JPH10253680A - Test method for short-time withstand current of switchgear - Google Patents

Test method for short-time withstand current of switchgear

Info

Publication number
JPH10253680A
JPH10253680A JP9054842A JP5484297A JPH10253680A JP H10253680 A JPH10253680 A JP H10253680A JP 9054842 A JP9054842 A JP 9054842A JP 5484297 A JP5484297 A JP 5484297A JP H10253680 A JPH10253680 A JP H10253680A
Authority
JP
Japan
Prior art keywords
phase
current
short
time
switchgear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9054842A
Other languages
Japanese (ja)
Inventor
Shinichi Kai
慎一 甲斐
Koji Konno
康二 昆野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9054842A priority Critical patent/JPH10253680A/en
Publication of JPH10253680A publication Critical patent/JPH10253680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible that a current ratio as the ratio of the maximum peak value of a first wave after the turning-in operation of a current flowing in a switchgear to be tested to the effective value of a sustained current is made largeer than that of a case in which three phases are turned on simultaneously by a conventional turning-on device. SOLUTION: In respective phases of a three-phase power supply generated by a generator 1 for short circuit, the voltage of a phase which is used as a basis is designated as a phase R, the phase of a voltage whose phase is delayed by 120 deg. from a phase voltage at the phase R is designated as a phase S, and the phase of a voltage whose phase is advanced by 120 deg. from the voltage at the phase R is designated as a phase T. Then, the voltage at the phase R and that at the phase S are started to flow simultaneously at prescribed phases by operaitng respective turning-on devices 3, they are delayed by the prescribed phases, and they are started to flow by turning on a turning-on device 3 at the phase T. Thereby, a current ratio becomes large as compared with a case in which three phases are turned on simultaneously. Consequently, even when the current ratio of a standard value does not become 2.5 or higher when three phases are turned on simultaneously in conventional cases, the current ratio becomes 2.5 of higher without increasing a sustained current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガス絶縁開閉装
置などの比較的大容量の開閉装置、例えばガス絶縁開閉
装置の熱的強度と電磁機械力に対する耐力を検証するた
めに行われる開閉装置の短時間耐電流試験方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switchgear having a relatively large capacity such as a gas-insulated switchgear, for example, a switchgear for verifying the thermal strength and proof strength against electromagnetic mechanical force of a gas-insulated switchgear. The present invention relates to a short-time withstand current test method.

【0002】[0002]

【従来の技術】ガス絶縁開閉装置などの開閉装置では耐
短絡電流強度を保証するための定格短時間耐電流が定格
電圧や電流に対応して設定されており、この短時間耐電
流に相当する電流を実際に対象とするガス絶縁開閉装置
に通電して耐えることを検証する試験として短時間耐電
流試験が行われる。
2. Description of the Related Art In a switching device such as a gas-insulated switchgear, a rated short-time withstand current for guaranteeing short-circuit current resistance is set in accordance with a rated voltage and a current, which corresponds to the short-time withstand current. A short-time withstand current test is performed as a test for verifying that a current is actually passed through a gas-insulated switchgear to be subjected to the current and endured.

【0003】短時間耐電流に関する規定は二つあって、
2秒間持続する電流の実効値と電流を流通直後に発生す
る第1波の最大波高値である。この第1波の最大波高値
は定格短時間耐電流の実効値の2.5倍以上であること
が規定(例えば、電気学会電気規格調査専門会標準規格
JEC−2350「ガス絶縁開閉装置」)されている。
There are two rules regarding short-time withstand current.
The effective value of the current that lasts for 2 seconds and the maximum crest value of the first wave generated immediately after the current flows. The maximum crest value of the first wave is specified to be at least 2.5 times the effective value of the rated short-time withstand current (for example, JEC-2350 "Gas insulated switchgear" of the Institute of Electrical Engineers of Japan). Have been.

【0004】機器に対する短絡電流の影響には二つあっ
て、その一つは熱的影響であり、これを検証するために
2秒間持続する電流(以下これを「持続電流」と称す
る)が流される。もう一つは電磁力に対するものであ
り、この電磁力は電流瞬時値の最大値によって決まり、
電流流通直後の第1波で生ずる波高値がこれにあたる。
この波高値の最大値は抵抗成分による減衰を無視する
と、持続電流の波高値の2倍になり、その条件は印加電
圧の零点で投入されたときである。これは投入直後に過
渡的に生ずる直流成分が重畳するからであり、投入位相
によってこの直流成分の値が変わり、印加電圧の零点で
投入されたときが最大になる。
[0004] There are two effects of short-circuit current on equipment, one of which is thermal effect. To verify this, a current that lasts for 2 seconds (hereinafter referred to as "continuous current") is applied. It is. The other is for electromagnetic force, which is determined by the maximum current instantaneous value,
The peak value generated in the first wave immediately after the current flow corresponds to this.
The maximum value of the peak value is twice the peak value of the sustained current, ignoring the attenuation due to the resistance component, and the condition is when the voltage is applied at the zero point of the applied voltage. This is because a DC component that transiently occurs immediately after the input is superimposed. The value of the DC component changes depending on the input phase, and becomes maximum when the input is applied at the zero point of the applied voltage.

【0005】第1波の波高値の最大値が持続電流波高値
の2倍のとき、持続電流の実効値に対する倍率はこれの
2の平方根倍であるから約2.8となる。このような電
流の倍率を以後は電流比と呼ぶことにする。図1は開閉
装置の短時間耐電流試験における短時間耐電流印加回路
であり、この発明の実施例の説明のために使用するもの
であるが、従来のものと類似なので、この図で従来の短
時間耐電流試験方法を説明する。
When the maximum value of the peak value of the first wave is twice the peak value of the continuous current, the ratio of the continuous current to the effective value is about 2.8 because it is a square root of 2 times this value. Such a magnification of the current is hereinafter referred to as a current ratio. FIG. 1 shows a short-time withstand current application circuit in a short-time withstand current test of a switchgear, which is used for explaining an embodiment of the present invention. The short-time withstand current test method will be described.

【0006】この図において、短時間耐電流試験回路
は、三相電流供給電源としての短絡用発電機1、保護遮
断器2、相ごとの投入器3R、投入器3S、投入器3T
からなる投入器3、限流リアクトル4、変圧器5、供試
開閉装置6及び電流測定器としてのシャント抵抗7がそ
れぞれ直列接続されている。右端の終端は短絡されてい
る。
In FIG. 1, a short-time withstand current test circuit includes a short-circuit generator 1 as a three-phase current supply power supply, a protection circuit breaker 2, a closing device 3R, a closing device 3S, and a closing device 3T for each phase.
, A current limiting reactor 4, a transformer 5, a test switchgear 6 and a shunt resistor 7 as a current measuring device are connected in series. The right end is shorted.

【0007】保護遮断器2は試験中に異常が発生しない
かぎり「閉」であり、何らかの異常が発生したときに速
やかに試験回路から短絡用発電機1を切り離してこの短
絡用発電機1や試験回路全体を保護する役目を持つ。投
入器3は、投入時点を設定して投入できるもので、この
投入器3が投入されて始めて試験回路に電流が流れる。
この電流がシャント抵抗7によってそれぞれの相ごとに
測定される。勿論、投入器3が投入される時点では供試
開閉装置6は「閉」の状態にある。
The protection circuit breaker 2 is "closed" unless an abnormality occurs during the test. When any abnormality occurs, the short-circuit generator 1 is immediately disconnected from the test circuit, and the short-circuit generator 1 It has the role of protecting the entire circuit. The thrower 3 can be set and thrown in at the time of throwing, and a current flows through the test circuit only after the thrower 3 is thrown.
This current is measured for each phase by the shunt resistor 7. Of course, the test switchgear 6 is in the "closed" state when the charging device 3 is turned on.

【0008】三相の各相をR相,S相,T相と名付ける
と、投入器3はこれら各相同時に投入される、すなわ
ち、相ごとの投入器3R、投入器3S、投入器3Tの投
入時点は同じである。図では投入器3のそれぞれの相ご
とに投入指令信号が入力されるのを矢印で図示してある
が、これは後述のこの発明の実施例の場合であり、従来
の投入器3では三つの投入器3R,3S,3Tに共通し
て一つの投入信号が入力される。この投入信号は図示し
ない試験装置の制御装置によって短絡用発電機1による
印加電圧の位相に合わせて出力され投入器3に入力され
る。
When the three phases are named R phase, S phase, and T phase, the thrower 3 is simultaneously thrown in each of these phases, that is, the thrower 3R, thrower 3S, and thrower 3T for each phase. The time of input is the same. In the figure, the input of the closing command signal for each phase of the thrower 3 is indicated by an arrow, but this is the case of an embodiment of the present invention described later. One input signal is input commonly to the input devices 3R, 3S, and 3T. The input signal is output by a control device of a test device (not shown) in accordance with the phase of the voltage applied by the short-circuit generator 1 and input to the input device 3.

【0009】図4は従来の試験方法で行った試験におけ
るR相,S相,T相ごとの電流の時間的変化を表す波形
図である。この図において、横軸は時間tで一目盛り1
0ミリ秒で目盛ってあり、t=0である原点はR相とS
相との間の線間電圧VRSの零点である。なお、印加電圧
の周波数は50Hzなので1周期は20ミリ秒であるか
ら、図の1目盛りは半周期、位相角にして180°にな
る。縦軸は電流(キロアンペア)である。この電流値は
供試開閉装置6の電圧、電流などの定格によって異なる
ものである。
FIG. 4 is a waveform diagram showing a temporal change in current for each of the R, S, and T phases in a test performed by a conventional test method. In this figure, the horizontal axis is one division 1 at time t.
Scaled at 0 ms, the origin at t = 0 is R phase and S
This is the zero point of the line voltage V RS between the phases. Since the frequency of the applied voltage is 50 Hz, one cycle is 20 milliseconds. Therefore, one graduation in the figure has a half cycle and a phase angle of 180 °. The vertical axis is the current (kiloamps). This current value differs depending on the rating of the test switchgear 6 such as voltage and current.

【0010】投入器3による電圧印加時点t0 は原点か
ら約1.7ミリ秒である。この時点は位相角にして30
°であり、これは、R相の相電圧VR と前述の線間電圧
RSとの位相差であり線間電圧VRSの方が進んでいる。
R相電流IR の最初の波高値が最大になるのは電圧VR
の零点で投入された場合である。すなわち、この図の投
入位相はR相電流IR の第1波の波高値が最も大きくな
る条件である。図から分かるように、相電流IR は時点
0 では0であり、これは限流リアクトル4のインダク
タンスによって電流の変化が制限されて電流は投入直後
は0から漸次増大していくのである。その後更に上昇し
て第1波の波高値は約20キロアンペアとなりその後は
振動を繰り返しながら全体に下に下がってゆく。この振
動成分の振幅は片側振幅にして約10.4キロアンペ
ア、実効値にして約7.4キロアンペアである。したが
って、最大波高値の実効値に対する比率、すなわち、前
述のように電流比は2.7である。
The time point t 0 at which the voltage is applied by the thrower 3 is approximately 1.7 milliseconds from the origin. At this point, the phase angle is 30
°, which is a phase difference between the phase voltage VR of the R phase and the above-described line voltage VRS , and the line voltage VRS is more advanced.
The first peak value of the R-phase current I R becomes maximum at the voltage V R
This is the case where the input is made at the zero point. In other words, the actuation phase of the diagram the peak value of the first wave of R-phase current I R is most larger conditions. As can be seen from the figure, the phase current I R is 0 at time t 0 , which is limited by the inductance of the current limiting reactor 4 and the current gradually increases from 0 immediately after being turned on. Thereafter, the peak value of the first wave further rises to about 20 kA, and thereafter, the whole wave falls down while repeating the vibration. The amplitude of this vibration component is about 10.4 kA in one-sided amplitude and about 7.4 kA in effective value. Therefore, the ratio of the maximum peak value to the effective value, that is, the current ratio is 2.7 as described above.

【0011】前述のように、投入位相が最適でかつ直流
成分の減衰がないと仮定したときには電流比は約2.8
になる。実際の電力系統では短絡が生ずる位相は任意で
あり回路などの抵抗による直流成分の減衰もあるので、
これらが考慮されて前述のように規格上は2.5という
電流比が設定されている。短時間耐電流試験においては
この電流比が大きすぎると電磁機械力が過大になること
から過酷な試験になるので、この電流比2.5を越える
近い値に設定される。もし、最適条件では2.5を越え
るときには投入器3による投入位相をずらして2.5に
近い値にする。
As described above, when it is assumed that the input phase is optimum and there is no attenuation of the DC component, the current ratio is about 2.8.
become. In an actual power system, the phase in which a short circuit occurs is arbitrary, and there is also the attenuation of the DC component due to the resistance of the circuit.
Taking these factors into consideration, a current ratio of 2.5 is set in the standard as described above. In the short-time withstand current test, if the current ratio is too large, the electromagnetic mechanical force becomes excessively large, and the test becomes severe. Therefore, the current ratio is set to a value close to 2.5. If the value exceeds 2.5 under optimum conditions, the input phase by the input device 3 is shifted to a value close to 2.5.

【0012】[0012]

【発明が解決しようとする課題】ところで、最適の投入
位相で投入しても第1波の最大波高値の持続電流の実効
値に対する倍率が2.5を越えないときには印加電圧を
上げて持続電流を定格短時間耐電流値よりも大きくして
定格短時間耐電流の実効値に対する第1波の最大波高値
の電流比が2.5以上になるようにする。このとき、実
際に供試開閉装置6に流される持続電流は規格で決めら
れた定格短時間耐電流値よりも大きくなるので、この場
合には供試開閉装置6にとって熱的に過酷な試験条件に
なるという問題がある。
By the way, when the magnification of the maximum peak value of the first wave to the effective value of the continuous current does not exceed 2.5 even if the phase is applied at the optimum closing phase, the applied voltage is increased to increase the continuous current. Is made larger than the rated short-time withstand current value so that the current ratio of the maximum peak value of the first wave to the effective value of the rated short-time withstand current becomes 2.5 or more. At this time, the sustained current actually passed through the switchgear 6 becomes larger than the rated short-time withstand current value determined by the standard. Problem.

【0013】この発明の目的はこのような問題を解決
し、三相同時投入によって電圧を印加して供試開閉装置
6に電流を流したときに、投入位相がたとえ最適位相で
あっても第1波の最大波高値の持続電流の実効値に対す
る電流比が2.5以下になるときに、持続電流を大きく
することなしに定格短時間耐電流の実効値に対する電流
比を2.5以上にすることのできる開閉装置の短時間耐
電流試験方法を提供することにある。
An object of the present invention is to solve such a problem, and when a voltage is applied by three-phase simultaneous application and a current flows through the switchgear 6 under test, even if the applied phase is the optimum phase, When the current ratio of the maximum peak value of one wave to the effective value of the continuous current is 2.5 or less, the current ratio to the effective value of the rated short-time withstand current is increased to 2.5 or more without increasing the continuous current. It is an object of the present invention to provide a short-time withstand current test method for a switchgear capable of performing a test.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
にこの発明によれば、開閉装置の短時間耐電流試験にお
ける所定の大きさの第1波の波高値を持つ短時間電流を
流す開閉装置の短時間耐電流試験方法において、三相電
源の各相を、基本となる相をR相、このR相の相電圧よ
り120°遅れた位相の電圧の相をS相、R相の電圧よ
り120°進んだ位相の相をT相と名付けたとき、R相
とS相とを所定の位相で同時にそれぞれの相の投入器を
投入して通流開始後、所定の位相だけ遅らせてT相の投
入器を投入して通流を開始させると、従来の三相同時投
入のときには投入直後のT相の電流の極性はR相と同じ
なので、R相の電流を減ずる働きをするが、投入を遅ら
せるためにその作用がなくなってR相の電流増加の速度
が大きくなる。T相の電圧の極性が逆になった時点でT
相を投入するとT相の電流はS相とともにR相とは逆の
極性になることから、R相の電流は更に大きくなり、結
果的に従来の三相同時投入のときに比べてR相の投入後
第1波の波高値がより大きくなる。
According to the present invention, there is provided a switchgear for supplying a short-time current having a peak value of a first wave of a predetermined magnitude in a short-time withstand current test of a switchgear. In the short-time withstand current test method of the device, each phase of the three-phase power supply is set to an R phase as a basic phase, an S phase and a R phase voltage delayed by 120 ° from the R phase voltage. When a phase having a phase advanced by 120 ° is called a T phase, the R phase and the S phase are simultaneously turned on at a predetermined phase and the respective phase input devices are turned on at the same time. When the phase starter is turned on to start current flow, the polarity of the T-phase current immediately after turning on is the same as that of the R-phase at the time of conventional three-phase simultaneous input, so that the R-phase current is reduced. Since the operation is delayed, the action is lost, and the speed of the current increase in the R phase is increased. When the polarity of the voltage of the T phase is reversed, T
When the phase is turned on, the current of the T phase becomes opposite in polarity to that of the R phase together with the S phase, so that the current of the R phase is further increased. After the injection, the peak value of the first wave becomes larger.

【0015】また、前述の開閉装置の短時間耐電流試験
方法の、R相とS相とのそれぞれの投入器を同時に投入
する代わりに、一方の相の投入器を事前に投入してお
き、他方の相の投入器を所定の位相で投入すると、二つ
の相の投入器が投入されて始めて電流が流れるので、R
相とS相とを別の時点で投入したとしても後の相の投入
時点が実質的に二つの相の同時投入時点と現象的に同じ
になることから、前述の試験方法と同じく第1波の波高
値を従来の三相同時投入のときよりも大きくすることが
できる。
In the short-time withstand current test method for the switchgear described above, instead of simultaneously turning on the R-phase and S-phase throwers, one phase thrower is thrown in advance. When the thrower of the other phase is turned on at a predetermined phase, the current flows only after the thrower of the two phases is turned on.
Even if the phase and the S phase are injected at different points in time, the input point of the subsequent phase is substantially the same as the input point of the two phases phenomena substantially. Can be made larger than that in the conventional three-phase simultaneous injection.

【0016】[0016]

【発明の実施の形態】以下この発明を実施例に基づいて
説明する。図1はこの発明の実施例を示す開閉装置の短
時間耐電流試験のための試験装置の回路図であり、前述
した事項については重複した説明を省く。この図におい
て、投入器3は相ごとの投入器3R,3S,3Tからな
るが、これら投入器3R,3S,3Tはそれぞれごとに
駆動機構を持ち各相ごとに単独に投入することの機能を
持っている点が従来の投入器と異なる。図示しない制御
装置が投入器3のそれぞれの相の図示しない駆動機構に
対して独立して投入信号を発し、この信号を受けた各相
の投入器3R,3S,3Tが信号を受けた時点を起点と
して投入動作に入り接点を閉じて「閉」の状態にする。
なお、このような各相が独立して投入が可能な投入器は
既に存在しているのでその詳しい説明は省く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a circuit diagram of a test apparatus for a short-time withstand current test of a switchgear according to an embodiment of the present invention, and the description of the above items will not be repeated. In this figure, the thrower 3 is comprised of throwers 3R, 3S, 3T for each phase, and each thrower 3R, 3S, 3T has a drive mechanism for each, and has the function of throwing independently for each phase. It has a different point from the conventional one. A control device (not shown) independently issues a closing signal to a driving mechanism (not shown) of each phase of the thrower 3, and when the throwers 3 </ b> R, 3 </ b> S, and 3 </ b> T of each phase receive this signal receive a signal. As a starting point, a closing operation is performed, and the contact is closed to be in a “closed” state.
It should be noted that there is already an input device capable of inputting each phase independently, and a detailed description thereof will be omitted.

【0017】図2はこの発明の実施例を示す図1の試験
装置によって行われた短時間耐電流試験における各相の
電流波形を示す波形図であり、図4と類似なので重複す
る説明を省く。この図の図4と異なる点は、T相電流i
T の投入時点tT がR相、S相の投入時点t0 よりも遅
れた時点であることである。その他の条件は図2と図4
とは同じである。図2から分かるように、R相電流iR
の第1波は図4のそれよりも大きい。このように、T相
の投入時点を遅らせることによってR相電流i R が大き
くなる理由は次のように説明できる。
FIG. 2 shows the test of FIG. 1 showing an embodiment of the present invention.
Each phase in the short-time withstand current test performed by the device
FIG. 5 is a waveform diagram showing a current waveform, which is similar to FIG.
Description is omitted. 4 in that the T-phase current i
TTime tTIs the time t when the R and S phases are charged0Slower than
At that point. Other conditions are shown in FIGS. 2 and 4.
Is the same as As can be seen from FIG. 2, the R-phase current iR
Are larger than those of FIG. Thus, the T phase
Delay of the input time of the R-phase current i RIs large
The reason can be explained as follows.

【0018】図4で分かるように、投入時点t0 直後で
はT相の電流iT は相電流IR と同じ正の方に増加す
る。これら三つの相電流の和は0であるから、この相電
流ITがなければ相電流iR は図4よりも大きくなるこ
とが想定できる。図2の結果はそれを証明している訳で
ある。ただ、負の方に増加する相電流IS の値は図4に
比べて図2の方がその値が小さいので、相電流iT がな
い分がそのまま相電流i R の増加につながっているので
はない。図3は種々の条件のもとで電流比を求めた結果
を表したグラフで、横軸は投入時間(ミリ秒)で原点の
条件は図2,図4と同じであり、縦軸は電流比である。
また、曲線G1は時間軸の原点から約0.7ミリ秒後の
時点でR,S相を投入した場合、曲線G2は時間軸の原
点から約1.7ミリ秒後の時点でR,S相を投入した場
合、曲線G3は時間軸の原点から約2.7ミリ秒後の時
点でR,S相を投入した場合であり、それぞれの曲線の
左側の始点はこの時点でT相も一緒に三相同時投入の場
合であり、その後の右側の曲線はT相の投入時点が横軸
の値に相当する場合である。曲線G1は菱形、曲線G2
は正方形、曲線G3は三角形でそれぞれ曲線の途中に印
してあるのは測定点である。なお、白丸を付けた曲線G
4は同時投入の場合である。
As can be seen from FIG.0Immediately after
Is the T-phase current iTIs the phase current IRIncreases to the same positive as
You. Since the sum of these three phase currents is 0, this phase current
Style ITIf there is no phase current iRIs larger than in Fig. 4.
Can be assumed. The result in Figure 2 proves that
is there. However, the phase current I that increases in the negative directionSThe value of
2 is smaller than that in FIG.TGana
The phase current i RHas led to an increase in
There is no. Fig. 3 shows the results of the current ratio obtained under various conditions.
The horizontal axis is the injection time (millisecond) and the origin
The conditions are the same as in FIGS. 2 and 4, and the vertical axis is the current ratio.
Curve G1 is about 0.7 ms after the origin of the time axis.
When the R and S phases are input at the time, the curve G2 is based on the time axis.
When the R and S phases are supplied at about 1.7 ms after the point
In this case, curve G3 is about 2.7 ms after the origin of the time axis.
This is the case where the R and S phases are injected at the point,
The starting point on the left side is the case where three phases are simultaneously input together with the T phase at this time.
The curve on the right after that is the time when the T-phase was injected
In this case. Curve G1 is a diamond, curve G2
Is a square, curve G3 is a triangle and marked in the middle of each curve
The measurement points are shown. The curve G with a white circle
4 is a case of simultaneous injection.

【0019】R相の相電圧VR はこの線間電圧VRSから
位相にして30°遅れているが、この位相差30°が時
間にして約1.7ミリ秒に相当する(1周期20ミリ秒
×30°/360°=1.67ミリ秒)。したがって、
曲線G2の左端の始点は相電圧VR の零点となってい
て、このときが三相同時投入の場合にR相の投入後第1
波の波高値が最大になることは前述の通りである。曲線
G4がこの時点で最大値となっているのはこのことを示
している。
The phase voltage V R of the R phase is delayed by 30 ° from the line voltage V RS in phase, but this phase difference of 30 ° corresponds to about 1.7 milliseconds in time (20 cycles per cycle). Millisecond × 30 ° / 360 ° = 1.67 millisecond). Therefore,
Left of the starting point of the curve G2 is not a zero point of the phase voltage V R, the after introduction of R phase if this time is of the three-phase simultaneous-on 1
As described above, the peak value of the wave becomes maximum. This indicates that the curve G4 has the maximum value at this point.

【0020】曲線G1は曲線G2の始点から1ミリ秒投
入時点を早くし、曲線G3は逆に1ミリ秒遅くした場合
である。なお、図2の波形図は曲線G2のT相の投入時
点が5.7ミリ秒のとき、すなわち、G2の最も右端の
場合である。このときの電流比は約2.75で、規格値
の2.5をはるかに上回る電流比となっている。ちなみ
に曲線G2の左側の始点、すなわち、三相同時投入の場
合の電流比は2.48で規格値の2.5を下回ってい
る。すなわち、T相を遅らせて投入することによって、
従来の三相同時投入の試験方法では規格値を満足できな
い条件の場合でも一つの相を他の相よりも投入時点を遅
らせることによって規格値を充分満足することのできる
電流比を得ることができる。勿論、2.5を大幅に上回
る電流比を採用する必要はないので、実際の短時間耐電
流試験では電流比が2.5以上の適当な条件を設定す
る。図3から明らかなように、最大の電流比が得られる
条件は曲線G2によるのではなく、R,S相の投入時点
をより早くした例えば曲線G1の方がより大きな電流比
を得ることができる。
The curve G1 is for the case where the input point of 1 millisecond is advanced from the start point of the curve G2, and the curve G3 is for the case where it is delayed for 1 millisecond. Note that the waveform diagram of FIG. 2 shows a case where the injection point of the T phase of the curve G2 is 5.7 milliseconds, that is, a case where G2 is the rightmost end. The current ratio at this time is about 2.75, which is much higher than the standard value of 2.5. Incidentally, the starting point on the left side of the curve G2, that is, the current ratio in the case of three-phase simultaneous input is 2.48, which is below the standard value of 2.5. That is, by delaying the T phase and feeding,
Even in the case where the conventional three-phase simultaneous injection test method does not satisfy the standard value, it is possible to obtain a current ratio that can sufficiently satisfy the standard value by delaying the time when one phase is applied compared to the other phase even under conditions where the standard value cannot be satisfied. . Of course, it is not necessary to employ a current ratio that greatly exceeds 2.5, so that in an actual short-time withstand current test, appropriate conditions are set such that the current ratio is 2.5 or more. As is clear from FIG. 3, the condition under which the maximum current ratio is obtained does not depend on the curve G2, but a larger current ratio can be obtained, for example, with the curve G1 in which the R and S phases are turned on earlier. .

【0021】実際の開閉装置の短時間耐電流試験方法に
おいて適当な条件を設定する方法は、事前に低電流、例
えば規格値の電流を得るのに必要な印加電圧の半分の電
圧を印加して電流を測定し、その結果から適切な条件を
選択する。また、短絡用発電機1を始めとする図1に示
す試験回路の回路定数は過去の試験結果を参考にすれば
正確に分かるから、これを基に回路計算によって適切な
値を選択することも可能である。
A method for setting appropriate conditions in a short-time withstand current test method of an actual switchgear is to apply a low current, for example, half of the applied voltage necessary to obtain a current of a standard value in advance. Measure the current and select appropriate conditions from the results. Also, since the circuit constants of the test circuit shown in FIG. 1 including the short-circuit generator 1 can be accurately determined by referring to the past test results, it is also possible to select an appropriate value by circuit calculation based on this. It is possible.

【0022】投入器3R,3Sを同時に投入する他に、
例えば、投入器3Rをあらかじめ投入しておき、投入器
3Sを所定の時点で投入し、その後所定の時間遅れた時
点で投入器3Tを投入するという投入方法を採用するこ
ともできる。それは、1つの相の投入器を投入しても電
流が流れず、2つ目の相の投入器を投入して始めて電流
が流れるからである。いずれの投入方法を採用するかは
投入器3の投入時点の制御方式などに基づいて適した方
を採用すればよい。
In addition to charging the charging devices 3R and 3S simultaneously,
For example, it is also possible to adopt an input method in which the input device 3R is input in advance, the input device 3S is input at a predetermined time, and then the input device 3T is input at a time after a predetermined time delay. This is because the current does not flow even when the input device of one phase is turned on, and the current flows only after the input device of the second phase is turned on. Which of the input methods is to be adopted may be the one that is more appropriate based on the control method at the time of input of the input device 3 or the like.

【0023】[0023]

【発明の効果】この発明は前述のように、三相電源の各
相を、基本相をR相、このR相より120°遅れた位相
をS相、R相より120°進んだ位相をT相と名付けた
とき、R相とS相とを所定の位相で同時にそれぞれの相
の投入器を投入して通流開始後、所定の位相だけ遅らせ
てT相の投入器を投入して通流を開始させると、同時投
入のときには投入直後のT相の電流の極性はR相と同じ
なので、R相の電流を減ずる働きをするが、投入を遅ら
せるためその作用がなくなってR相の電流増加の速度が
大きくなり、T相の電圧の極性が逆になった時点でT相
を投入するとT相の電流はS相とともにR相とは逆の極
性になることから、R相の電流は更に大きくなり、結果
的に同時投入のときに比べてR相の投入後第1波の波高
値が同時投入のときよりも大きくなる。したがって、従
来の三相同時投入の場合におけるような、電流比の値が
2.5以上にならないために、持続電流を定格短時間耐
電流よりも大きくして投入後の第1波の最大波高値が定
格短時間耐電流値の実効値の2.5以上になるようにす
る必要がないことから、持続電流を大きくすることによ
り供試開閉装置が熱的に過酷な試験条件になるという問
題が解消するという効果が得られる。
As described above, according to the present invention, each phase of the three-phase power supply is divided into an R phase as a basic phase, an S phase delayed by 120 ° from the R phase, and a T phase shifted 120 ° from the R phase as T phase. When the phases are named, the R-phase and the S-phase are simultaneously supplied with a predetermined phase at the same time, and each phase is turned on at the same time. When the power supply is started simultaneously, the polarity of the T-phase current immediately after the power-on is the same as that of the R-phase, so that the R-phase current is reduced. When the T phase is turned on when the polarity of the voltage of the T phase is reversed, the current of the T phase becomes opposite in polarity to the R phase together with the S phase. When the peak value of the first wave after simultaneous injection of the R phase is simultaneous injection compared to the case of simultaneous injection Larger than. Therefore, since the value of the current ratio does not become 2.5 or more as in the case of the conventional three-phase simultaneous input, the maximum current of the first wave after the input is set by setting the sustained current to be larger than the rated short-time withstand current. Since the high value does not need to be 2.5 times or more the effective value of the rated short-time withstand current value, increasing the continuous current causes the switchgear under test to be subjected to severe thermal test conditions. Is obtained.

【0024】また、前述の開閉装置の短時間耐電流試験
方法の、R相とS相とのそれぞれの投入器を同時に投入
する代わりに、一方の相の投入器を事前に投入してお
き、他方の相の投入器を所定の位相で投入すると、二つ
の相の投入器が投入されて始めて電流が流れるので、R
相とS相とを別の時点で投入したとしても後の相の投入
時点が実質的に二つの相の同時投入時点となることか
ら、前述の試験方法と同じ効果が得られる。
In the short-time withstand current test method for the switchgear described above, instead of simultaneously turning on the R-phase and S-phase throwers, the thrower of one phase is thrown beforehand. When the thrower of the other phase is turned on at a predetermined phase, the current flows only after the thrower of the two phases is turned on.
Even if the phase and the S phase are introduced at different points in time, the same point as that of the above-described test method can be obtained since the point of introduction of the later phase is substantially the point of simultaneous introduction of the two phases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す開閉装置の短時間耐電
流試験に使用される試験回路
FIG. 1 shows a test circuit used for a short-time withstand current test of a switchgear according to an embodiment of the present invention.

【図2】図1の試験装置によって行われた短時間耐電流
試験における各相の電流波形を示す波形図
FIG. 2 is a waveform chart showing current waveforms of respective phases in a short-time withstand current test performed by the test apparatus of FIG. 1;

【図3】図1の試験装置によって行われた短時間耐電流
試験において種々の条件のもとで相電流の投入後第1波
の波高値を持続電流の実効値に対する比率で表したグラ
3 is a graph showing a peak value of a first wave after application of a phase current under various conditions in a short-time withstand current test performed by the test apparatus of FIG.

【図4】従来の試験装置によって行われた短時間耐電流
試験における各相の電流波形を示す波形図
FIG. 4 is a waveform diagram showing a current waveform of each phase in a short-time withstand current test performed by a conventional test apparatus.

【符号の説明】 1…短絡用発電機、2…保護遮断器、3,3R,3S,
3T…投入器、4…限流リアクトル、5…変圧器、6…
供試開閉装置、7…シャント抵抗
[Explanation of Signs] 1 ... Short-circuit generator, 2 ... Protection breaker, 3, 3R, 3S,
3T ... thrower, 4 ... current limiting reactor, 5 ... transformer, 6 ...
Test switchgear, 7 Shunt resistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】開閉装置の短時間耐電流試験における所定
の大きさの第1波の波高値を持つ短時間電流を流す開閉
装置の短時間耐電流試験方法において、三相電源の各相
を、基本となる相をR相、このR相の相電圧より120
°遅れた位相の電圧の相をS相、R相の電圧より120
°進んだ位相の相をT相と名付けたとき、R相とS相と
を所定の位相で同時にそれぞれの相の投入器を投入して
通流開始後、所定の位相だけ遅らせてT相の投入器を投
入して通流を開始させることを特徴とする開閉装置の短
時間耐電流試験方法。
In a short-time withstand current test method for a switchgear, in which a short-time current having a peak value of a first wave of a predetermined magnitude is applied in a short-time withstand current test for a switchgear, each phase of a three-phase power supply is , The basic phase is R phase, and the phase voltage of this R phase is 120
° The phase of the delayed phase voltage is 120
° When the advanced phase is named T-phase, the R-phase and S-phase are simultaneously turned on at a predetermined phase, the respective phase input devices are turned on at the same time, and after starting the flow, the T-phase is delayed by a predetermined phase. A short-time withstand current test method for a switchgear, characterized in that a charging device is turned on to start flowing.
【請求項2】請求項1記載の開閉装置の短時間耐電流試
験方法の、R相とS相とのそれぞれの投入器を同時に投
入する代わりに、一方の相の投入器を事前に投入してお
き、他方の相の投入器を所定の位相で投入することを特
徴とする開閉装置の短時間耐電流試験方法。
2. The short-time withstand current test method for a switchgear according to claim 1, wherein instead of simultaneously turning on the R-phase and S-phase throwers, one phase thrower is thrown in advance. A short-time withstand current test method for a switchgear, characterized in that the input device of the other phase is input at a predetermined phase.
JP9054842A 1997-03-10 1997-03-10 Test method for short-time withstand current of switchgear Pending JPH10253680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9054842A JPH10253680A (en) 1997-03-10 1997-03-10 Test method for short-time withstand current of switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9054842A JPH10253680A (en) 1997-03-10 1997-03-10 Test method for short-time withstand current of switchgear

Publications (1)

Publication Number Publication Date
JPH10253680A true JPH10253680A (en) 1998-09-25

Family

ID=12981879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9054842A Pending JPH10253680A (en) 1997-03-10 1997-03-10 Test method for short-time withstand current of switchgear

Country Status (1)

Country Link
JP (1) JPH10253680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157046A1 (en) * 2010-06-17 2011-12-22 国网电力科学研究院 Method for simulating very fast transient overvoltage generation in gas insulated switchgear (gis) transformer substation and test loop thereof
CN106019132A (en) * 2016-06-06 2016-10-12 柳州市海格电气有限公司 35kV outdoor vacuum circuit breaker detecting method
CN106093762A (en) * 2016-06-06 2016-11-09 柳州市海格电气有限公司 The 500kV pot type exchange SF6 chopper method of inspection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157046A1 (en) * 2010-06-17 2011-12-22 国网电力科学研究院 Method for simulating very fast transient overvoltage generation in gas insulated switchgear (gis) transformer substation and test loop thereof
CN106019132A (en) * 2016-06-06 2016-10-12 柳州市海格电气有限公司 35kV outdoor vacuum circuit breaker detecting method
CN106093762A (en) * 2016-06-06 2016-11-09 柳州市海格电气有限公司 The 500kV pot type exchange SF6 chopper method of inspection

Similar Documents

Publication Publication Date Title
CA2636175C (en) Incoming current suppression device
US5479086A (en) Process and device for reducing the inrush current when powering aninductive load
US4887018A (en) Line to line to line to neutral converter
US4724503A (en) Phase unbalance detector
JPH10253680A (en) Test method for short-time withstand current of switchgear
JPH0591719A (en) Testing method of self-excited converter
JP2000304835A (en) Test device for circuit-breaker
AU9819598A (en) Connection apparatus for electric conductors
JP7325937B2 (en) Input test apparatus for vacuum circuit breaker and test method thereof
GB2276782A (en) Process and apparatus for the reduction of surges in switch-on current in the operation of a three-phase inductive load
JPH06186309A (en) Interruption test circuit for switch
JP2675649B2 (en) Switchgear test method and device
JP3103262B2 (en) Circuit breaker test circuit for switchgear
JPH0695134B2 (en) Switch test equipment
US3038116A (en) Circuit-breaker testing arrangement
RU1795393C (en) Device for electrodynamic testing power transformers
CN112698191B (en) Circuit and method for verifying performance of power transformer change-over switch
JPH09117170A (en) Starter for motor
SU393701A1 (en) METHOD FOR TESTING ELECTRICAL APPARATUS FOR SWITCHING ABILITY BY CYCLE
SU1689896A1 (en) Device for electromagnetic test of power transformers
CA1163323A (en) Voltage compensation for an a-c network supplying a rapidly-changing load
JPS5930034B2 (en) static power converter
JPH065652Y2 (en) Shiya disconnector testing device
JPS60125570A (en) Method for testing surge current of semiconductor rectifier
JPH058533Y2 (en)