴う回路図。FIG. 5 is a circuit diagram accompanied by the occurrence of arcing surge.

【図6】発弧サージによる電圧上昇時の電圧電流波形。FIG. 6 shows a voltage / current waveform when the voltage rises due to an arcing surge.

【図7】従来のスイッチ制御信号発生処理のブロック
図。
FIG. 7 is a block diagram of conventional switch control signal generation processing.

【図8】発弧サージ試験回路図。FIG. 8 is an arc surge test circuit diagram.

【図9】多重再発弧サージの実測波形例。FIG. 9 shows an example of an actually measured waveform of multiple re-ignition surges.

【図10】従来の遮断器の等価回路。FIG. 10 is an equivalent circuit of a conventional circuit breaker.

【符号の説明】[Explanation of symbols]

SW…遮断器を模擬するスイッチ C、C0…コンデンサ R、R0…抵抗 L…誘導性負荷Switch C to simulate the SW ... breaker, C 0 ... capacitor R, R 0 ... resistance L ... inductive load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空遮断器で負荷を遮断する時に発生す
る多重再発弧サージを汎用過渡解析プログラムEMTP
を用いてシミュレーションするにおいて、 遮断器の等価回路は、スイッチに並列にコンデンサと抵
抗の直列回路を設定し、該コンデンサの容量は遮断器の
ギャップ間静電容量に合わせ、該抵抗の抵抗値は該コン
デンサとの時定数を多重再発弧の初期閃絡電圧及び再発
弧電圧の立ち上がり時定数に合わせ、 多重再発弧の発弧は、前記スイッチのオンにより模擬
し、遮断器にかかる静耐圧と電流遮断後の経過時間に依
存する耐圧回復特性で閃絡レベルを決定し、該スイッチ
の電極間電圧が該閃絡レベルを越えたときに該スイッチ
のオン信号を得、 多重再発弧の遮断は、前記スイッチのオフにより模擬
し、該スイッチを流れる電流が零点を通過したときに該
スイッチのオフ信号を得ることを特徴とする多重再発弧
サージのシミュレーション方法。
1. A general-purpose transient analysis program EMTP to detect multiple re-ignition surges that occur when a load is cut off by a vacuum circuit breaker.
In the simulation using, the equivalent circuit of the circuit breaker sets a series circuit of a capacitor and a resistor in parallel with the switch, the capacitance of the capacitor is adjusted to the gap capacitance of the circuit breaker, and the resistance value of the resistor is Matching the time constant with the capacitor to the initial flashover voltage of multiple re-ignition and the rising time constant of the re-ignition voltage, the multiple re-ignition ignition is simulated by turning on the switch, and the static breakdown voltage and the current applied to the circuit breaker. The flashover level is determined by the withstand voltage recovery characteristic that depends on the elapsed time after the cutoff, and when the inter-electrode voltage of the switch exceeds the flashover level, the ON signal of the switch is obtained, A method for simulating multiple re-ignition surges, which is simulated by turning off the switch and obtains an off signal of the switch when a current flowing through the switch passes through a zero point.
JP7033434A 1995-02-22 1995-02-22 Simulation method for multiple reignition surge Pending JPH08227639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033434A JPH08227639A (en) 1995-02-22 1995-02-22 Simulation method for multiple reignition surge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033434A JPH08227639A (en) 1995-02-22 1995-02-22 Simulation method for multiple reignition surge

Publications (1)

Publication Number Publication Date
JPH08227639A true JPH08227639A (en) 1996-09-03

Family

ID=12386438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033434A Pending JPH08227639A (en) 1995-02-22 1995-02-22 Simulation method for multiple reignition surge

Country Status (1)

Country Link
JP (1) JPH08227639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607813A (en) * 2017-09-11 2018-01-19 厦门理工学院 A kind of switch cubicle model combination property is shown and control system and its construction method
CN109557841A (en) * 2018-09-10 2019-04-02 中国南方电网有限责任公司超高压输电公司检修试验中心 Self-check system based on wireless device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607813A (en) * 2017-09-11 2018-01-19 厦门理工学院 A kind of switch cubicle model combination property is shown and control system and its construction method
CN109557841A (en) * 2018-09-10 2019-04-02 中国南方电网有限责任公司超高压输电公司检修试验中心 Self-check system based on wireless device

Similar Documents

Publication Publication Date Title
Ahn et al. An alternative approach to adaptive single pole auto-reclosing in high voltage transmission systems based on variable dead time control
Johns et al. Improved techniques for modelling fault arcs an faulted EHV transmission systems
JP6042047B1 (en) DC circuit breaker test apparatus and test method
US4157496A (en) Circuit for testing protection devices
Marciniak Model of the arc earth-fault for medium voltage networks
CN110514955B (en) Single-phase intermittent arc grounding fault positioning method for low-current grounding power grid
US4742427A (en) Electrostatic discharge simulation
JPH08227639A (en) Simulation method for multiple reignition surge
US4238810A (en) Forced commutation precipitator circuit
GB904829A (en) Improvements in or relating to the testing of high-voltage switches
JP2000304835A (en) Test device for circuit-breaker
Czarnecki et al. Measurement and statistical simulation of multiple reignitions in vacuum switches
Smeets et al. Types of reignition following high-frequency current zero in vacuum interrupters with two types of contact material
Anderson et al. Synthetic testing of ac circuit breakers. Part 1: Methods of testing and relative severity
JP7325937B2 (en) Input test apparatus for vacuum circuit breaker and test method thereof
Park et al. Evaluation of black-box arc model for DC circuit breaker and comparative analysis of arc characteristic parameters
Perkins et al. Dielectric recovery and predicted ac performance of blown SF6 arcs
JPS60125569A (en) Testing method of multithunder operating duty of lightning arrester
JP2675649B2 (en) Switchgear test method and device
Budzisz et al. Transient Current and Voltage Waveforms When Switching on a Capacitive Circuit with a Vacuum Circuit Breaker
Giralt et al. Implementation of a discharge propagation model using an electric field map: an attempt toward a design tool for high-voltage overhead insulation
JP2734599B2 (en) Leading current interruption test equipment for switchgear
JP2805862B2 (en) Life detection method of switch for parallel capacitor
JPH10253680A (en) Test method for short-time withstand current of switchgear
JPH08278349A (en) Method for synthetic equalization testing of breaker