JPH08226776A - Condensing apparatus and generating plant - Google Patents

Condensing apparatus and generating plant

Info

Publication number
JPH08226776A
JPH08226776A JP31029095A JP31029095A JPH08226776A JP H08226776 A JPH08226776 A JP H08226776A JP 31029095 A JP31029095 A JP 31029095A JP 31029095 A JP31029095 A JP 31029095A JP H08226776 A JPH08226776 A JP H08226776A
Authority
JP
Japan
Prior art keywords
steam
tube nest
extraction port
flow
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31029095A
Other languages
Japanese (ja)
Other versions
JP3314599B2 (en
Inventor
Fumio Takahashi
文夫 高橋
Iwao Harada
▲巌▼ 原田
Yasuo Fujitani
康男 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31029095A priority Critical patent/JP3314599B2/en
Publication of JPH08226776A publication Critical patent/JPH08226776A/en
Application granted granted Critical
Publication of JP3314599B2 publication Critical patent/JP3314599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To reduce pressure loss and efficiently remove a non-condensed gas. CONSTITUTION: The reference numeral 1 designates a tube bundle, 11 an outer periphery of the tube bundle, 12 flow passages, 13 tube banks, 2 an inlet of steam flow, 3 an extraction port of non-condensed gas, and 5 a bottom surface of a vessel. The tube bundle 1 is positioned away from a side wall 4 of the vessel and the bottom surface of the vessel so as to enable taking in steam from every quarter and decreasing a speed of steam. The extraction port 3 is disposed below a center of gravity of the tube bundle 1, and the plurality of flow passages 12 are formed above the extraction port 3 to extend toward the extraction port 3 from the outer periphery 11 of the tube bundle. The flow passages 12 have tip ends thereof at the outer periphery 11, and are widened in width toward the tip ends. Further, area ratios and lengths of the flow passages become larger toward a central axis of the tube bundle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は凝縮装置に係り、特
に原子力及び火力発電プラントの復水器,化学プラント
の凝縮器などに用いるのに好適な凝縮装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser, and more particularly to a condenser suitable for use in condensers of nuclear and thermal power plants, condensers of chemical plants and the like.

【0002】[0002]

【従来の技術】例えば、原子力や火力発電プラントの復
水器では、冷却管の両端に冷却水導入用の水室が設けら
れ蒸気の流入口が冷却管に直交するように設けられるた
め、蒸気は冷却管に直交して流れる。復水器の管巣では
通常1000本から10000本の多数の冷却管が用い
られているため、管巣の内部に蒸気を導くためには冷却
管による圧力損失の低減が重要な課題である。
2. Description of the Related Art For example, in a condenser of a nuclear power plant or a thermal power plant, a water chamber for introducing cooling water is provided at both ends of a cooling pipe, and a steam inlet is provided so as to be orthogonal to the cooling pipe. Flow perpendicular to the cooling tubes. Since a large number of cooling pipes of 1000 to 10000 are usually used in the condenser tube nest, it is an important issue to reduce the pressure loss by the cooling tube in order to introduce the steam into the nest.

【0003】一方、蒸気には大気中の空気などの不凝縮
ガスが混入しており、蒸気の凝縮に伴い不凝縮ガスが濃
縮されて管巣の低圧部に集まる。不凝縮ガスが管巣内部
に停滞すると、冷却管表面をシールドして蒸気の凝縮を
著しく阻害する。このため、不凝縮ガスの除去も重要課
題である。
On the other hand, non-condensable gas such as air in the atmosphere is mixed in the steam, and the non-condensable gas is concentrated as the steam condenses and collects in the low pressure portion of the tube nest. When the non-condensed gas stagnates inside the tube nest, it shields the surface of the cooling pipe and significantly impedes the vapor condensation. Therefore, the removal of non-condensable gas is also an important issue.

【0004】管巣の圧力損失及び不凝縮ガスの停滞域は
蒸気の流れに影響されるため、冷却管に直交する断面で
の管巣形状に大きく依存する。このため、様々な管巣形
状が提案されている。
Since the pressure loss in the tube nest and the stagnation region of the non-condensable gas are affected by the flow of steam, they largely depend on the shape of the tube nest in the cross section orthogonal to the cooling pipe. Therefore, various tube nest shapes have been proposed.

【0005】第1の従来例として、特開昭61−114087
号,US1,704,484,DE7,539,721の公報には、圧力損
失を低減する流路を管巣の外周部に設け、不凝縮ガスを
抽出する抽出管又は開口部(以下、抽出領域という)に
不凝縮ガスを導くための均圧域を設けた管巣が記載され
ている。
As a first conventional example, Japanese Patent Laid-Open No. 61-114087
No. 1,704,484, DE 7,539,721, a flow path for reducing pressure loss is provided at the outer periphery of a tube nest, and an extraction pipe or an opening (hereinafter referred to as an extraction region) for extracting non-condensable gas is not provided. A tube nest with a pressure equalization zone for guiding condensed gas is described.

【0006】これらの形状は様々であるが、均圧域の周
りに冷却管をほぼ一定の厚さの層状に配置しており、以
下の共通の概念に基づいている。即ち、均一に流入する
蒸気に対して流入方向に垂直な層に冷却管を配置すれば
蒸気の流れは1次元的であり、蒸気は層の表面から凝縮
し、不凝縮ガスは層の裏に濃縮され層の背後に設けた均
圧域により抽出管に導かれる。但し、この形状では管巣
の表面積が蒸気の開口幅で制限され圧力損失が増えるた
め、層の厚さを維持しながら2次元的に変形させてい
る。
Although the shapes thereof are various, the cooling pipes are arranged around the pressure equalizing region in a layer shape having a substantially constant thickness, and are based on the following common concept. That is, if the cooling pipes are arranged in a layer perpendicular to the inflow direction with respect to the uniformly inflowing steam, the flow of the steam is one-dimensional, the steam condenses from the surface of the bed, and the non-condensed gas flows to the back of the bed. It is concentrated and guided to the extraction tube by the pressure equalizing zone provided behind the bed. However, in this shape, the surface area of the tube nest is limited by the opening width of the steam and the pressure loss increases, so that the layer is deformed two-dimensionally while maintaining the thickness of the layer.

【0007】また、第2の従来例として、特開平4−244
589 号公報には、層に複数の流路を設け流路幅を等差数
列的に縮小することで不凝縮ガスを低圧部に集める管巣
形状が記載されている。
As a second conventional example, Japanese Patent Laid-Open No. 4-244
Japanese Patent No. 589 describes a tube nest shape in which a non-condensable gas is collected in a low pressure portion by providing a plurality of flow paths in a layer and reducing the flow path width in an arithmetic progression.

【0008】また、第3の従来例として、特開平2−242
088 号公報には、層を流路によって複数の管巣に分割
し、一つの流路の断面積の変化によって不凝縮ガスを低
圧部に集める管巣形状が記載されている。
Further, as a third conventional example, Japanese Patent Laid-Open No. 2-242
Japanese Patent Laid-Open No. 088 describes a tube nest shape in which a layer is divided into a plurality of tube nests by a flow passage, and non-condensable gas is collected in a low pressure portion by a change in cross-sectional area of one flow passage.

【0009】[0009]

【発明が解決しようとする課題】第1の従来例では、2
次元的に変形させたとき不凝縮ガスが層の背後の均圧域
に集まるとは限らず、また抽出領域から離れて不凝縮ガ
スが停滞する場合は均圧域は有効に働かない。更に、均
圧域が設けられている管巣内部は蒸気速度が遅く、均圧
域は圧力損失の低減には効果がない。
In the first conventional example, 2
The non-condensable gas does not always gather in the pressure equalizing region behind the bed when it is deformed dimensionally, and the pressure equalizing region does not work effectively when the non-condensing gas stays away from the extraction region. Furthermore, the vapor velocity is slow inside the tube nest where the pressure equalizing region is provided, and the pressure equalizing region is not effective in reducing the pressure loss.

【0010】第2及び第3の従来例では、不凝縮ガスは
低圧部に集まるが流路が不可欠であり、流路には冷却管
を配置できないので、コンパクトな復水器には不向きで
ある。また、不凝縮ガスの濃度は蒸気流のパスによって
異なるため、低圧部で不凝縮ガスが混合し、不凝縮ガス
の停滞域を十分に小さくできない。更に、第2の従来例
では流路長が長くなると流路方向に不凝縮ガスを集める
のが困難となり、第3の従来例では細分した個々の管巣
に空気抽出系を設けるスペースが必要となるので、付帯
設備が増加する。これら従来技術の問題点は1次元理論
に基づいた形状を用いていることにある。
In the second and third conventional examples, the non-condensable gas collects in the low pressure portion, but the flow passage is indispensable and a cooling pipe cannot be arranged in the flow passage, so that it is not suitable for a compact condenser. . Moreover, since the concentration of the non-condensable gas varies depending on the path of the vapor flow, the non-condensable gas is mixed in the low pressure portion, and the stagnant region of the non-condensable gas cannot be sufficiently reduced. Further, in the second conventional example, it becomes difficult to collect the non-condensable gas in the direction of the flow channel when the flow channel length becomes long, and in the third conventional example, a space for providing an air extraction system is required for each individual tube nest. Therefore, incidental equipment will increase. The problem with these conventional techniques is that the shape based on the one-dimensional theory is used.

【0011】本発明の目的は、圧力損失を低減し不凝縮
ガスを効率良く除去できるコンパクトな凝縮装置及びこ
れを用いた発電プラントを提供することにある。
An object of the present invention is to provide a compact condensing device capable of reducing pressure loss and efficiently removing noncondensable gas, and a power plant using the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、蒸気を流入させる流入口と、該流入口か
ら流入した蒸気を凝縮する複数の冷却管と、該冷却管に
よる凝縮で生じた凝縮液を流出させる流出口と、蒸気に
混入した不凝縮ガスを抽出する少なくとも一つの抽出口
とを備える凝縮装置において、前記抽出口近傍に形成さ
れる蒸気の吸い込み領域と、少なくとも蒸気の主流方向
において、前記吸い込み領域の形状と前記抽出口への吸
い込み流れの流線とで定義される流量分布(又は、複数
の領域の断面積分布)が均等化されるように配置された
複数の冷却管を備えたものである。
In order to achieve the above object, the present invention provides an inlet for introducing steam, a plurality of cooling pipes for condensing the steam flowing from the inlet, and condensation by the cooling pipes. In a condensing device having an outlet for letting out the condensate generated in step 1, and at least one extraction port for extracting the non-condensable gas mixed in the steam, a suction region for the vapor formed near the extraction port, and at least the vapor In a main flow direction of a plurality of the plurality of elements arranged so that the flow rate distribution (or the cross-sectional area distribution of a plurality of areas) defined by the shape of the suction region and the streamline of the suction flow to the extraction port is equalized. It is equipped with a cooling pipe.

【0013】また、本発明は、蒸気を流入させる流入口
と、該流入口から流入した蒸気を凝縮する複数の冷却管
及び蒸気に混入した不凝縮ガスを抽出する少なくとも一
つの抽出口を有する管巣と、該管巣による凝縮で生じた
凝縮液を流出させる流出口とを備える凝縮装置におい
て、前記抽出口は管巣外周の重心に対して流入口と反対
側に位置し、前記管巣は管巣外周から抽出口へ向かう複
数の流路を備え、該流路の長さは、蒸気の主流方向に平
行で抽出口から流入口側に向かう基準線に近いほど長く
したものである。
Further, according to the present invention, a pipe having an inflow port for introducing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, and at least one extraction port for extracting non-condensable gas mixed in the steam. In a condenser comprising a nest and an outlet for letting out a condensate generated by condensation by the tube nest, the extraction port is located on the opposite side to the inlet with respect to the center of gravity of the outer circumference of the tube nest, and the tube nest is A plurality of flow passages extending from the outer periphery of the tube nest to the extraction port are provided, and the length of the flow passages is increased as it is closer to the reference line extending from the extraction port toward the inflow port side in parallel with the main flow direction of steam.

【0014】また、本発明は、蒸気を流入させる流入口
と、該流入口から流入した蒸気を凝縮する複数の冷却管
及び蒸気に混入した不凝縮ガスを抽出する少なくとも一
つの抽出口を有する管巣と、該管巣による凝縮で生じた
凝縮液を流出させる流出口とを備える凝縮装置におい
て、前記管巣は、流入口側に位置し管巣外周から抽出口
へ向かう複数の流路を有する第1の領域と、該第1の領
域に隣接して前記抽出口を有し冷却管が密集して配置さ
れる第2の領域とを備え、前記流路の長さは、蒸気の主
流方向に平行で抽出口から流入口側に向かう基準線に近
いほど長くしたものである。
Further, according to the present invention, a pipe having an inflow port for introducing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, and at least one extraction port for extracting non-condensable gas mixed in the steam. In a condensing device including a nest and an outlet for letting out a condensate produced by condensation by the tube nest, the tube nest has a plurality of flow paths located on the inlet side and extending from the outer circumference of the tube nest to the extraction port. A first region and a second region adjacent to the first region and having the extraction ports and having densely arranged cooling pipes are provided, and the length of the flow path is in the main flow direction of steam. It is made longer as it is parallel to and is closer to the reference line from the extraction port toward the inlet side.

【0015】また、本発明は、蒸気を流入させる流入口
と、該流入口から流入した蒸気を凝縮する複数の冷却管
及び蒸気に混入した不凝縮ガスを抽出する少なくとも一
つの抽出口を有する管巣と、該管巣による凝縮で生じた
凝縮液を流出させる流出口とを備える凝縮装置におい
て、前記管巣は、前記抽出口の周りに冷却管を密集して
配置した密集領域と、管巣外周から前記抽出口へ向かう
複数の流路を有する放射領域とを備え、各流路を流れる
蒸気の流量が実質的に等しくなるように、前記複数の流
路が形成されているものである。
Further, according to the present invention, a pipe having an inflow port for introducing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, and at least one extraction port for extracting non-condensable gas mixed in the steam. In a condenser comprising a nest and an outlet for letting out a condensate generated by condensation by the tube nest, the tube nest is a dense region in which cooling pipes are densely arranged around the extraction port, and a tube nest. A radiation region having a plurality of flow paths from the outer periphery to the extraction port is provided, and the plurality of flow paths are formed so that the flow rates of vapors flowing through the respective flow paths are substantially equal.

【0016】また、本発明は、蒸気を用いて発電を行う
蒸気タービンと、該蒸気タービンから排出された蒸気を
凝縮する復水器とを備えた発電プラントにおいて、前記
復水器として、上記の凝縮装置を備えたものである。
Further, the present invention is a power generation plant comprising a steam turbine for generating electric power using steam and a condenser for condensing steam discharged from the steam turbine, wherein the condenser is the above-mentioned condenser. It is equipped with a condenser.

【0017】本発明は、凝縮装置の2次元管巣形状を直
接表せる2次元理論に基づいて、管巣における流路及び
抽出領域の位置を最適化して得られたものである。ま
ず、原子力や火力発電プラントの復水器を例に取り、本
発明の原理を説明する。原子力や火力発電プラントにお
いて、タービン内の回転する翼列周りを通過した蒸気流
はタービン排気室を経て復水器に流入し、復水器の管巣
で凝縮する。このため、復水器流入部での流れは複雑な
分布となるが、通常、タービン排気室は復水器流入部で
の偏流を低減できる構造となっているので、ここでは単
純化して復水器流入部での流れをほぼ一様と仮定する。
The present invention is obtained by optimizing the positions of the flow path and the extraction region in the tube nest based on the two-dimensional theory that can directly represent the two-dimensional tube nest shape of the condenser. First, the principle of the present invention will be described by taking a condenser of a nuclear power plant or a thermal power plant as an example. In a nuclear power plant or a thermal power plant, a steam flow passing around a rotating blade row in a turbine flows into a condenser via a turbine exhaust chamber and is condensed in a tube nest of the condenser. For this reason, the flow in the condenser inlet has a complicated distribution, but the turbine exhaust chamber usually has a structure that can reduce uneven flow in the condenser inlet, so here we simplify the condenser. It is assumed that the flow at the inlet of the vessel is almost uniform.

【0018】図3に2次元理論の基本となる吸い込み流
れモデルの概念を示す。蒸気は管巣を構成する複数の冷
却管表面で凝縮するが、蒸気に混入している不凝縮ガス
を抽出領域に集めるために、冷却管表面での凝縮を抽出
領域での吸い込みで置換した吸い込みを伴う流れを考え
る。図3で流線は流入部で一定間隔に描いており、流入
部での流れは一様であるから、隣合う流線間の流量は全
て同一である。
FIG. 3 shows the concept of the suction flow model which is the basis of the two-dimensional theory. Vapor condenses on the surfaces of multiple cooling tubes that make up the tube nest, but in order to collect the non-condensable gas mixed with the steam in the extraction area, suction that replaces the condensation on the cooling tube surface with the suction in the extraction area Consider the flow that involves. In FIG. 3, the streamlines are drawn at regular intervals in the inflow section, and the flow in the inflow section is uniform, so the flow rates between adjacent streamlines are all the same.

【0019】図4に示すように、流線間の流量を凝縮す
るために必要となる冷却管の設置面積を求める。即ち、
流線間毎に吸い込み点を起点として面積分して、一定面
積となる形状を求め、終点を結んだ包絡線(等面積線)
を求める。例えば、図4で二つの斜線部の面積は等し
い。この等面積線は、図形上で求めることもできるし、
数学的には面積分の一つの変数を流線に対応する流れ関
数として選び、一方の変数を流線に直交する流れポテン
シャルとして求めることもできる。
As shown in FIG. 4, the installation area of the cooling pipe required to condense the flow rate between the streamlines is determined. That is,
For each streamline, the suction point is used as the starting point and the area is divided to obtain a shape that has a constant area, and the envelope that connects the end points (equal area line)
Ask for. For example, the areas of the two shaded areas in FIG. 4 are equal. This equal area line can be found on the figure,
Mathematically, one variable for the area can be selected as the stream function corresponding to the streamline, and one variable can be obtained as the stream potential orthogonal to the streamline.

【0020】冷却管の凝縮量は1本毎に異なり、管巣で
の圧力損失に伴い低下する飽和蒸気温度及び蒸気速度
と、不凝縮ガス濃度により変化する熱伝達率との影響を
受ける。しかし、ここでの最終目的は圧力損失の低減及
び不凝縮ガスの除去であり、また不凝縮ガスを微量しか
含まない蒸気の凝縮の場合、熱伝達率は管表面の液膜が
支配し蒸気速度の影響は小さいので、均一の凝縮量を仮
定できる。従って、一定流量の蒸気を凝縮するためには
一定本数の冷却管が必要であり、先に求めた面積は冷却
管を規則的な千鳥または正方の管群として密集配置した
ときに要する面積であり、等面積線は管巣の外周形状を
表わす。以下、この管巣を密集部のみからなる管巣と呼
ぶ。
The amount of condensation in the cooling pipe varies from one pipe to another, and is affected by the saturated steam temperature and steam velocity that decrease with pressure loss in the tube nest, and the heat transfer coefficient that changes depending on the noncondensable gas concentration. However, the final purpose here is to reduce the pressure loss and remove the non-condensable gas, and in the case of the condensation of the vapor containing only a small amount of the non-condensable gas, the heat transfer coefficient is dominated by the liquid film on the tube surface and the vapor velocity. Since the effect of is small, a uniform amount of condensation can be assumed. Therefore, a certain number of cooling pipes are required to condense a constant flow of steam, and the area previously obtained is the area required when the cooling pipes are densely arranged as a regular staggered or square tube group. , Equal area lines represent the outer peripheral shape of the tube nest. Hereinafter, this tube nest is referred to as a tube nest consisting of only a dense portion.

【0021】大型の復水器に密集部のみからなる管巣を
用いる場合、圧力損失が大きく管巣中心部に蒸気が到達
できないので、管巣に流路を設ける必要がある。図5に
密集部のみからなる管巣に流路を設ける方法を示す。流
路の設け方としては、密集部の管群の一部を管巣の外側
に移し、吸い込み流れに対する抵抗を低減するために、
流線に沿って流路を設ける。このとき、流線間で一定流
量の蒸気を凝縮するために流線間の冷却管の本数を一定
とする。即ち、流線間の管群の面積を一定とする。
When a tube nest consisting of only a dense portion is used in a large condenser, pressure loss is large and steam cannot reach the center of the tube nest. Therefore, it is necessary to provide a flow path in the tube nest. FIG. 5 shows a method of providing a flow path in a tube nest composed of only a dense portion. As a way of providing the flow path, in order to reduce a resistance to the suction flow by moving a part of the tube group of the dense portion to the outside of the tube nest,
A flow path is provided along the streamline. At this time, in order to condense a constant flow rate of steam between streamlines, the number of cooling pipes between streamlines is made constant. That is, the area of the tube group between the streamlines is made constant.

【0022】流線の間隔には任意性があるが、管巣全体
としての形状、即ち冷却管の分布を崩さないことが必要
であり、ある程度間隔を狭くとる必要がある。しかし、
管群のピッチ以下には狭められず、また流線の間隔を狭
めて多数の流路を設けた場合、流路側面に並んだ冷却管
表面での摩擦が増えるため得策でない。このような点を
考慮すると、図5に示すように10本前後の流線によっ
て分割される間隔とすることが妥当である。
The spacing of the streamlines is arbitrary, but it is necessary to keep the shape of the entire tube nest, that is, the distribution of the cooling tubes, and to narrow the spacing to some extent. But,
If the number of flow paths is not narrowed below the pitch of the tube group and the streamline intervals are narrowed, it is not a good idea because friction increases on the surface of the cooling tubes lined up on the side surfaces of the flow paths. In consideration of such a point, it is appropriate to set the interval divided by about 10 streamlines as shown in FIG.

【0023】密集部のみからなる管巣の外周では蒸気速
度は一様でなく流線の間隔に反比例するため、間隔の狭
い上部で蒸気速度が速い。また、上部でも中心軸(蒸気
の主流方向に平行で抽出領域から流入口側に向かう基準
線)に近いほど蒸気速度が速い。圧力損失は速度の2乗
に比例して増大するため、蒸気速度が速い上部に流路を
設け、更に蒸気速度に比例させて中心軸に近いほど流線
間の流路の比率を増やす。一定の流線間隔を基本単位と
しているため、中心軸に近いほど流路長が長くなり、ま
た管群の先端も上に延びる。管群の先端が上に延びる
と、管群の抵抗により流線が変形されて圧力損失を生じ
るが、流速の速い管巣上部ほど管群を疎にすることによ
り流線の変形を微小に留めることができる。
Since the steam velocity is not uniform on the outer periphery of the tube nest composed only of the dense portion and is inversely proportional to the interval of the streamlines, the steam velocity is high in the upper part where the interval is narrow. Further, in the upper part as well, the steam velocity is higher as it is closer to the central axis (the reference line parallel to the main flow direction of steam and extending from the extraction region toward the inlet side). Since the pressure loss increases in proportion to the square of the velocity, a flow passage is provided in the upper portion where the steam velocity is high, and the flow passage ratio between the streamlines is increased in proportion to the steam velocity and closer to the central axis. Since a constant streamline interval is used as a basic unit, the flow path length becomes longer as it approaches the central axis, and the tip of the tube group also extends upward. When the tip of the tube group extends upward, the flow line is deformed due to the resistance of the tube group and pressure loss occurs, but the deformation of the flow line is stopped minutely by making the tube group sparser in the upper part of the nest where the flow velocity is faster. be able to.

【0024】次に流路を吸い込み点近傍まで延ばすこと
を考える。通常、復水器の管群では千鳥又は正方の規則
的な配置が用いられるが、規則的な管群を用いて流路を
曲線である吸い込み流れの流線に沿わせることは容易で
ない。このため、図6に示すように流路を直線で延ばす
方法を考える。
Next, consider extending the flow path to the vicinity of the suction point. Usually, staggered or square regular arrangements are used in condenser tubes, but it is not easy to use regular tubes to follow the flow path along a curved suction flow streamline. Therefore, consider a method of extending the flow path in a straight line as shown in FIG.

【0025】流路の形状は現実の流線を規定することに
なるが、図6ではこれまでと同様に理想的な吸い込み流
れの流線を表わしている。同図の13a〜13mは、対
応する流線間からの一定流量の蒸気を凝縮するための管
群を表わす。流路を延ばしても一定流量の蒸気量は変わ
らないため、13a〜13mの各管群の面積を一定にし
ている。流路が存在する管巣上部では、理想的な吸い込
み流れの流線に合わせて管群を配置することが困難なた
め、図6に示すように、流線を外側に変形させたような
折線で流路を近似し、このような流路を形成するように
管群を配置する。
Although the shape of the flow path defines the actual streamline, FIG. 6 shows the ideal streamline of the suction flow as before. Reference numerals 13a to 13m in the same figure represent a group of tubes for condensing a constant flow rate of steam from between the corresponding streamlines. Since the amount of steam at a constant flow rate does not change even if the flow path is extended, the area of each tube group 13a to 13m is made constant. At the upper part of the tube nest where the flow path exists, it is difficult to arrange the tube group in line with the ideal flow line of the suction flow. Therefore, as shown in FIG. The flow paths are approximated by and the tube groups are arranged so as to form such flow paths.

【0026】一方、流路が存在しない管巣下部では、流
路により流れが規定されることはないが、上記した管巣
上部の変形に伴い上部の管群が下部に入り込むため、各
管群の面積を一定とするように、管群を等面積線の外側
までずらして配置する。このような管群配置を用いて
も、管巣下部では流速が極めて遅く管群形状の圧力損失
への影響は小さいため、面積を一定にすればある程度自
由な形状を取ることができる。
On the other hand, in the lower part of the tube nest where the flow path does not exist, the flow is not regulated by the flow path, but since the upper tube group enters the lower part due to the above-mentioned deformation of the upper part of the tube nest, each tube group The tube groups are arranged so as to be displaced to the outside of the equal-area line so that the area of is constant. Even if such a tube group arrangement is used, since the flow velocity is extremely slow in the lower part of the tube nest and the influence of the tube group shape on the pressure loss is small, it is possible to take a somewhat free shape if the area is constant.

【0027】以上のように決めた管巣形状では、管巣上
部に流入した蒸気流を乱さずに蒸気を凝縮できる流路を
構成できるので、圧力損失を低減することができる。ま
た、不凝縮ガスを吸い込み流れの終端である吸い込み点
に集めることができるので、不凝縮ガスを効率良く除去
し伝熱性能を大幅に向上することができる。更に、従来
の均圧域がないのでコンパクトな復水器(凝縮器)とす
ることができる。
With the tube nest shape determined as described above, a flow path can be constructed which can condense the steam without disturbing the steam flow flowing into the upper part of the tube nest, so that the pressure loss can be reduced. Further, since the noncondensable gas can be collected at the suction point which is the end of the suction flow, the noncondensable gas can be efficiently removed and the heat transfer performance can be greatly improved. Furthermore, since there is no conventional pressure equalizing area, a compact condenser (condenser) can be obtained.

【0028】[0028]

【発明の実施の形態】以下、本発明の具体的な実施例を
図を用いて説明する。図2に本発明を適用した復水器を
示す。本復水器は、蒸気流入口2,蒸気を凝縮させる管
巣1,不凝縮ガスを抽出する不凝縮ガスの抽出管30,
復水流出口6,容器側壁4などから構成される。管巣1
は水平方向(図2のx方向)に延びた1000〜100
00本の冷却管(図示せず)で構成され、支持板14で
支持される。冷却水は冷却水流入口80から流入し、水
室81を経て管巣1の冷却管内を流れる。管巣1は1a
及び1bの2系統からなり、どちらか1系統に不具合が
生じても復水器としての性能を維持できるようにしてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a condenser to which the present invention is applied. The condenser includes a steam inlet 2, a tube nest 1 for condensing steam 1, a noncondensable gas extraction tube 30 for extracting noncondensable gas,
It is composed of the condensate outlet 6, the side wall 4 of the container, and the like. Tube nest 1
Is 1000 to 100 extending in the horizontal direction (x direction in FIG. 2).
It consists of 00 cooling pipes (not shown) and is supported by the support plate 14. The cooling water flows from the cooling water inflow port 80, flows through the water chamber 81, and flows in the cooling pipe of the tube nest 1. Tube nest 1 is 1a
And 1b, the performance of the condenser can be maintained even if a failure occurs in one of the two systems.

【0029】タービン(図示せず)から排気された蒸気
は蒸気流入口2の上側から復水器に流入し、管巣1で凝
縮し、凝縮で生じた復水は重力で下方に落下し、復水流
出口6から流出する。一方、管巣1で凝縮しきれなかっ
た未凝縮の蒸気及び不凝縮ガスは、表面に多数の孔を有
しx方向に延びた抽出管30に取り込まれ、x方向の一
端に位置する不凝縮ガス冷却部131に流入する。不凝
縮ガス冷却部131は内部にx方向に延びた複数の冷却
管を有し、この冷却管により未凝縮の蒸気のほとんどが
凝縮され、残った不凝縮ガスが不凝縮ガス排気管132
を通して復水器外部に排気される。即ち、不凝縮ガス冷
却部131は管巣1で凝縮しきれなかった未凝縮の蒸気
を凝縮させる役割を果たす。
The steam exhausted from the turbine (not shown) flows into the condenser from the upper side of the steam inlet 2, is condensed in the tube nest 1, and the condensed water generated by the condensation falls downward by gravity, It flows out from the condensate outlet 6. On the other hand, the uncondensed vapor and the non-condensed gas that have not been completely condensed in the tube nest 1 are taken into the extraction pipe 30 that has a large number of holes on the surface and extends in the x direction, and the uncondensed gas located at one end in the x direction. It flows into the gas cooling unit 131. The non-condensable gas cooling unit 131 has a plurality of cooling pipes extending in the x direction inside, and most of the uncondensed vapor is condensed by the cooling pipes, and the remaining non-condensed gas is exhausted from the non-condensed gas exhaust pipe 132.
Is exhausted to the outside of the condenser. That is, the non-condensable gas cooling unit 131 plays a role of condensing the uncondensed vapor that could not be completely condensed in the tube nest 1.

【0030】尚、不凝縮ガス冷却部131は、本実施例
のようにx方向の一端にのみ設ける以外にも、x方向の
全域に設けたり、或いは抽出管30を復水器の外部まで
延ばし復水器とは別に不凝縮ガス冷却部131を設けて
もよい。
The non-condensable gas cooling part 131 is provided not only at one end in the x direction as in the present embodiment, but also in the entire x direction, or the extraction pipe 30 is extended to the outside of the condenser. The non-condensable gas cooling unit 131 may be provided separately from the condenser.

【0031】次に、管巣のアスペクト比(管巣高さ/管
巣幅)の決定法について説明する。前述した吸い込み理
論により求めた管巣のアスペクト比を図7に示す。同図
で、縦軸は管巣のアスペクト比を、横軸は容器幅に対す
る管巣幅の比を表わす。尚、図2のように容器内に2系
統の管巣を設けた場合、容器幅としては、容器側壁4と
2系統ある管巣の対称面との距離とする。同図に示した
二つの曲線のうち、下側は密集部のみからなる管巣のア
スペクト比を表わし、上側は流路を有する管巣のアスペ
クト比を表わす。このように吸い込み理論により求めた
図7を用いて、容器幅に対する管巣のアスペクト比を定
めることができる。
Next, a method for determining the aspect ratio of the tube nest (tube nest height / tube nest width) will be described. FIG. 7 shows the aspect ratio of the tube nest obtained by the suction theory described above. In the figure, the vertical axis represents the aspect ratio of the tube nest, and the horizontal axis represents the ratio of the tube nest width to the container width. When two systems of tube nests are provided in the container as shown in FIG. 2, the container width is defined as the distance between the container side wall 4 and the symmetrical plane of the two systems of tube nests. Of the two curves shown in the same figure, the lower side represents the aspect ratio of the nest containing only the dense portion, and the upper side represents the aspect ratio of the nest having a flow path. Thus, the aspect ratio of the tube nest with respect to the container width can be determined by using FIG. 7 obtained by the suction theory.

【0032】例えば、管巣幅が容器幅に比べて十分に小
さい場合、容器側壁の影響が小さいので、密集部のみか
らなる管巣の形状は同心円に近づき、密集部のみからな
る管巣のアスペクト比は約1となる。また、このとき密
集部外周での蒸気速度の不均一性は小さいので、圧力損
失のバランスを保ち吸い込み点を低圧とするためには、
周方向に均一に流路を設けるのが好ましい。この条件を
考慮すると、流路を有する管巣のアスペクト比も約1と
なる。一方、容器幅に対する管巣幅の比が0.5を超える
と、容器側壁の影響が現われ密集部のみからなる管巣の
アスペクト比は1より大きくなる。この場合、密集部外
周での蒸気速度の不均一性が増大し、特に上部での蒸気
速度が増大するので、図5及び図6で説明した方法で流
路を設けるためには、流路を有する管巣のアスペクト比
を、密集部のみからなる管巣よりも急激に大きくする必
要がある。
For example, when the tube nest width is sufficiently smaller than the container width, the influence of the container side wall is small, so that the shape of the tube nest consisting of only the dense portion approaches a concentric circle, and the aspect of the tube nest consisting of only the dense portion. The ratio will be about 1. Further, at this time, since the non-uniformity of the vapor velocity at the outer periphery of the dense portion is small, in order to maintain the balance of the pressure loss and reduce the suction point to low pressure,
It is preferable to provide the channels uniformly in the circumferential direction. Considering this condition, the aspect ratio of the tube nest having the flow path is also about 1. On the other hand, when the ratio of the tube nest width to the container width exceeds 0.5, the side wall of the container appears and the aspect ratio of the tube nest composed of only the dense portion becomes larger than 1. In this case, the non-uniformity of the vapor velocity at the outer periphery of the dense portion increases, and especially the vapor velocity at the upper part increases. Therefore, in order to provide the channel by the method described in FIGS. It is necessary to make the aspect ratio of the tube nest that is abruptly larger than that of the tube nest that is composed only of dense parts.

【0033】ここで、流路を有する管巣のアスペクト比
の最適値について検討する。前述したように、管巣幅に
より容器壁の影響が現われ、この結果蒸気速度が不均一
となり、密集部のみからなる管巣のアスペクト比が定ま
る。従って、蒸気速度の不均一性を表わす指標として、
密集部のみからなる管巣のアスペクト比を用いることが
できる。以下、流路を有する管巣のうち、流路が存在す
る上部領域を放射部と呼ぶ。
Here, the optimum value of the aspect ratio of the tube nest having the flow passage will be examined. As described above, the width of the tube nest causes the influence of the container wall, and as a result, the vapor velocity becomes non-uniform, and the aspect ratio of the tube nest having only the dense portion is determined. Therefore, as an index showing the non-uniformity of vapor velocity,
It is possible to use the aspect ratio of the tube nest that is composed only of dense parts. Hereinafter, of the tube nest having the flow passage, the upper region where the flow passage exists is referred to as a radiation portion.

【0034】管巣上部での蒸気速度は、密集部のみから
なる管巣のアスペクト比にほぼ比例して増大すると考え
られる。また、圧力損失は管巣の抵抗係数と蒸気速度の
2乗との積に比例する。よって、管巣上部での圧力損失
を管巣下部と同等に抑えるためには、管巣上部の抵抗係
数を蒸気速度の2乗に逆比例させる必要がある。言い換
えれば、管巣上部の抵抗係数を密集部のみからなる管巣
のアスペクト比の2乗に逆比例させる必要がある。
It is considered that the vapor velocity at the upper part of the tube nest increases almost in proportion to the aspect ratio of the tube nest composed of only the dense portion. Also, the pressure loss is proportional to the product of the resistance coefficient of the tube nest and the square of the steam velocity. Therefore, in order to suppress the pressure loss in the upper part of the tube nest to be equal to that in the lower part of the tube nest, it is necessary to make the resistance coefficient in the upper part of the tube nest inversely proportional to the square of the steam velocity. In other words, it is necessary to make the resistance coefficient of the upper part of the tube nest inversely proportional to the square of the aspect ratio of the tube nest composed of only the dense portion.

【0035】このために、冷却管の本数を一定にして、
放射部の面積を密集部のみからなる管巣のアスペクト比
の2乗に比例させて増大し、放射部における冷却管の占
有率を密集部のみからなる管巣のアスペクト比の2乗に
逆比例させる。管巣上部の抵抗係数は放射部における冷
却管の占有率に比例するので、これにより管巣上部の抵
抗係数を密集部のみからなる管巣のアスペクト比の2乗
に逆比例させて低減できる。また、流路を有する管巣に
占める放射部の割合が大きければ、流路を有する管巣の
アスペクト比を密集部のみからなる管巣のアスペクト比
の2乗にするのが好ましい。
To this end, the number of cooling tubes is kept constant and
The area of the radiating part is increased in proportion to the square of the aspect ratio of the tube nest consisting of only dense parts, and the occupancy of the cooling pipe in the radiating part is inversely proportional to the square of the aspect ratio of the tube nest consisting of only dense parts. Let Since the resistance coefficient in the upper part of the tube nest is proportional to the occupancy rate of the cooling pipe in the radiating portion, the resistance coefficient in the upper part of the tube nest can be reduced in inverse proportion to the square of the aspect ratio of the tube nest composed of only the dense portion. If the ratio of the radiating portion to the tube nest having the flow channel is large, it is preferable that the aspect ratio of the tube nest having the flow channel is set to the square of the aspect ratio of the tube nest having only the dense portion.

【0036】以上の検討は定性的であり、最適値には適
切な幅を持たせる必要があるが、流路を有する管巣のア
スペクト比として、密集部のみからなる管巣のアスペク
ト比の2乗にした曲線を図7に示す。
The above examination is qualitative, and the optimum value needs to have an appropriate width. However, as the aspect ratio of the tube nest having the flow path, the aspect ratio of the tube nest having only the dense portion is 2 The raised curve is shown in FIG.

【0037】実用的には、容器幅に配置上の制限があ
り、また容器幅を極端に小さくして管巣のアスペクト比
を増大させると、管巣外周での蒸気速度の不均一性が著
しく増大し放射部を設けても圧力損失を均一化すること
が困難となるので、容器幅に対する管巣幅の比として
は、0.5〜0.8程度の範囲が好ましい。これは、密集
部のみからなる管巣のアスペクト比にして1.13〜1.
75の範囲に、流路を有する管巣のアスペクト比にして
1.28〜3.06の範囲に当る。一方、小型の復水器で
は、冷却管の本数が少ないため、管巣のアスペクト比を
1未満にすることもあり得る。
Practically, there is a restriction on the arrangement of the container width, and if the container width is made extremely small to increase the aspect ratio of the tube nest, the nonuniformity of the vapor velocity at the outer periphery of the tube nest becomes remarkable. Since it becomes difficult to equalize the pressure loss even if the number of radiating portions is increased, the ratio of the tube nest width to the container width is preferably in the range of about 0.5 to 0.8. This is an aspect ratio of a tube nest consisting only of dense parts of 1.13-1.
The aspect ratio of the tube nest having the flow path in the range of 75 corresponds to the range of 1.28 to 3.06. On the other hand, in a small condenser, the aspect ratio of the tube nest may be less than 1 because the number of cooling tubes is small.

【0038】以下、点状の吸い込みを設け管巣のアスペ
クト比が1を超える実施例、および管巣のアスペクト比
が1未満の実施例について説明する。
Examples in which dot-like suction is provided and the aspect ratio of the tube nest exceeds 1 and those in which the aspect ratio of the tube nest is less than 1 will be described below.

【0039】図1に本発明を適用した管巣の第1の実施
例の断面を示す。同図で、1は管巣、11は管巣外周、
12は流路、13は管群、2は蒸気流入口、3は不凝縮
ガスの抽出口、5は容器底面を表わす。容器内に1系統
の管巣を設ける場合、4は容器側壁を表わし、容器内に
2系統の管巣を設ける場合、4は容器側壁と2系統の管
巣の対称面を表わす。図1は図6で決めた管巣形状をそ
のまま用い、吸い込み点の位置に抽出口3を設けたもの
である。
FIG. 1 shows a cross section of a first embodiment of a tube nest to which the present invention is applied. In the figure, 1 is a tube nest, 11 is an outer circumference of the tube nest,
12 is a flow path, 13 is a tube group, 2 is a steam inlet, 3 is a non-condensable gas extraction port, and 5 is a container bottom. When one system of tube nests is provided in the container, 4 represents the side wall of the container, and when two system of tube nests are provided in the container, 4 represents the plane of symmetry between the container side wall and the two system nests. In FIG. 1, the tube nest shape determined in FIG. 6 is used as it is, and the extraction port 3 is provided at the position of the suction point.

【0040】管巣1は蒸気を四方から取り込み、蒸気速
度を低減できるように、容器側壁4及び容器底面5から
離れて位置している。抽出口3は管巣外周11の重心よ
り下方にあり、抽出口3の上方には管巣外周11から抽
出口3に向かう複数の流路12が形成されている。流路
12は管巣外周11に先端を有し、流路幅は先端ほど広
くなっている。言い換えれば、流路12は管巣外周11
に流入口を有し、抽出口3に近いほど流路幅が狭くなっ
ている。更に、流路の面積比率および長さは管巣の中心
軸に近いほど大きい。
The tube nest 1 is located away from the container side wall 4 and the container bottom surface 5 so that the steam can be taken in from all directions and the steam velocity can be reduced. The extraction port 3 is below the center of gravity of the outer circumference 11 of the tube nest, and a plurality of flow paths 12 extending from the outer circumference 11 of the tube nest to the extraction opening 3 are formed above the extraction port 3. The flow path 12 has a tip on the outer circumference 11 of the tube nest, and the width of the flow path is wider toward the tip. In other words, the flow path 12 is the outer circumference 11 of the tube nest.
Has an inflow port, and the width of the flow path becomes narrower as it is closer to the extraction port 3. Furthermore, the area ratio and the length of the flow path are larger as the flow path is closer to the central axis of the tube nest.

【0041】このような構成にしたことにより、蒸気は
蒸気流入口2から流入するため管巣上部での蒸気速度が
速いが、速度が速い上部ほど流路の比率が大きいので、
圧力損失を低減することができる。また、蒸気に混入し
た不凝縮ガスが蒸気の凝縮により濃縮されて集まる吸い
込み点に抽出口3を配置しているので、不凝縮ガスの停
滞が生じない。
With such a structure, since the steam flows in from the steam inflow port 2, the steam velocity at the upper portion of the tube nest is high, but the flow velocity ratio is larger at the higher portion of the tube nest.
The pressure loss can be reduced. Further, since the extraction port 3 is arranged at the suction point where the non-condensable gas mixed in the vapor is condensed and condensed by the condensation of the vapor, the stagnation of the non-condensable gas does not occur.

【0042】次に、図8を用いて本発明を適用した管巣
の第2の実施例を説明する。図8は第2の実施例の断面
を示しており、第1の実施例と同じ構成には同じ符号を
付けている。本実施例では、流速が遅い管巣1の下部に
も補助的な流路12aを設ける。即ち、蒸気速度の速い
上部では流路12を一定流量毎に設けているが、下部で
は蒸気速度が極めて遅いので、遅い蒸気速度に応じて管
群が密集した領域での圧力損失を低減するために、一定
流量に対して短い流路12aを複数設けている。
Next, a second embodiment of the tube nest to which the present invention is applied will be described with reference to FIG. FIG. 8 shows a cross section of the second embodiment, and the same components as those in the first embodiment are designated by the same reference numerals. In this embodiment, the auxiliary flow path 12a is also provided in the lower portion of the tube nest 1 having a low flow velocity. That is, the flow path 12 is provided at a constant flow rate in the upper part where the steam speed is fast, but the steam speed is extremely slow in the lower part, so that the pressure loss in the region where the tube group is dense is reduced according to the slow steam speed. In addition, a plurality of short flow paths 12a are provided for a constant flow rate.

【0043】管巣1の下部では蒸気速度がもともと遅い
ため、下部の流路12aの流路幅の先端での広がりは僅
かでよく、本実施例では一定幅としている。また、蒸気
速度の遅い下部では、管群の面積を一定に保てば管巣外
周11の形状を自由にとれるので、長方形の復水器容器
に最もコンパクトに配置できるように、本実施例では下
部の管巣形状を長方形に近い形状にしている。
Since the vapor velocity is originally low in the lower portion of the tube nest 1, the width of the lower flow passage 12a may be slightly widened at the tip, and in this embodiment, the width is constant. Further, in the lower part where the steam velocity is low, the shape of the outer periphery 11 of the tube nest can be freely set by keeping the area of the tube group constant, so that in the present embodiment, it can be arranged most compactly in the rectangular condenser container. The shape of the lower tube nest is close to a rectangle.

【0044】本実施例の流路12の形状の特徴をまとめ
ると、管巣外周11から抽出口3に向かって形成され、
管巣外周11を先端として流路幅は先端ほど広く、流路
の面積比率および長さは抽出口3上方の中心軸(蒸気流
入口側の中心軸)に近いほど大きく、蒸気流入口側の中
心軸から抽出口3下方の中心軸(容器底面側の中心軸)に
かけて周方向に減少している。また、抽出口3の近傍に
は、抽出口3を囲む同心円状の密集した管群13を設け
ている。このような構成にすることで、管巣下部でも圧
力損失を低減し、さらに性能を向上できる。
The characteristics of the shape of the flow path 12 of this embodiment are summarized as follows:
The width of the flow path is wider toward the tip, with the outer periphery 11 of the tube nest being the front end, and the area ratio and length of the flow path are larger as they are closer to the central axis above the extraction port 3 (central axis on the steam inlet side), and It decreases in the circumferential direction from the central axis to the central axis below the extraction port 3 (central axis on the bottom surface side of the container). In the vicinity of the extraction port 3, a concentric, dense tube group 13 surrounding the extraction port 3 is provided. With such a configuration, the pressure loss can be reduced even in the lower portion of the tube nest, and the performance can be further improved.

【0045】次に、図9を用いて本発明を適用した管巣
の第3の実施例を説明する。図9は第3の実施例の断面
を示しており、第2の実施例と同じ構成には同じ符号を
付けている。本実施例では、抽出口3の近傍に管群13
を設けず、空間14を設けている。空間14は抽出口3
を冷却管の支持板に溶接するためのもので、通常冷却管
直径の3〜5倍の距離(例えば、冷却管直径3cmの場
合、9〜15cm)を溶接スペースとして確保している。
同図のように、空間14を同心円状に構成することによ
り、コンパクトな復水器とすることができる。
Next, a third embodiment of the tube nest to which the present invention is applied will be described with reference to FIG. FIG. 9 shows a cross section of the third embodiment, and the same components as those of the second embodiment are designated by the same reference numerals. In this embodiment, the tube group 13 is provided near the extraction port 3.
Is not provided, but the space 14 is provided. Space 14 is extraction port 3
Is welded to the support plate of the cooling pipe, and a distance of 3 to 5 times the diameter of the cooling pipe (for example, 9 to 15 cm for a cooling pipe diameter of 3 cm) is usually secured as a welding space.
As shown in the figure, by forming the space 14 in a concentric shape, a compact condenser can be obtained.

【0046】次に、図10を用いて本発明を適用した管
巣の第4の実施例を説明する。図10は第4の実施例の
断面を示しており、第2の実施例と同じ構成には同じ符
号を付けている。本実施例では、抽出口3上方の蒸気流
入口側の中心軸上にも流路12を設けている。通常、復
水器の蒸気流入口2は重力方向の上側に設けられ、蒸気
が凝縮して生じる凝縮液は重力で下向きに落下する。従
って、蒸気流入口側の中心軸上を管群13ではなく流路
12とすることにより、凝縮液の落下量を減らして、落
下した凝縮液が抽出口3を塞ぐことを防止できるので、
より確実に不凝縮ガスを抽出することができる。
Next, a fourth embodiment of the tube nest to which the present invention is applied will be described with reference to FIG. FIG. 10 shows a cross section of the fourth embodiment, and the same components as those in the second embodiment are designated by the same reference numerals. In this embodiment, the flow path 12 is also provided on the central axis on the steam inlet side above the extraction port 3. Usually, the steam inlet 2 of the condenser is provided on the upper side in the direction of gravity, and the condensate produced by condensation of the steam falls downward due to gravity. Therefore, by making the flow path 12 instead of the tube group 13 on the central axis on the steam inlet side, it is possible to reduce the falling amount of the condensed liquid and to prevent the dropped condensed liquid from blocking the extraction port 3.
The non-condensable gas can be extracted more reliably.

【0047】次に、図11を用いて本発明を適用した管
巣の第5の実施例を説明する。図11は第5の実施例の
断面を示しており、第2の実施例と同じ構成には同じ符
号を付けている。本実施例では、抽出口3の上側に不凝
縮ガス冷却部131を設け、抽出口3から抽出した不凝
縮ガスを冷却するようにしている。不凝縮ガス冷却部1
31は冷却管の長さ方向(図2のx方向)の一部の領域
に設けられ、抽出口3で抽出した不凝縮ガスが流入する
ように構成される。抽出口3で抽出した不凝縮ガスおよ
び未凝縮の蒸気は不凝縮ガス冷却部131へ流入し、こ
こで冷却されることにより未凝縮の蒸気が凝縮され、不
凝縮ガスのみが不凝縮ガス排気系(図示せず)に排気さ
れる。
Next, a fifth embodiment of the tube nest to which the present invention is applied will be described with reference to FIG. FIG. 11 shows a cross section of the fifth embodiment, and the same components as those in the second embodiment are designated by the same reference numerals. In this embodiment, the noncondensable gas cooling unit 131 is provided above the extraction port 3 to cool the noncondensable gas extracted from the extraction port 3. Non-condensable gas cooling unit 1
Reference numeral 31 is provided in a partial region in the length direction (x direction in FIG. 2) of the cooling pipe, and is configured so that the non-condensable gas extracted through the extraction port 3 flows in. The non-condensed gas and the uncondensed vapor extracted at the extraction port 3 flow into the non-condensed gas cooling unit 131, where the uncondensed vapor is condensed by being cooled, and only the non-condensed gas is exhausted from the non-condensed gas exhaust system. It is exhausted to (not shown).

【0048】また、本実施例では、管群13の配列とし
て正三角形を基本要素とした千鳥配列を用いることによ
り、冷却管130を密集でき多くの流路をとれるように
している。更に、冷却管130が配置される正三角形の
一辺を蒸気の流入方向(図11の上下方向)とすること
により、流路の比率を小さくしても一定の流路幅を確保
できるので、復水器のコンパクト化に大いに寄与する。
Further, in the present embodiment, the staggered arrangement having the regular triangles as a basic element is used as the arrangement of the tube group 13 so that the cooling pipes 130 can be densely packed and many flow paths can be taken. Further, by setting one side of the equilateral triangle in which the cooling pipe 130 is arranged to be the inflow direction of steam (vertical direction in FIG. 11), it is possible to secure a constant flow channel width even if the flow channel ratio is reduced. It greatly contributes to the downsizing of water containers.

【0049】次に、図12を用いて本発明を適用した管
巣の第6の実施例を説明する。図12は第6の実施例の
断面を示しており、第5の実施例と同じ構成には同じ符
号を付けている。本実施例では、流速が遅い抽出口3の
下側に不凝縮ガス冷却部131を設ける。このように配
置することで、不凝縮ガス冷却部131によって冷却管
の配列が不規則となることに基づく影響を最小に抑える
ことができる。
Next, a sixth embodiment of the tube nest to which the present invention is applied will be described with reference to FIG. FIG. 12 shows a cross section of the sixth embodiment, and the same components as those in the fifth embodiment are designated by the same reference numerals. In this embodiment, the non-condensable gas cooling unit 131 is provided below the extraction port 3 having a low flow velocity. By arranging in this way, it is possible to minimize the influence due to the arrangement of the cooling pipes being irregular due to the noncondensable gas cooling unit 131.

【0050】以上の実施例における管巣の形状はアスペ
クト比が1以上の縦長形状である。これは、蒸気の吸い
込み点が限られた復水器容器内にあり、密集部のみから
なる管巣のアスペクト比が1を越え、さらに縦長の(蒸
気の流入方向に長い)流路を設けた結果である。しか
し、発電プラント全体の配置条件から、アスペクト比が
1以下の管巣にする必要も生じる。
The shape of the tube nest in the above embodiments is a vertically long shape having an aspect ratio of 1 or more. This is because the vapor nest is inside the condenser container with a limited suction point, the aspect ratio of the tube nest consisting of only the dense part exceeds 1, and a vertically long (longer in the vapor inflow direction) flow path is provided. The result. However, it is necessary to make the tube nest having an aspect ratio of 1 or less from the arrangement conditions of the entire power plant.

【0051】アスペクト比が1以下の管巣に本発明を適
用した第7の実施例を、図13及び図14を用いて説明
する。図13に示すように、吸い込み点を横長の吸い込
み領域として分布させることにより、アスペクト比が1
以下の管巣形状を求めることができる。図13に示す吸
い込み流れモデルに基づいて求めた管巣形状は図14の
ようになる。図14で図8と同じ構成には同じ符号を付
けている。本実施例によれば、横長の復水器が必要とさ
れる発電プラントに対しても十分に適用できる。
A seventh embodiment in which the present invention is applied to a tube nest having an aspect ratio of 1 or less will be described with reference to FIGS. 13 and 14. As shown in FIG. 13, by distributing the suction points as horizontally long suction areas, the aspect ratio becomes 1
The following tube nest shapes can be obtained. The tube nest shape obtained based on the suction flow model shown in FIG. 13 is as shown in FIG. 14, the same components as those in FIG. 8 are designated by the same reference numerals. According to this embodiment, the present invention can be sufficiently applied to a power plant that requires a horizontally long condenser.

【0052】以下、本実施例の管巣形状について詳しく
説明する。図15は、吸い込み点を水平な線分(吸い込
み線)として分布させたときの吸い込み流れを表わす。
図5に示したような吸い込み点への吸い込みの場合、吸
い込み点の近傍では、流線が吸い込み点を中心として放
射状に広がっており、吸い込み流れはほぼ等速度に分布
していた。これに対して、図15の吸い込み線への吸い
込みの場合、流線の間隔は吸い込み線の上方で狭く、吸
い込み線の下方で広くなっており、吸い込み線を挟んで
吸い込み流れの速度が不連続に変化している。
The tube nest shape of this embodiment will be described in detail below. FIG. 15 shows the suction flow when the suction points are distributed as horizontal line segments (suction lines).
In the case of suction to the suction point as shown in FIG. 5, in the vicinity of the suction point, the streamlines spread radially around the suction point, and the suction flow was distributed at a substantially constant velocity. On the other hand, in the case of suction to the suction line in FIG. 15, the distance between the streamlines is narrow above the suction line and wide below the suction line, and the velocity of the suction flow is discontinuous across the suction line. Has changed to.

【0053】管巣での凝縮を考慮すると、流線の終端
(吸い込み線の近傍)では速度が0に漸近するため速度
の不連続性は生じないが、終端から離れると吸い込み線
の上方と下方で大きな速度差が生じる。管巣では、その
抵抗により速度に応じて圧力損失を生じるが、吸い込み
流れの流線の終端位置を吸い込み線上に保つためには、
吸い込み線の上方及び下方での圧力損失を等しくする必
要がある。即ち、吸い込み線の上方では速度が速いが、
流路を調整して抵抗を減らすことにより、圧力損失を吸
い込み線の下方と同程度に低減して吸い込み線を低圧に
保つ。この結果、実際の流線の終端位置を吸い込み線に
一致させ、不凝縮ガスを吸い込み線に集めることができ
る。
Considering the condensation in the tube nest, the velocity discontinuity does not occur at the end of the streamline (near the suction line) because the velocity is asymptotic to 0. A big speed difference occurs at. In the tube nest, a pressure loss occurs depending on the velocity due to the resistance, but in order to keep the end position of the flow line of the suction flow on the suction line,
The pressure losses above and below the suction line must be equal. That is, although the speed is high above the suction line,
By adjusting the flow path to reduce resistance, the pressure loss is reduced to the same extent as below the suction line, keeping the suction line at a low pressure. As a result, the end position of the actual streamline can be aligned with the suction line, and the non-condensable gas can be collected in the suction line.

【0054】図15の等面積線に基づいた管巣形状を図
16に示す。図16に示す第8の実施例では、スペース
効率を考慮して、吸い込みの中心に一個の抽出口3を設
けている。吸い込み線に集まる不凝縮ガスを更に抽出口
3に集めるために、抽出口3を最も低圧にする必要があ
る。このために、抽出口3の上部における密集部の鉛直
方向(図16の上下方向)の厚さ(流路12の下端と抽
出口3との鉛直方向の距離)を抽出口3に近づくほど厚
くして、圧力損失を増やしている。
FIG. 16 shows a tube nest shape based on the equal-area line of FIG. In the eighth embodiment shown in FIG. 16, one extraction port 3 is provided at the center of suction in consideration of space efficiency. In order to further collect the non-condensable gas that collects in the suction line in the extraction port 3, it is necessary to set the extraction port 3 to the lowest pressure. For this reason, the thickness of the dense portion in the upper part of the extraction port 3 in the vertical direction (vertical direction in FIG. 16) (the vertical distance between the lower end of the flow path 12 and the extraction port 3) becomes thicker as it approaches the extraction port 3. And increase the pressure loss.

【0055】図17は、図16を変形し管巣の下部を直
線状にした第9の実施例である。図15の吸い込み流れ
の流線は、吸い込み線近傍の上方及び下方で近似的に鉛
直方向を向いており、鉛直方向の流れが支配的である。
この場合、水平方向(図16の左右方向)の流れは小さ
いので、流路12により水平方向に領域分けされている
管群13毎に、水平方向に管巣を領域分けすると、各々
の領域を独立した領域とみなすことができる。図17の
実施例では、これらの独立した領域を、抽出口3から離
れるほど下方に移動させた構成となっている。このよう
な管巣の変形により、吸い込み線は上に凸な曲線に変形
される。この曲線そのものを規定することは難しいが、
抽出口3の位置を図16と同様に密集部のほぼ中心に位
置させ、吸い込み線の上方及び下方の両方を含めた密集
部の鉛直方向の厚さ(流路12の下端と管巣の下端との
鉛直方向の距離)を抽出口3に近づくほど厚くすること
により、不凝縮ガスを抽出口3に集めることができる。
FIG. 17 is a ninth embodiment in which FIG. 16 is modified so that the lower portion of the tube nest is linear. The streamline of the suction flow in FIG. 15 is approximately vertically oriented above and below the vicinity of the suction line, and the flow in the vertical direction is dominant.
In this case, since the flow in the horizontal direction (the left-right direction in FIG. 16) is small, if the tube nests are horizontally divided into regions for each of the tube groups 13 that are horizontally divided by the flow path 12, the respective regions are divided. It can be regarded as an independent area. In the embodiment shown in FIG. 17, these independent regions are moved downward as they move away from the extraction port 3. Due to such deformation of the tube nest, the suction line is deformed into an upwardly convex curve. It is difficult to define this curve itself,
The position of the extraction port 3 is located substantially at the center of the dense portion as in FIG. 16, and the vertical thickness of the dense portion including both above and below the suction line (the lower end of the flow path 12 and the lower end of the tube nest) The non-condensable gas can be collected at the extraction port 3 by increasing the distance (in the vertical direction to) toward the extraction port 3.

【0056】次に、図18を用いて本発明の復水器を沸
騰水型原子力発電プラント(BWRプラント)に用いた
実施例を説明する。本BWRプラントは、圧力容器71
内に設けた炉心70,高圧タービン60,低圧タービン
61,復水器10などから構成され、復水器として第1
から第7の実施例の何れかのものを用いる。炉心70で
発生した蒸気は、高圧タービン60に入り、低圧タービ
ン61を経て復水器10に流入する。復水器10に流入
した蒸気は凝縮されて凝縮水となり、凝縮水が再び炉心
70に流入する。蒸気は高圧タービン60と低圧タービ
ン61で膨張して復水器に入るが、膨張した多量の蒸気
を凝縮するために、復水器10には大きな凝縮能力が要
求される。
Next, an embodiment in which the condenser of the present invention is used in a boiling water nuclear power plant (BWR plant) will be described with reference to FIG. This BWR plant has a pressure vessel 71.
It is composed of a core 70, a high-pressure turbine 60, a low-pressure turbine 61, a condenser 10 and the like provided inside, and serves as a first condenser.
To any of the seventh to seventh embodiments are used. The steam generated in the core 70 enters the high pressure turbine 60, and flows into the condenser 10 via the low pressure turbine 61. The steam that has flowed into the condenser 10 is condensed into condensed water, and the condensed water flows into the core 70 again. The steam expands in the high-pressure turbine 60 and the low-pressure turbine 61 and enters the condenser, but the condenser 10 is required to have a large condensing capacity in order to condense a large amount of the expanded steam.

【0057】第1から第7の実施例で説明した復水器を
用いることにより、コンパクトな復水器で大きな凝縮能
力を得られるので、BWRプラント全体をコンパクトに
し、建設コストを低減することができる。また、本復水
器では圧力損失が小さいため、タービンの排気圧力を低
下できるので、タービンの前後での圧力比を大きく取り
発電効率を向上することができる。例えば、タービンの
排気圧力について比較すると、従来のBWRプラントで
約5000Paであったものが、4700〜4800程
度に低減できることになる。
By using the condenser described in the first to seventh embodiments, a large condenser capacity can be obtained with a compact condenser, so that the entire BWR plant can be made compact and the construction cost can be reduced. it can. Further, in this condenser, since the pressure loss is small, the exhaust pressure of the turbine can be lowered, so that the pressure ratio before and after the turbine can be increased and the power generation efficiency can be improved. For example, when comparing the exhaust pressure of the turbine, it can be reduced from about 5000 Pa in the conventional BWR plant to about 4700 to 4800.

【0058】尚、本実施例ではBWRプラントの復水器
に本発明を用いたものについて説明したが、本発明は火
力プラントの復水器や、化学プラントの凝縮器などに用
いても同様な効果を得ることができる。
Although the present invention has been described in the present embodiment as a condenser of a BWR plant, the present invention is also applicable to a condenser of a thermal power plant, a condenser of a chemical plant and the like. The effect can be obtained.

【0059】[0059]

【発明の効果】本発明によれば、凝縮器に流入した蒸気
流を乱さずに蒸気を凝縮できるので、圧力損失を低減す
ることができる。また、不凝縮ガスを吸い込み流れの終
端である吸い込み点に集めることができるので、不凝縮
ガスを効率良く除去し伝熱性能を大幅に向上することが
できる。これに伴い発電プラントの発電効率を向上する
こともできる。更に、従来の均圧域がないのでコンパク
トな凝縮器とすることができ、発電プラントの建設コス
トを低減できる効果もある。
According to the present invention, since the vapor can be condensed without disturbing the vapor flow flowing into the condenser, the pressure loss can be reduced. Further, since the noncondensable gas can be collected at the suction point which is the end of the suction flow, the noncondensable gas can be efficiently removed and the heat transfer performance can be greatly improved. Accordingly, the power generation efficiency of the power plant can be improved. Further, since there is no conventional pressure equalizing area, a compact condenser can be obtained, and there is an effect that the construction cost of the power plant can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した管巣の第1の実施例の断面
図。
FIG. 1 is a cross-sectional view of a first embodiment of a tube nest to which the present invention has been applied.

【図2】本発明を適用した復水器を示す図。FIG. 2 is a diagram showing a condenser to which the present invention is applied.

【図3】本発明の原理を示す吸い込み流れモデルの摸式
図。
FIG. 3 is a schematic diagram of a suction flow model showing the principle of the present invention.

【図4】本発明の原理を示す吸い込み流れモデルの摸式
図。
FIG. 4 is a schematic diagram of a suction flow model showing the principle of the present invention.

【図5】本発明の原理を示す吸い込み流れモデルの摸式
図。
FIG. 5 is a schematic diagram of a suction flow model showing the principle of the present invention.

【図6】本発明の原理を示す吸い込み流れモデルの摸式
図。
FIG. 6 is a schematic diagram of a suction flow model showing the principle of the present invention.

【図7】吸い込み流れモデルにより求めた容器幅と管巣
のアスペクト比の関係を示す図。
FIG. 7 is a diagram showing a relationship between a container width obtained by a suction flow model and a tube nest aspect ratio.

【図8】本発明を適用した管巣の第2の実施例の断面
図。
FIG. 8 is a sectional view of a second embodiment of a tube nest to which the present invention has been applied.

【図9】本発明を適用した管巣の第3の実施例の断面
図。
FIG. 9 is a sectional view of a third embodiment of the tube nest to which the present invention is applied.

【図10】本発明を適用した管巣の第4の実施例の断面
図。
FIG. 10 is a sectional view of a fourth embodiment of the tube nest to which the present invention is applied.

【図11】本発明を適用した管巣の第5の実施例の断面
図。
FIG. 11 is a sectional view of a fifth embodiment of the tube nest to which the present invention is applied.

【図12】本発明を適用した管巣の第6の実施例の断面
図。
FIG. 12 is a sectional view of a sixth embodiment of the tube nest to which the present invention is applied.

【図13】アスペクト比が1以下の管巣に対する吸い込
み流れモデルの摸式図。
FIG. 13 is a schematic diagram of a suction flow model for a tube nest having an aspect ratio of 1 or less.

【図14】本発明を適用した管巣の第7の実施例の断面
図。
FIG. 14 is a sectional view of a seventh embodiment of the tube nest to which the present invention has been applied.

【図15】アスペクト比が1以下の管巣に対する吸い込
み流れモデルの摸式図。
FIG. 15 is a schematic diagram of a suction flow model for a tube nest having an aspect ratio of 1 or less.

【図16】本発明を適用した管巣の第8の実施例の断面
図。
FIG. 16 is a sectional view of an eighth embodiment of the tube nest according to the present invention.

【図17】本発明を適用した管巣の第9の実施例の断面
図。
FIG. 17 is a cross-sectional view of a ninth embodiment of a tube nest to which the present invention has been applied.

【図18】本発明の復水器を沸騰水型原子力発電プラン
トに用いた実施例を示す図。
FIG. 18 is a diagram showing an example in which the condenser of the present invention is used in a boiling water nuclear power plant.

【符号の説明】[Explanation of symbols]

1,1a,1b…管巣、2…蒸気流入口、3…抽出口、
4…容器側壁、5…容器底面、6…復水流出口、10…
復水器、11…管巣外周、12,12a…流路、13…
管群、30…不凝縮ガス抽出管、130…冷却管、13
1…不凝縮ガス冷却部、132…不凝縮ガス排気管。
1, 1a, 1b ... Tube nest, 2 ... Steam inlet, 3 ... Extraction port,
4 ... container side wall, 5 ... container bottom, 6 ... condensate outlet, 10 ...
Condenser, 11 ... Perimeter of tube nest, 12, 12a ... Flow path, 13 ...
Tube group, 30 ... Non-condensable gas extraction tube, 130 ... Cooling tube, 13
1 ... Noncondensable gas cooling part, 132 ... Noncondensable gas exhaust pipe.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】蒸気を流入させる流入口と、該流入口から
流入した蒸気を凝縮する複数の冷却管と、該冷却管によ
る凝縮で生じた凝縮液を流出させる流出口と、蒸気に混
入した不凝縮ガスを抽出する少なくとも一つの抽出口と
を備える凝縮装置において、 前記抽出口近傍に形成される蒸気の吸い込み領域と、 少なくとも蒸気の主流方向において、前記吸い込み領域
の形状と前記抽出口への吸い込み流れの流線とで定義さ
れる流量分布が均等化されるように配置された複数の冷
却管を備えたことを特徴とする凝縮装置。
1. An inflow port for introducing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, an outflow port for outflowing a condensate produced by the condensation by the cooling pipes, and a mixture with the steam. In a condensing device having at least one extraction port for extracting non-condensed gas, a vapor suction region formed in the vicinity of the extraction port, and at least in the mainstream flow direction of the vapor, the shape of the suction region and the extraction port A condenser comprising a plurality of cooling pipes arranged so that a flow rate distribution defined by a flow line of a suction flow is equalized.
【請求項2】蒸気を流入させる流入口と、該流入口から
流入した蒸気を凝縮する複数の冷却管と、該冷却管によ
る凝縮で生じた凝縮液を流出させる流出口と、蒸気に混
入した不凝縮ガスを抽出する少なくとも一つの抽出口と
を備える凝縮装置において、 前記抽出口近傍に形成される蒸気の吸い込み領域と、 少なくとも蒸気の主流方向において、前記吸い込み領域
の形状と前記抽出口への吸い込み流れの流線とで定義さ
れる複数の領域の断面積分布が均等化されるように配置
された複数の冷却管を備えたことを特徴とする凝縮装
置。
2. An inflow port for inflowing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, an outflow port for outflowing a condensate produced by the condensation by the cooling pipes, and a mixture with the steam. In a condensing device comprising at least one extraction port for extracting non-condensed gas, a vapor suction region formed in the vicinity of the extraction port, and a shape of the suction region and the extraction port to the extraction port at least in a mainstream flow direction of the vapor. A condenser comprising a plurality of cooling pipes arranged so that a cross-sectional area distribution of a plurality of regions defined by a flow line of a suction flow is equalized.
【請求項3】請求項1又は2において、吸い込み流れの
速度に応じて流路を設け、前記抽出口が低圧部となるよ
うに構成されたことを特徴とする凝縮装置。
3. The condensing device according to claim 1, wherein a flow passage is provided in accordance with the velocity of the suction flow, and the extraction port is a low pressure part.
【請求項4】蒸気を流入させる流入口と、該流入口から
流入した蒸気を凝縮する複数の冷却管及び蒸気に混入し
た不凝縮ガスを抽出する少なくとも一つの抽出口を有す
る管巣と、該管巣による凝縮で生じた凝縮液を流出させ
る流出口とを備える凝縮装置において、 前記抽出口は管巣外周の重心に対して流入口と反対側に
位置し、前記管巣は管巣外周から抽出口へ向かう複数の
流路を備え、 該流路の長さは、蒸気の主流方向に平行で抽出口から流
入口側に向かう基準線に近いほど長いことを特徴とする
凝縮装置。
4. An inflow port for introducing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, and a tube nest having at least one extraction port for extracting noncondensable gas mixed in the steam, In a condensing device including an outlet for discharging a condensate generated by condensation by a tube nest, the extraction port is located on the opposite side to the inlet with respect to the center of gravity of the tube nest outer periphery, and the tube nest is from the tube nest outer periphery. A condensing device comprising a plurality of flow paths extending to an extraction port, wherein the length of the flow path is longer in parallel to a main flow direction of steam and closer to a reference line extending from the extraction port toward the inflow port side.
【請求項5】請求項4において、前記流路は管巣外周を
先端とし、その流路幅は先端側ほど広いことを特徴とす
る凝縮装置。
5. The condensing device according to claim 4, wherein the flow passage has an outer periphery of the tube nest as a front end, and the width of the flow passage is wider toward the front end side.
【請求項6】請求項4又は5において、前記管巣は、前
記抽出口をほぼ同心円状に囲み、複数の冷却管が密集し
て配置される密集領域を備えたことを特徴とする凝縮装
置。
6. The condensing device according to claim 4, wherein the tube nest has a dense region in which the plurality of cooling pipes are densely arranged so as to surround the extraction port in a substantially concentric shape. .
【請求項7】請求項4又は5において、前記管巣は、前
記抽出口を囲み複数の冷却管が密集して配置される密集
領域を備え、該密集領域は外形がほぼ楕円形状をなし、
該密集領域の前記主流方向の厚さを前記抽出口に近いほ
ど厚くしたことを特徴とする凝縮装置。
7. The tube nest according to claim 4 or 5, wherein the tube nest includes a dense area surrounding the extraction port and in which a plurality of cooling tubes are densely arranged. The dense area has a substantially elliptical outer shape.
A condensing device characterized in that the thickness of the dense region in the mainstream direction is made thicker as it is closer to the extraction port.
【請求項8】蒸気を流入させる流入口と、該流入口から
流入した蒸気を凝縮する複数の冷却管及び蒸気に混入し
た不凝縮ガスを抽出する少なくとも一つの抽出口を有す
る管巣と、該管巣による凝縮で生じた凝縮液を流出させ
る流出口とを備える凝縮装置において、 前記抽出口は管巣外周の重心に対して流入口と反対側に
位置し、 前記管巣は、前記抽出口で抽出した不凝縮ガスを冷却す
る冷却部と、管巣外周から抽出口へ向かう複数の流路と
を備え、 該流路の長さは、蒸気の主流方向に平行で抽出口から流
入口側に向かう基準線に近いほど長いことを特徴とする
凝縮装置。
8. An inlet for introducing steam, a plurality of cooling pipes for condensing the steam introduced from the inlet, and a tube nest having at least one extraction port for extracting non-condensable gas mixed with the steam, In a condensing device including an outlet for discharging a condensate generated by condensation by a tube nest, the extraction port is located on the opposite side to the inflow port with respect to the center of gravity of the outer circumference of the tube nest, and the tube nest is the extraction port. The cooling unit that cools the non-condensed gas extracted in step 1 and a plurality of flow paths from the outer periphery of the tube nest to the extraction port are provided. Condensing device characterized in that the closer it is to the reference line toward, the longer it is.
【請求項9】蒸気を流入させる流入口と、該流入口から
流入した蒸気を凝縮する複数の冷却管及び蒸気に混入し
た不凝縮ガスを抽出する少なくとも一つの抽出口を有す
る管巣と、該管巣による凝縮で生じた凝縮液を流出させ
る流出口とを備える凝縮装置において、 前記管巣は、流入口側に位置し管巣外周から抽出口へ向
かう複数の流路を有する第1の領域と、該第1の領域に
隣接して前記抽出口を有し冷却管が密集して配置される
第2の領域とを備え、 前記流路の長さは、蒸気の主流方向に平行で抽出口から
流入口側に向かう基準線に近いほど長いことを特徴とす
る凝縮装置。
9. An inlet for introducing steam, a plurality of cooling pipes for condensing the steam flowing from the inlet, and a tube nest having at least one extraction port for extracting non-condensable gas mixed with the steam, A condensing device comprising: an outlet for letting out a condensate generated by condensation by a tube nest, wherein the tube nest is located on the inlet side and has a plurality of flow paths from the outer circumference of the tube nest toward the extraction port. And a second region adjacent to the first region and having the extraction ports and densely arranged cooling pipes, wherein the length of the flow path is parallel to the main flow direction of the steam and is extracted. A condensing device characterized in that it is longer as it is closer to the reference line from the mouth toward the inlet.
【請求項10】蒸気を流入させる流入口と、該流入口か
ら流入した蒸気を凝縮する複数の冷却管及び蒸気に混入
した不凝縮ガスを抽出する少なくとも一つの抽出口を有
する管巣と、該管巣による凝縮で生じた凝縮液を流出さ
せる流出口とを備える凝縮装置において、 前記管巣は、前記抽出口の周りに冷却管を密集して配置
した密集領域と、管巣外周から前記抽出口へ向かう複数
の流路を有する放射領域とを備え、 各流路を流れる蒸気の流量が実質的に等しくなるよう
に、前記複数の流路が形成されていることを特徴とする
凝縮装置。
10. An inflow port for introducing steam, a plurality of cooling pipes for condensing the steam inflowing from the inflow port, and a tube nest having at least one extraction port for extracting noncondensable gas mixed with the steam, In a condensing device including an outlet for discharging a condensate generated by condensation by a tube nest, the tube nest is a dense region in which cooling pipes are densely arranged around the extraction port, and the extraction is performed from the outer circumference of the tube nest. And a radiation region having a plurality of flow paths toward the mouth, wherein the plurality of flow paths are formed so that the flow rates of vapors flowing through the respective flow paths are substantially equal.
【請求項11】蒸気を用いて発電を行う蒸気タービン
と、該蒸気タービンから排出された蒸気を凝縮する復水
器とを備えた発電プラントにおいて、 前記復水器として、請求項1乃至10の何れかに記載の
凝縮装置を備えたことを特徴とする発電プラント。
11. A power plant comprising a steam turbine for generating electric power using steam and a condenser for condensing steam discharged from the steam turbine, wherein the condenser is the condenser of claim 1. A power plant comprising the condensing device according to claim 1.
JP31029095A 1994-12-02 1995-11-29 Condenser and power plant Expired - Lifetime JP3314599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31029095A JP3314599B2 (en) 1994-12-02 1995-11-29 Condenser and power plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29927194 1994-12-02
JP6-299271 1994-12-02
JP31029095A JP3314599B2 (en) 1994-12-02 1995-11-29 Condenser and power plant

Publications (2)

Publication Number Publication Date
JPH08226776A true JPH08226776A (en) 1996-09-03
JP3314599B2 JP3314599B2 (en) 2002-08-12

Family

ID=26561850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31029095A Expired - Lifetime JP3314599B2 (en) 1994-12-02 1995-11-29 Condenser and power plant

Country Status (1)

Country Link
JP (1) JP3314599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503162A2 (en) 2003-07-30 2005-02-02 Kabushiki Kaisha Toshiba Condenser
JP2007113808A (en) * 2005-10-19 2007-05-10 Hitachi Ltd Condenser
JP2007178101A (en) * 2005-12-28 2007-07-12 Mitsubishi Heavy Ind Ltd Condenser
US7481264B2 (en) 2004-05-28 2009-01-27 Kabushiki Kaisha Toshiba Steam condenser
JP2009531646A (en) * 2006-03-27 2009-09-03 バラット ヘビー エレクトリカルズ リミテッド Condenser with a two-pipe tube structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503162A2 (en) 2003-07-30 2005-02-02 Kabushiki Kaisha Toshiba Condenser
US7370694B2 (en) 2003-07-30 2008-05-13 Kabushiki Kaisha Toshiba Condenser
US7481264B2 (en) 2004-05-28 2009-01-27 Kabushiki Kaisha Toshiba Steam condenser
JP2007113808A (en) * 2005-10-19 2007-05-10 Hitachi Ltd Condenser
JP2007178101A (en) * 2005-12-28 2007-07-12 Mitsubishi Heavy Ind Ltd Condenser
JP4616768B2 (en) * 2005-12-28 2011-01-19 三菱重工業株式会社 Condenser
JP2009531646A (en) * 2006-03-27 2009-09-03 バラット ヘビー エレクトリカルズ リミテッド Condenser with a two-pipe tube structure

Also Published As

Publication number Publication date
JP3314599B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US3710854A (en) Condenser
HU212653B (en) Steam condenser
CN104266501B (en) Narrow-band concurrent steam condenser tube bundle with dual-trapezoid air cooling region
JP2576292B2 (en) Condenser and power plant using the same
KR100194778B1 (en) Avenger
JPS60103294A (en) Heat exchanger, compressor intermediate cooler, method of adjusting temperature of fluid and method of removing moisture
JP3314599B2 (en) Condenser and power plant
KR100658126B1 (en) Condenser
US4967833A (en) Steam condenser
JPH10170168A (en) Condenser
JP3879302B2 (en) Condenser
US3973624A (en) Condenser
JP2018009723A (en) Condenser
CN105737629A (en) Condenser pipe bundle
US7481264B2 (en) Steam condenser
AU712064B2 (en) Steam condenser
JP2511149B2 (en) Water heater
JPS5883179A (en) Condenser
JP2018146214A (en) Condenser and power generation plant turbine system
US6470062B1 (en) Nuclear fuel assembly
JP2006153425A (en) Steam condenser
JP4240693B2 (en) Condenser
JPS61161388A (en) Mixing condenser for particularly utilizing heat energy of seawater
JP2007113808A (en) Condenser
JP2000018845A (en) Cooling pipe device for condenser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term