JP3879302B2 - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP3879302B2
JP3879302B2 JP02579999A JP2579999A JP3879302B2 JP 3879302 B2 JP3879302 B2 JP 3879302B2 JP 02579999 A JP02579999 A JP 02579999A JP 2579999 A JP2579999 A JP 2579999A JP 3879302 B2 JP3879302 B2 JP 3879302B2
Authority
JP
Japan
Prior art keywords
nest
tube nest
steam
tube
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02579999A
Other languages
Japanese (ja)
Other versions
JP2000227286A (en
Inventor
文夫 高橋
公祐 神庭
智人 鈴木
康行 川里
巖 原田
繁夫 織田
充 数藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02579999A priority Critical patent/JP3879302B2/en
Publication of JP2000227286A publication Critical patent/JP2000227286A/en
Application granted granted Critical
Publication of JP3879302B2 publication Critical patent/JP3879302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は復水器に係り、特に複数の冷却管で構成された管巣が上下に2分割された二折流型の復水器に関する。
【0002】
【従来の技術】
二折流型の復水器に関する従来技術としては、例えば米国特許第4,967,833 号公報に、冷却面積が500〜2500m2 の小型の復水器が記載されている。この復水器は、上下に分離された管巣、下側管巣に設けられ不凝縮ガスを抽出する抽出系等を備えている。この従来技術では、容器の上部に蒸気流入口が設置され、上側管巣の管巣幅は下方に向けて増大し、下側管巣の管巣幅は下方に向けて減少している。即ち、管巣幅は、上側管巣の下端及び下側管巣の上端近傍で最大となっている。また、管巣を取り囲む蒸気流路の幅は、下方に向けて一旦減少し、その後増大している。
【0003】
【発明が解決しようとする課題】
上記従来技術では、上側管巣において蒸気と冷却水の温度差が小さくなる場合については、配慮されていない。この場合、上側管巣による蒸気の凝縮量が減少するため、上側管巣は蒸気流入口から流入した不凝縮ガスを含む蒸気の流れ(以下、単に蒸気流という)に対して、主に抵抗として作用する。従って、従来のように、管巣幅が上側管巣の下端近傍で最大となる場合には、蒸気と冷却水の温度差が大きく凝縮性能が高い下側管巣に至る蒸気流が著しく妨げられる。この結果、管巣全体で高い凝縮性能を確保できないという問題があった。
【0004】
本発明の目的は、冷却水を下部から導入する二折流型の復水器において、上側管巣で蒸気と冷却水の温度差が小さくなる場合でも、上側管巣の蒸気流に対する抵抗を低減でき、管巣全体で高い凝縮性能を確保できる復水器を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するための第1の発明は、複数の冷却管が密集して配列された管巣が上下方向に2分割され、その下側管巣に冷却水を供給して、その上側管巣から前記冷却水を流出させる二折流型の復水器において、蒸気の流入口が前記管巣の上方に位置し、前記上側管巣の管巣幅は下方に向けて増大し、前記下側管巣の上端の管巣幅は前記上側管巣の下端の管巣幅以下であり、前記上側管巣及び前記下側管巣からなる前記管巣における最大管巣幅は、前記下側管巣の上端以外で、該下側管巣の上端と下端の間にあるように構成されている。
【0006】
尚、後述するように、管巣幅とは、管軸に垂直な断面(管巣断面)における管巣の横幅を指す。管巣の横幅とは、管巣の包絡線に対する横幅を指す。
【0007】
第2の発明は、蒸気の流入口を上部に有する容器と、該容器内で上下方向に2分割され複数の冷却管が密集して配列された上側管巣及び下側管巣と、前記容器の内壁と前記上側管巣及び下側管巣の外周との間に形成された第1蒸気流路とを備え、前記下側管巣に冷却水を供給して前記上側管巣から前記冷却水を流出させる二折流型の復水器において、前記上側管巣部の前記第1蒸気流路の幅は下方に向けて減少し、前記下側管巣の上端部の前記第1蒸気流路の幅は前記上側管巣の下端部の前記第1蒸気流路の幅以上であり、前記内壁と前記上側管巣及び下側管巣の外周で形成された第1蒸気流路の幅は、前記下側管巣部の上端以外で、該下側管巣部の上端と下端の間で最小となるように構成されている。
【0008】
尚、後述するように、上記第1蒸気流路の幅とは、管巣の包絡線と容器の内壁との間隔(距離)を指す。
【0009】
第3の発明は、第1又は第2の発明において、前記上側管巣はその上面から下方に延びた複数の第2蒸気流路を備え、該第2蒸気流路の幅は前記上側管巣を構成する冷却管の間隔よりも大きくなるように構成されている。
【0010】
第4の発明は、第1又は第2の発明において、前記下側管巣はその側面から横方向に延びた複数の第2蒸気流路を備え、該第2蒸気流路の幅は前記下側管巣を構成する冷却管の間隔よりも大きくなるように構成されている。
【0011】
第5の発明は、第3又は第4の発明において、前記第1蒸気流路の幅は、前記第2蒸気流路の幅よりも大きくなるように構成されている。
【0012】
第6の発明は、第1乃至第5の発明の何れかにおいて、前記蒸気に含まれる不凝縮ガスを抽出するための抽出管が、前記上側管巣と前記下側管巣の間の空間に配置されている。
【0013】
第7の発明は、第6の発明において、前記下側管巣の横断面での包絡線の面積に対する該下側管巣内の冷却管の総断面積の比である冷却管占有率が、前記下側管巣の前記冷却管の間隔を前記上側管巣の前記冷却管の間隔よりも大きくすることにより、または前記下側管巣の前記第2蒸気流路の幅と長さを調節することにより、または前記上側管巣の前記第2蒸気流路の数を増やすことにより前記上側管巣の前記冷却管占有率よりも小さくなるように構成されている。
【0014】
第8の発明は、第6の発明において、前記抽出管で抽出された未凝縮蒸気を凝縮するための蒸気冷却部が、前記下側管巣を構成する冷却管の一部で構成されている。
【0015】
第9の発明は、第8の発明において、前記蒸気冷却部が、前記下側管巣のうち前記冷却水の流入側に配置されている。
【0016】
第10の発明は、第8又は第9の発明において、前記蒸気冷却部から前記不凝縮ガスを排出するための排気管が、前記上側管巣と前記下側管巣の間の空間に配置されている。
【0017】
第11の発明は、第10の発明において、前記蒸気冷却部で凝縮された凝縮水を前記下側管巣の外側に導く排水管が、前記排気管とは別に設置されている。
【0018】
第12の発明は、水平方向に管軸を有し、互いに平行に配列された複数の冷却管と、密集して配置された前記複数の冷却管によって形成された第1管巣と、密集して配置された前記複数の冷却管によって形成され、前記第1管巣の上側に所定の空間を隔てて配置された第2管巣と、上部に蒸気の流入口を有し、前記第1管巣及び第2管巣を覆う容器と、前記空間に配置され、前記蒸気に含まれる不凝縮ガスを抽出するための抽出管と、前記第1管巣の冷却管から流出した冷却水を前記第2管巣の冷却管に供給する折返し手段とを備えた復水器において、前記第2管巣の管軸に垂直な横断面での横幅はその下端で最大となり、前記第1管巣の前記横断面での上端の横幅は、前記第2管巣の下端の横幅以下であり、前記第1管巣は、その上端以外に、前記第2管巣の下端の横幅よりも大きな前記横幅を有するように構成されている。
【0019】
第13の発明は、第12の発明において、前記第1管巣が、前記横断面においてその両側面から水平方向の内側に延びる複数の蒸気流路を有すると共に、前記第2管巣が、前記横断面においてその上面から鉛直方向の下側に延びる複数の蒸気流路を有し、前記水平方向及び前記鉛直方向に延びる蒸気流路の幅が、前記第1管巣及び前記第2管巣を形成する冷却管の間隔よりも大きくなるように構成されている。
【0020】
第14の発明は、第13の発明において、前記横断面において前記容器の内壁と前記第1管巣及び前記第2管巣の外周側面との間に形成される蒸気流路の幅が、前記水平方向及び前記鉛直方向に延びる蒸気流路の幅よりも大きくなるように構成されている。
【0021】
【発明の実施の形態】
以下、本発明を二折流型の復水器に適用した第1実施例を、図1〜図3を用いて説明する。図2は第1実施例の概略縦断面図、図1は図2のA−A断面図(横断面図)、図3は図1の管巣内の冷却管の配列を示す図である。
【0022】
図2に示すように、本復水器は、蒸気流入口40を上部に有する容器2,蒸気を凝縮させる複数の冷却管10,蒸気に含まれる不凝縮ガスを抽出する抽出管5,蒸気の凝縮水
(復水)を排出する復水流出口3,冷却水が流入する流入水室6,下側管巣から上側管巣に冷却水を供給する折返し水室7,冷却水を排出する流出水室8等から構成される。冷却管10は、抽出管5よりも下側に位置する冷却管10aと、抽出管5よりも上側に位置する冷却管10bからなる。
【0023】
容器2は、四角筒状の形状をしている。複数の冷却管10は、水平方向に管軸を有し、互いに平行に配列され、管軸方向の複数箇所で支持板9により支持されると共に、容器2の側壁を貫通している。冷却管10aは、一端(図2の左端)が流入水室6に連通し、他端(図2の右端)が折返し水室7に連通している。冷却管10bは、一端(図2の左端)が流出水室8に連通し、他端(図2の右端)が折返し水室7に連通している。
【0024】
抽出管5よりも下側に位置する複数の冷却管10aが下側管巣を形成し、抽出管5よりも上側に位置する複数の冷却管10bが上側管巣を形成している。下側管巣と上側管巣には、同数の冷却管が設けられている。これにより、両管巣における冷却水の速度をほぼ等しくしている。両管巣における冷却水の速度がほぼ等しくなる範囲であれば、両管巣の冷却管の数が異なっても良い。
【0025】
冷却水は、冷却水入口6aから流入水室6内に導入され、下側管巣の冷却管10a,折返し水室7,上側管巣の冷却管10b,流出水室8を経て、冷却水出口8aから排出される。仕切り7aが、折返し水室7内で冷却水の折返し流路を形成している。尚、図2では、構造を解り易くするために、冷却管10a及び10bの数を間引いて示している。実際は、後述する図3に示すように、多数の冷却管が密に配列されている。冷却管の数は、上下合わせて数千本〜1万本程度になる。
【0026】
容器2で形成される蒸気流路は、蒸気流入口40から上側管巣に向けて冷却管の管軸方向に拡張されている。これにより、速度が均一化された蒸気が上側管巣に流入する。管巣は複数の支持板9によって管軸方向に仕切られているので、管巣の内部では、管軸方向の蒸気流は支持板9によって抑制される。即ち、管巣内の蒸気流は、管軸に垂直な断面(管巣断面)における2次元的な流れとなる。
【0027】
図1に示すように、複数の冷却管は、下側管巣1a及び上側管巣1bを形成しており、1aと1bを合わせて管巣1と呼ぶ。実際には、図3に示すように、管巣1は、複数の冷却管10a及び10bがほぼ等間隔に配置されて構成されている。管巣断面における隣接する冷却管の相対位置は、互いに正三角形の頂点となる三角格子上に配置されている。即ち、図1で下側管巣1a及び上側管巣1bとして表した実線は、冷却管10a及び10bの包絡線を示している。
【0028】
図1に示すように、管巣1の外周側面と容器2の内側面の間に蒸気流路41が形成され、下側管巣1aの外周下面と容器底面3の間に蒸気流路42が形成されている。管巣1のうち冷却管が密集して配置された部分12a及び12bを管群と呼ぶ。これらの管群と管群の間にも、蒸気流路が形成されている。
【0029】
即ち、下側管巣1aの両側面(図1の左右側面)に、管群12aに上下を挟まれた蒸気流路11aが形成されている。蒸気流路11aは、水平方向(図1の横方向)に延びて形成されており、下側管巣1aの両側面にそれぞれ4個ずつ、合計8個が設けられている。また、上側管巣1bの上面に、管群12bに両側(左右)を挟まれた蒸気流路11bが形成されている。蒸気流路11bは、鉛直方向(図1の縦方向)に延びて形成されており、8個の蒸気流路11bが上側管巣1bの上面に設けられている。
【0030】
更に、管巣1の管群(図1で1a及び1bで示した実線)の内部にも、蒸気流路が存在する。即ち、図3に示すように、隣接する冷却管の間にも、蒸気流路13が形成されている。図1に示すように、管巣1及び蒸気流路は、容器2の鉛直方向に延びる中心線に対してほぼ左右対称に構成されている。
【0031】
このように、3種類の蒸気流路が容器2の内部に存在する。第1の蒸気流路は、管巣1の外周と容器2の間に形成されたものである。第2の蒸気流路は、管巣1の管群と管群の間に形成されたものである。第3の蒸気流路は、管群内の冷却管の間に形成されたものである。
【0032】
図1に示すように、第1の蒸気流路である蒸気流路41及び42の幅をそれぞれW1及びW2、第2の蒸気流路である蒸気流路11b及び11aの幅をそれぞれW3及びW4とする。また、図3に示すように、第3の蒸気流路である蒸気流路13の幅をW5とする。W1〜W5の大小関係は、例えば以下のようにする。
即ち、W3及びW4は、W5の数倍程度の大きさにする。W1及びW2は、W3及びW4の10倍程度の大きさにする。この結果、上側管巣1bの横幅は、容器2の内幅の約65%以下に縮小されている。このように、蒸気流路41及び42の幅を十分に広くすることにより、管巣1が蒸気を四方から取り込んで蒸気速度を低下できる。
【0033】
下側管巣1aと上側管巣1bの間には、冷却水が折返し水室7を介して流れの向きを変えたときに冷却水の流量分布を均一化するために、所定の幅の空間が設けられている。図1のように、空間の幅は、蒸気流路11a及び11bの幅よりも大きくしている。この空間の中心部には、抽出管5が配置されている。更に、蒸気が蒸気流路41から抽出管5に直接流入(バイパス)することを防ぐために、上記空間のうち抽出管5と蒸気流路41の間に、仕切り52が設けられている。
【0034】
図1に示すように、仕切り52は、構造の単純な箱状(四角筒状)の形状にしている。但し、蒸気の凝縮水が仕切り52の上面に溜まり抽出管5の孔を閉塞しないように、仕切り52と抽出管5の間にはある程度のギャップが設けられている。蒸気の水平方向のバイパスを防ぐためには、仕切り52を鉛直方向に立てたフィン群などで構成しても良い。この場合、凝縮水は仕切り52を通過して鉛直下方に落下するため、抽出管5の孔を閉塞することはない。
【0035】
タービン(図示せず)から排気された蒸気は、蒸気流入口40から復水器に流入し、蒸気流路41及び42を通って管巣1の周囲に導かれ、主に蒸気流路11a及び11bを通して管巣内部に導入される。図1に示すように、蒸気流入口40において、蒸気は容器2の側壁にほぼ平行に流れる。即ち、蒸気流入口40における蒸気流の方向は、鉛直方向となる。
【0036】
管巣内部では、蒸気のみが複数の冷却管10a及び10bの外表面で凝縮する。この凝縮により生じた凝縮水は、重力で下方に落下し、容器底面3に設けた復水流出口3aから流出する。管巣で凝縮しなかった未凝縮の蒸気及び不凝縮ガスは、抽出管5に設けた多数の孔(図示せず)から抽出管5内に流入し、真空ポンプ(図示せず)などを介して復水器の外部に排気される。
【0037】
ここで、蒸気流入口40から流入した蒸気流のうち、管巣1の左右の蒸気流路41を下降して、管巣1の下側の蒸気流路42に到達する成分(以下、下降蒸気成分という)に影響する蒸気流路の幅について説明する。下降蒸気成分に影響する蒸気流路41の幅としては、図1に破線で示す管群12a及び12bの包絡線14a及び14bと、容器2の側壁との間隔を考慮すれば良い。包絡線14a及び14bは、図3において、蒸気流路11a及び11bによる凹部を無視し、冷却管10a及び10bの外周部の形状を、凸型多角形で近似した線に対応する。また、包絡線14a及び14bは、下側管巣1a及び上側管巣1bの包絡線とも言える。
【0038】
図1に示すように、上側管巣1bの包絡線14bの横幅は、容器2の下方(蒸気流の方向)に向かって僅かに増大する。この結果、上側管巣1bの側方(横)において、下降蒸気成分に影響する蒸気流路41の幅は、容器2の下方に向かって僅かに減少する。即ち、上側管巣1bでは、下端部の横幅(以下、管巣幅という)が最大となり、この下端部の側方における蒸気流路41の幅が最小となる。
一方、下側管巣1aの上端部の管巣幅は、上側管巣1bの下端部の管巣幅とほぼ等しい。また、下側管巣1aの包絡線14aの横幅は、容器2の下方に向かって緩やかに(滑らかに)増大する。この結果、下側管巣1aの側方において、下降蒸気成分に影響する蒸気流路41の幅は、容器2の下方に向かって緩やかに減少する。即ち、下側管巣1aでは、管巣幅は容器2の下方に向かって徐々に増大し、管巣の側方における蒸気流路41の幅は容器2の下方に向かって徐々に減少する。
【0039】
上記した管巣幅の特徴を纏めると、次のようになる。即ち、上側管巣1bの管巣幅は、下端部で最大となる。下側管巣1aの上端部の管巣幅は、上側管巣1bの下端部の管巣幅とほぼ等しい。下側管巣1aの管巣幅は、容器2の下方に向かって徐々に増大し、下端部近傍で最大となる。図1では、上側管巣1bの下端部の管巣幅は容器2の内幅の約65%、下側管巣1aの最大管巣幅は容器2の内幅の約80%である。
【0040】
管巣全体としては、管巣幅は、容器2の下方に向かって徐々に増大し、下側管巣1aの下端部近傍で最大となる。但し、管巣全体で管巣幅が最大となる位置においても、蒸気流路41の幅は、蒸気流路11a及び11bの幅に比べて十分に大きい。
【0041】
このような特徴を有する本実施例によれば、蒸気流路41の幅を十分に広く確保しつつ、上側管巣1bの管巣幅を比較的狭くできるので、上側管巣1bの蒸気流に対する抵抗を低減できる。また、多くの蒸気が幅の広い蒸気流路41を通って下側管巣1aに到達できるので、蒸気と冷却水の温度差が大きな下側管巣1aに流入する蒸気量を増大して十分な凝縮性能を確保することができる。
【0042】
従って、上側管巣1bで蒸気と冷却水の温度差が小さくなる場合でも、上側管巣1bの蒸気流に対する抵抗を低減でき、管巣全体で高い凝縮性能を確保できる。また、下側管巣1aの管巣幅が容器2の下方に向かって徐々に増大していることにより、限られた高さにおける冷却管の占有率を低減でき、これも蒸気流に対する抵抗の低減に寄与している。
【0043】
更に、鉛直方向に延びた複数の蒸気流路11bを上側管巣1bに設けたことにより、上側管巣1bで内部に導入される蒸気流に対する抵抗を低減できる。同様に、水平方向に延びた複数の蒸気流路11aを下側管巣1aに設けたことにより、下側管巣1aで内部に導入される蒸気流に対する抵抗を低減できる。即ち、管巣内部の抵抗を低減できるので、圧力損失に伴う蒸気の飽和温度の低下を抑制し、伝熱性能を向上できる。
【0044】
本実施例の場合、下側管巣1aにおいて、蒸気の凝縮量は多く、蒸気速度は速い。図1では、蒸気流路11aの幅と長さを調節することにより、下側管巣1aの冷却管占有率(冷却管の総断面積/管巣断面積)を上側管巣1bの冷却管占有率よりも小さくし、下側管巣1aと上側管巣1bの圧力損失を同等にしている。ここで、管巣断面積とは、包絡線14a又は14bの面積である。
【0045】
下側管巣1aと上側管巣1bの圧力損失が同等になれば、抽出管5を低圧部にできる。この結果、不凝縮ガスは低圧部である抽出管5に集められ、速やかに排出される。これも高い凝縮性能の確保に寄与する。尚、下側管巣1aの冷却管占有率を上側管巣1bの冷却管占有率よりも小さくするためには、蒸気流路11bの数を増やしても良い。
【0046】
上記実施例では、下側管巣1aの上端部の管巣幅を、上側管巣1bの下端部の管巣幅とほぼ等しくした。蒸気流に対する管巣の抵抗を低減するためには、下側管巣1aの上端部の管巣幅を、上側管巣1bの下端部の管巣幅よりも小さくしても良い。
【0047】
また、上記実施例では、抽出管5を下側管巣1aと上側管巣1bの間の空間に設けることにより、空間を有効に使って装置の小型化が可能となる。しかし、抽出管5の位置は、上方又は下方に移しても良い。この場合、低圧部が抽出管5の位置となるように、蒸気流路11a及び11bの断面積及び形状を決定すれば良い。
【0048】
次に、本発明を二折流型の復水器に適用した第2実施例を、図4を用いて説明する。図4は、図1に対応する第2実施例の概略横断面図である。本実施例が第1実施例と異なる点は、下側管巣1aの蒸気流路11aの形状である。その他の構成は、第1実施例とほぼ同じであるので、ここでは説明を省略する。
【0049】
本実施例の蒸気流路11aは、管群12aの包絡線14aから下側管巣1aの内部に向けて斜め下方に延びている。このような蒸気流路11aが、下側管巣1aの両側面にそれぞれ3個ずつ、合計6個設けられている。
【0050】
本実施例の場合、下側管巣1aの下端部の形状は図1と多少異なるが、管巣幅に関する特徴は第1実施例と同じである。また、図4でも、下側管巣1aの冷却管占有率は、上側管巣1bの冷却管占有率よりも小さい。従って、第1実施例と同様な効果を得ることができる。
【0051】
次に、本発明を二折流型の復水器に適用した第3実施例を、図5を用いて説明する。図5は、図1に対応する第3実施例の概略横断面図である。本実施例が第1実施例と異なる点は、下側管巣1aの形状である。その他の構成は、第1実施例とほぼ同じであるので、ここでは説明を省略する。
【0052】
本実施例の場合、管群12aの包絡線14aの横幅は、容器2の下方に向かって一旦緩やかに(徐々に)増大して最大となり、その後緩やかに減少する。即ち、下側管巣1aの最大管巣幅は、鉛直方向(上下方向)の中間部に位置する。この場合も、下側管巣1aの最大管巣幅は、容器2の内幅の約80%にしている。
この結果、下側管巣1aの側方において、下降蒸気成分に影響する蒸気流路41の幅は、容器2の下方に向かって一旦徐々に減少して最小となり、その後徐々に増大する。図5でも、下側管巣1aの冷却管占有率は、上側管巣1bの冷却管占有率よりも小さい。
【0053】
従って、本実施例でも、第1実施例と同様な効果を得ることができる。更に、本実施例の場合、下側管巣1aの管巣幅の最大値が鉛直方向の中間部に位置することにより、管巣下部を回り込んで下側管巣1aに流入する蒸気流に対する抵抗を低減できる。
【0054】
次に、本発明を二折流型の復水器に適用した第4実施例を、図6を用いて説明する。図6は、図1に対応する第4実施例の概略横断面図である。本実施例は、図5の第3実施例において、上側管巣1b及び容器2の形状を変えた例である。その他の構成は、第3実施例とほぼ同じであるので、ここでは説明を省略する。
本実施例の場合、上側管巣1bの上面における包絡線14bの形状は、図1及び図5よりも滑らかな曲線(上に凸な曲線)となっている。この結果、包絡線14bの横幅が容器2の下方に向かって増大する割合は、図1及び図5よりも大きくなっている。また、容器底面3の断面形状が半円状になっている。この結果、下側管巣1aの側方において、下降蒸気成分に影響する蒸気流路41の幅は、下側管巣1aの下端部で最小となっている。更に、図5でも、下側管巣1aの冷却管占有率は、上側管巣1bの冷却管占有率よりも小さい。
【0055】
従って、本実施例でも、第1実施例と同様な効果を得ることができる。更に、本実施例の場合、容器底面3を円筒状にすることにより、第1実施例よりも耐圧性能(耐圧強度)が向上し、容器の製造コストを低減できる。この効果は、円筒形状を作り易い小型の復水器に対して有効である。
【0056】
次に、本発明を二折流型の復水器に適用した第5実施例を、図7を用いて説明する。図7は、図1に対応する第5実施例の概略横断面図である。本実施例は、図6の第4実施例において、蒸気流路11a及び11bにも冷却管を配置した例である。換言すれば、図6において、包絡線14a及び14bの形状をほとんど変えずに、管群のみで管巣を構成した例である。その他の構成は、第4実施例とほぼ同じであるので、ここでは説明を省略する。
【0057】
図7に示すように、本実施例では、抽出管5を低圧部とするために、蒸気凝縮量の多い下側管巣1aの冷却管10aの間隔W5aを、上側管巣1bの冷却管10bの間隔W5bよりも大きくしている。これにより、下側管巣1aの冷却管占有率を上側管巣1bの冷却管占有率よりも小さくして、蒸気に対する抵抗を低減している。
【0058】
本実施例でも、蒸気流路41の幅を十分に広く確保しつつ、上側管巣1bの管巣幅を比較的狭くできるので、上側管巣1bの蒸気流に対する抵抗を低減できる。また、多くの蒸気が幅の広い蒸気流路41を通って下側管巣1aに到達できるので、蒸気と冷却水の温度差が大きな下側管巣1aに流入する蒸気量を増大して十分な凝縮性能を確保することができる。従って、上側管巣1bで蒸気と冷却水の温度差が小さくなる場合でも、上側管巣1bの蒸気流に対する抵抗を低減でき、管巣全体で高い凝縮性能を確保できる。
【0059】
次に、本発明を二折流型の復水器に適用した第6実施例を、図8〜図10を用いて説明する。図9は第6実施例の概略縦断面図、図8は図9のA−A断面図、図10は図8の管巣内の冷却管の配列を示す図である。本実施例は、図1の第1実施例において、抽出管5内の未凝縮蒸気を凝縮するための凝縮部を、下側管巣1a内に設けた例である。その他の構成は、第1実施例とほぼ同じであるので、ここでは説明を省略する。
【0060】
本実施例の場合、蒸気流入口40から流入した蒸気を直接凝縮する第1凝縮部と、第1凝縮部で凝縮されなかった未凝縮蒸気を凝縮する第2凝縮部とを備える。第1凝縮部は、上側管巣1b及び下側管巣1aから構成される。第2凝縮部は、下側管巣1a内に配置された蒸気冷却部1cから構成される。
【0061】
図8に示すように、蒸気冷却部1cは、下側管巣1aの冷却管のうち抽出管5の直下に位置するものの一部を仕切板53で仕切ることにより形成されている。蒸気冷却部1cは、図8のように横断面が長方形状の領域である。図9に示すように、仕切板53の管軸方向の一端(図9の左端)は容器2の冷却水流入側の側壁に固定され、他端(図9の右端)は支持板9に固定されている。即ち、蒸気冷却部1cは、管軸方向において、支持板9で仕切られた2スパン分の領域に設置されている。尚、図9では、構造を解り易くするために、仕切板53の一部を切り欠いて表示している。
【0062】
実際には、図10に示すように、蒸気冷却部1cは多数の冷却管10cで構成されている。即ち、図8で蒸気冷却部1cとして表した実線は、冷却管10cの包絡線を示している。仕切板53は、その上端が抽出管5に接続され、その下端が排気管51に接続されている。排気管51は、容器2の冷却水流入側の側壁に隣接して設置されている。尚、図9でも、構造を解り易くするために、冷却管の数を間引いて示している。
【0063】
本実施例では、上側管巣1b及び下側管巣1aで凝縮されなかった未凝縮蒸気は、抽出管5に設けられた複数の孔(図示せず)から抽出管5内に流入し、この複数の孔のうち仕切板53で仕切られた空間に開口したものを通して蒸気冷却部1cに導入される。未凝縮蒸気は蒸気冷却部1cにおいてさらに凝縮され、残りのガス(不凝縮ガスを含む)が排気管51から外部へ排気される。この蒸気冷却部1cにおける未凝縮蒸気の凝縮の影響により、蒸気冷却部1cの圧力は管巣1の外周部よりも小さくなる。
【0064】
本実施例でも、図1と同じ管巣幅の特徴を備えており、下側管巣1aの冷却管占有率を上側管巣1bの冷却管占有率よりも小さくしているので、第1実施例と同様な効果を得ることができる。更に、本実施例の場合、上側管巣1b及び下側管巣1aで凝縮されなかった未凝縮蒸気を、流入水室6から流入した冷却水(復水器内で温度が最も低い冷却水)を用いて再度凝縮することができる。この蒸気冷却部1cでの凝縮の影響により、抽出管5で抽出される蒸気の流量が増えるので、蒸気に混入している不凝縮ガスの抽出効果がより高くなる。
【0065】
尚、本実施例では、蒸気冷却部1cを管軸方向の2スパン分の領域に設置した例について説明したが、2スパン分に限定されるものではない。即ち、必要に応じて、蒸気冷却部1cが占める管軸方向の長さを増減させても良い。
【0066】
次に、本発明を二折流型の復水器に適用した第7実施例を、図11を用いて説明する。図11は、図1に対応する第7実施例の概略横断面図である。本実施例は、図8の第6実施例において、蒸気冷却部1cの構造、排気管51の位置等を変えた例である。その他の構成は、第6実施例とほぼ同じであるので、ここでは説明を省略する。
【0067】
本実施例では、蒸気冷却部1cの横幅を図8よりも大きくし、図11のように蒸気冷却部1cの横幅方向の中央上部に仕切板53aを設けている。仕切板53aは、その上端が抽出管5に接続され、その下端と仕切板53との間に空間が形成されている。仕切板53aは、仕切板53と同様に管軸方向の2スパン分の領域に設置されている。即ち、蒸気冷却部1cは、仕切板53aにより第1冷却部1c1と第2冷却部1c2に領域分けされる。
【0068】
第1冷却部1c1の上部は抽出管5の複数の孔に連通し、第2冷却部1c2の上部は排気管51に接続されている。第1冷却部1c1と第2冷却部1c2は下端部で連通されており、この連通部の下端に凝縮液配管53bが接続されている。排気管51は、上側管巣1bと下側管巣1aの間の空間を通って容器2の側壁を貫通している。凝縮液配管53bは、下側管巣1aの下側まで延びており、その先端部はU字状に曲がっている。排気管51及び凝縮液配管53bは、例えば容器2の冷却水流入側の側壁に隣接して設置する。
【0069】
本実施例では、抽出管5に設けられた孔から蒸気冷却部1cに流入した未凝縮蒸気は、第1冷却部1c1内を下降し、その下端部で流れの向きを変え、第2冷却部1c2内を上昇する。この際、未凝縮蒸気は、第1冷却部1c1及び第2冷却部1c2において凝縮され、残りのガス(不凝縮ガスを含む)が排気管51から外部へ排気される。蒸気冷却部1cで生じた凝縮液は、重力により下降して凝縮液配管53b内に入り、その先端部であるU字部に一旦溜まり、U字部から溢れた分が容器底面3に溜まる。
【0070】
本実施例でも、下側管巣1aの冷却管占有率は、上側管巣1bの冷却管占有率よりも小さい。また、蒸気冷却部1cで未凝縮蒸気が凝縮するので、蒸気冷却部1cの圧力は管巣1の外周部よりも小さくなる。更に、凝縮液配管53bのU字部に凝縮液を溜めておくことにより、凝縮液配管53bを通して蒸気冷却部1c内に蒸気が流れ込むことを防止している。
【0071】
本実施例でも、第6実施例と同様な効果を得ることができる。更に、本実施例の場合、排気管51と凝縮液配管53bを分離したことにより、管巣より下側の蒸気流路42の幅が小さい場合でも、凝縮液配管53bの鉛直方向の長さを長く取れる。従って、熱負荷の変動などにより蒸気冷却部1cと管巣1の外周部の圧力差が過大となった場合でも、U字部に保持した凝縮液の排気管51への流れ込みを防ぐ効果がある。
【0072】
【発明の効果】
本発明によれば、蒸気流路の幅を広く確保しつつ上側管巣の管巣幅を比較的狭くできるので、上側管巣の蒸気流に対する抵抗を低減できる。また、幅の広い蒸気流路を通って下側管巣に到達する蒸気量を増大できるので、蒸気と冷却水の温度差が大きな下側管巣での凝縮量を増大できる。従って、上側管巣で蒸気と冷却水の温度差が小さくなる場合でも、管巣全体で高い凝縮性能を確保できる。
【0073】
また、上側管巣に下方に延びた複数の蒸気流路を設け、下側管巣に横方向に延びた複数の蒸気流路を設けることにより、上側管巣及び下側管巣で内部に導入される蒸気流に対する抵抗を低減できる。従って、圧力損失に伴う蒸気の飽和温度の低下を抑制し、伝熱性能を向上できる。
【0074】
また、下側管巣の冷却管占有率を上側管巣の冷却管占有率よりも小さくすることにより、上側管巣と下側管巣の圧力損失をほぼ同等にでき、上側管巣と下側管巣の間に配置した抽出管を低圧部にできる。従って、不凝縮ガスを抽出管に集めて速やかに排出できる。これも高い凝縮性能の確保に寄与する。
【0075】
また、抽出管を上側管巣と下側管巣の間の空間に配置したことにより、空間を有効に使って装置の小型化が可能となる。
【0076】
また、抽出管で抽出された未凝縮蒸気を凝縮するための蒸気冷却部を設けたことにより、抽出管で抽出される蒸気の流量が増えるので、蒸気に混入している不凝縮ガスの抽出効果を向上できる。
【図面の簡単な説明】
【図1】図2のA−A断面図。
【図2】本発明を二折流型の復水器に適用した第1実施例の概略縦断面図。
【図3】図1の管巣内の冷却管の配列を示す図。
【図4】本発明を二折流型の復水器に適用した第2実施例の概略横断面図。
【図5】本発明を二折流型の復水器に適用した第3実施例の概略横断面図。
【図6】本発明を二折流型の復水器に適用した第4実施例の概略横断面図。
【図7】本発明を二折流型の復水器に適用した第5実施例の概略横断面図。
【図8】図9のA−A断面図。
【図9】本発明を二折流型の復水器に適用した第6実施例の概略縦断面図。
【図10】図8の管巣内の冷却管の配列を示す図。
【図11】本発明を二折流型の復水器に適用した第7実施例の概略横断面図。
【符号の説明】
1…管巣、1a…下側管巣、1b…上側管巣、1c…蒸気冷却部、2…容器、3…容器底面、3a…復水流出口、5…抽出管、6…流入水室、7…折返し水室、8…流出水室、9…支持板、10,10a,10b…冷却管、11a,11b,13,41,42…蒸気流路、12a,12b…管群、40…蒸気流入口、51…排気管、53,53a…仕切板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condenser, and more particularly, to a two-fold flow condenser in which a tube nest composed of a plurality of cooling pipes is divided into two vertically.
[0002]
[Prior art]
For example, US Pat. No. 4,967,833 discloses a conventional technique related to a double folding type condenser, which has a cooling area of 500 to 2500 m. 2 A small condenser is described. This condenser is provided with a pipe nest separated into upper and lower parts, an extraction system that is provided in the lower pipe nest and extracts non-condensable gas. In this prior art, a steam inlet is installed in the upper part of the container, the tube width of the upper tube nest increases downward, and the tube width of the lower tube nest decreases downward. That is, the tube width is maximum near the lower end of the upper tube nest and the upper end of the lower tube nest. Further, the width of the steam flow path surrounding the tube nest once decreases downward and then increases.
[0003]
[Problems to be solved by the invention]
In the above prior art, no consideration is given to the case where the temperature difference between the steam and the cooling water is small in the upper tube nest. In this case, since the amount of steam condensation by the upper tube nest decreases, the upper tube nest is mainly resistant to the flow of steam containing non-condensable gas flowing in from the vapor inlet (hereinafter simply referred to as vapor flow). Works. Therefore, when the tube width is maximum near the lower end of the upper tube nest as in the conventional case, the steam flow to the lower tube nest with a large temperature difference between the steam and the cooling water and high condensation performance is significantly hindered. . As a result, there is a problem that high condensation performance cannot be ensured in the entire tube nest.
[0004]
The object of the present invention is to reduce the resistance of the upper tube nest to the steam flow even when the temperature difference between the steam and the cooling water in the upper tube nest becomes small in a double folding type condenser that introduces cooling water from the bottom. It is possible to provide a condenser that can ensure high condensation performance in the entire tube nest.
[0005]
[Means for Solving the Problems]
In a first invention for achieving the above object, a tube nest in which a plurality of cooling pipes are densely arranged is divided into two in the vertical direction, and cooling water is supplied to the lower tube nest so that the upper tube In a two-fold flow type condenser that discharges the cooling water from the nest, a steam inlet is located above the tube nest, the tube width of the upper tube nest increases downward, and the lower The nest width at the upper end of the side nest is equal to or less than the nest width at the lower end of the upper nest, and the upper nest and the lower nest The maximum nest width in the nest consisting of Other than the upper end of the lower tube nest so, Between the upper and lower ends of the lower tube nest In It is comprised so that.
[0006]
As will be described later, the nest width refers to the width of the nest in a cross section perpendicular to the tube axis (the nest cross section). The width of the tube nest refers to the width of the tube nest with respect to the envelope.
[0007]
According to a second aspect of the present invention, there is provided a container having a steam inlet at an upper portion thereof, an upper tube nest and a lower tube nest in which a plurality of cooling pipes are densely arranged in the vertical direction and the plurality of cooling tubes are densely arranged; A first steam flow path formed between the inner wall of the upper tube nest and the outer periphery of the upper tube nest and the lower tube nest, supplying cooling water to the lower tube nest and supplying the cooling water from the upper tube nest In the two-fold flow type condenser, the width of the first steam channel of the upper tube nest portion decreases downward, and the first steam channel of the upper end portion of the lower tube nest The width is equal to or greater than the width of the first steam flow path at the lower end of the upper tube nest, The width of the first steam channel formed at the outer periphery of the inner wall and the upper and lower nests is other than the upper end of the lower nest, and the width of the lower nest is It is comprised so that it may become the minimum between an upper end and a lower end.
[0008]
As will be described later, the width of the first steam channel refers to the interval (distance) between the envelope of the tube nest and the inner wall of the container.
[0009]
According to a third invention, in the first or second invention, the upper tube nest includes a plurality of second steam channels extending downward from the upper surface, and the width of the second steam channel is the upper tube nest. It is comprised so that it may become larger than the space | interval of the cooling pipe which comprises.
[0010]
According to a fourth aspect of the present invention, in the first or second aspect, the lower tube nest includes a plurality of second steam passages extending laterally from the side surface, and the width of the second steam passage is the lower It is comprised so that it may become larger than the space | interval of the cooling pipe which comprises a side tube nest.
[0011]
According to a fifth invention, in the third or fourth invention, the width of the first steam channel is configured to be larger than the width of the second steam channel.
[0012]
According to a sixth invention, in any one of the first to fifth inventions, an extraction pipe for extracting the non-condensable gas contained in the vapor is provided in a space between the upper pipe nest and the lower pipe nest. Has been placed.
[0013]
According to a seventh invention, in the sixth invention, a cooling pipe occupancy ratio, which is a ratio of a total cross-sectional area of the cooling pipe in the lower tube nest to an area of an envelope in a cross section of the lower tube nest, Adjusting the width and length of the second steam flow path in the lower tube nest by making the interval between the cooling tubes in the lower tube nest larger than the interval between the cooling tubes in the upper tube nest Or by increasing the number of the second steam flow paths in the upper tube nest It is comprised so that it may become smaller than the said cooling pipe occupation rate of the said upper side nest.
[0014]
In an eighth aspect based on the sixth aspect, the steam cooling section for condensing the uncondensed steam extracted by the extraction pipe is constituted by a part of the cooling pipe constituting the lower tube nest. .
[0015]
In a ninth aspect based on the eighth aspect, the steam cooling section is disposed on the cooling water inflow side in the lower tube nest.
[0016]
According to a tenth aspect, in the eighth or ninth aspect, an exhaust pipe for discharging the non-condensable gas from the steam cooling section is disposed in a space between the upper side nest and the lower side nest. ing.
[0017]
In an eleventh aspect based on the tenth aspect, a drain pipe for guiding the condensed water condensed in the steam cooling section to the outside of the lower tube nest is provided separately from the exhaust pipe.
[0018]
In a twelfth aspect of the present invention, a plurality of cooling pipes having a tube axis in the horizontal direction and arranged in parallel to each other, and a first tube nest formed by the plurality of cooling pipes arranged densely are densely packed. A plurality of cooling pipes arranged in a row, a second pipe nest arranged above the first pipe nest with a predetermined space therebetween, and a steam inlet at an upper part thereof, wherein the first pipe A container covering the nest and the second nest, an extraction pipe disposed in the space for extracting non-condensable gas contained in the vapor, and cooling water flowing out from the cooling pipe of the first nest A condenser having a folding means for supplying the cooling pipe of the two pipe nests, the transverse width in the cross section perpendicular to the tube axis of the second pipe nest is maximum at the lower end, and the The width of the upper end in the cross section is equal to or less than the width of the lower end of the second tube nest, and the first tube nest is other than the upper end of the second tube nest. It is configured to have a large the transverse width than the transverse width of the lower end of the second tube nest.
[0019]
In a thirteenth aspect based on the twelfth aspect, the first nest has a plurality of steam passages extending inward in the horizontal direction from both side surfaces in the transverse section, and the second nest A plurality of steam passages extending from the upper surface to the lower side in the vertical direction in the cross section, and the widths of the steam passages extending in the horizontal direction and the vertical direction include the first tube nest and the second tube nest. It is comprised so that it may become larger than the space | interval of the cooling pipe to form.
[0020]
In a fourteenth aspect based on the thirteenth aspect, the width of the steam flow path formed between the inner wall of the container and the outer peripheral side surfaces of the first and second nests in the transverse section is It is comprised so that it may become larger than the width | variety of the steam flow path extended in a horizontal direction and the said perpendicular direction.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment in which the present invention is applied to a two-fold flow condenser will be described below with reference to FIGS. 2 is a schematic longitudinal sectional view of the first embodiment, FIG. 1 is a sectional view taken along line AA (transverse sectional view) of FIG. 2, and FIG. 3 is a diagram showing an arrangement of cooling pipes in the tube nest of FIG.
[0022]
As shown in FIG. 2, the condenser includes a container 2 having a steam inlet 40 at the top, a plurality of cooling pipes 10 for condensing steam, an extraction pipe 5 for extracting non-condensable gas contained in the steam, Condensed water
Condensate outlet 3 for discharging (condensate) a , An inflow water chamber 6 into which cooling water flows, a folded water chamber 7 for supplying cooling water from the lower tube nest to the upper tube nest, an outflow water chamber 8 for discharging the cooling water, and the like. The cooling pipe 10 includes a cooling pipe 10 a located below the extraction pipe 5 and a cooling pipe 10 b located above the extraction pipe 5.
[0023]
The container 2 has a square cylindrical shape. The plurality of cooling pipes 10 have pipe axes in the horizontal direction, are arranged in parallel to each other, are supported by the support plate 9 at a plurality of locations in the pipe axis direction, and penetrate the side wall of the container 2. One end (left end in FIG. 2) of the cooling pipe 10a communicates with the inflow water chamber 6, and the other end (right end in FIG. 2) communicates with the folded water chamber 7. One end (the left end in FIG. 2) of the cooling pipe 10 b communicates with the effluent water chamber 8, and the other end (the right end in FIG. 2) communicates with the folded water chamber 7.
[0024]
A plurality of cooling pipes 10a positioned below the extraction pipe 5 forms a lower tube nest, and a plurality of cooling pipes 10b positioned above the extraction pipe 5 forms an upper tube nest. The same number of cooling tubes are provided in the lower tube nest and the upper tube nest. Thereby, the speed of the cooling water in both tube nests is made substantially equal. The number of cooling pipes in both nests may be different as long as the cooling water speeds in both nests are approximately equal.
[0025]
Cooling water is introduced into the inflow water chamber 6 from the cooling water inlet 6a, passes through the cooling tube 10a in the lower tube nest, the folded water chamber 7, the cooling tube 10b in the upper tube nest, and the outflow water chamber 8 to the cooling water outlet. It is discharged from 8a. The partition 7 a forms a cooling water return channel in the return water chamber 7. In FIG. 2, the cooling pipes 10 a and 10 b are thinned out for easy understanding of the structure. Actually, as shown in FIG. 3 to be described later, a large number of cooling pipes are densely arranged. The number of cooling pipes is about several thousand to 10,000 in total.
[0026]
The steam flow path formed by the container 2 is expanded in the tube axis direction of the cooling pipe from the steam inlet 40 toward the upper tube nest. Thereby, the vapor | steam in which the speed | rate was equalized flows in into an upper tube nest. Since the tube nest is partitioned in the tube axis direction by the plurality of support plates 9, the steam flow in the tube axis direction is suppressed by the support plate 9 inside the tube nest. That is, the steam flow in the tube nest becomes a two-dimensional flow in a cross section (tube nest cross section) perpendicular to the tube axis.
[0027]
As shown in FIG. 1, the plurality of cooling tubes form a lower tube nest 1a and an upper tube nest 1b, and 1a and 1b are collectively referred to as a tube nest 1. Actually, as shown in FIG. 3, the tube nest 1 is configured by arranging a plurality of cooling tubes 10 a and 10 b at substantially equal intervals. The relative positions of the adjacent cooling pipes in the tube cross section are arranged on a triangular lattice that is the apex of an equilateral triangle. That is, the solid lines represented as the lower tube nest 1a and the upper tube nest 1b in FIG. 1 indicate the envelopes of the cooling tubes 10a and 10b.
[0028]
As shown in FIG. 1, a steam channel 41 is formed between the outer peripheral side surface of the tube nest 1 and the inner surface of the container 2, and the steam channel 42 is formed between the outer periphery lower surface of the lower tube nest 1 a and the container bottom surface 3. Is formed. The portions 12a and 12b in which the cooling tubes are densely arranged in the tube nest 1 are referred to as a tube group. A steam flow path is also formed between these tube groups.
[0029]
That is, the steam flow path 11a sandwiched between the pipe groups 12a is formed on both side surfaces (left and right side surfaces in FIG. 1) of the lower tube nest 1a. The steam flow paths 11a are formed to extend in the horizontal direction (lateral direction in FIG. 1), and four are provided on each side surface of the lower tube nest 1a, for a total of eight. In addition, a steam channel 11b is formed on the upper surface of the upper tube nest 1b, with both sides (left and right) sandwiched between the tube group 12b. The steam channel 11b is formed to extend in the vertical direction (vertical direction in FIG. 1), and eight steam channels 11b are provided on the upper surface of the upper tube nest 1b.
[0030]
Further, a steam flow path is also present inside the tube group of the tube nest 1 (solid lines indicated by 1a and 1b in FIG. 1). That is, as shown in FIG. 3, the steam flow path 13 is also formed between adjacent cooling pipes. As shown in FIG. 1, the tube nest 1 and the steam flow path are configured substantially symmetrically with respect to a center line extending in the vertical direction of the container 2.
[0031]
Thus, three types of steam flow paths exist inside the container 2. The first steam flow path is formed between the outer periphery of the tube nest 1 and the container 2. The second steam channel is formed between the tube group of the tube nest 1. The third steam channel is formed between the cooling pipes in the pipe group.
[0032]
As shown in FIG. 1, the widths of the steam channels 41 and 42, which are the first steam channels, are W1 and W2, respectively, and the widths of the steam channels 11b and 11a, which are the second steam channels, are W3 and W4, respectively. And Further, as shown in FIG. 3, the width of the steam channel 13 which is the third steam channel is set to W5. The magnitude relationship between W1 to W5 is, for example, as follows.
That is, W3 and W4 are about several times larger than W5. W1 and W2 are about 10 times larger than W3 and W4. As a result, the lateral width of the upper tube nest 1b is reduced to about 65% or less of the inner width of the container 2. Thus, by making the widths of the steam flow paths 41 and 42 sufficiently wide, the tube nest 1 can take in steam from four directions and reduce the steam speed.
[0033]
A space having a predetermined width is provided between the lower tube nest 1a and the upper tube nest 1b in order to make the flow rate distribution of the cooling water uniform when the direction of the flow of the cooling water turns through the water chamber 7. Is provided. As shown in FIG. 1, the width of the space is made larger than the width of the steam flow paths 11a and 11b. An extraction tube 5 is disposed in the center of this space. Further, a partition 52 is provided between the extraction pipe 5 and the steam flow path 41 in the space in order to prevent the steam from directly flowing (bypassing) from the steam flow path 41 to the extraction pipe 5.
[0034]
As shown in FIG. 1, the partition 52 has a simple box shape (square tube shape). However, a certain amount of gap is provided between the partition 52 and the extraction pipe 5 so that the condensed water of the steam does not accumulate on the upper surface of the partition 52 and block the hole of the extraction pipe 5. In order to prevent the horizontal bypass of the steam, the partition 52 may be configured by a group of fins standing in the vertical direction. In this case, since the condensed water passes through the partition 52 and falls vertically downward, the hole of the extraction pipe 5 is not blocked.
[0035]
The steam exhausted from the turbine (not shown) flows into the condenser from the steam inlet 40 and is guided to the periphery of the tube nest 1 through the steam flow paths 41 and 42, and mainly the steam flow path 11a and It is introduced into the tube nest through 11b. As shown in FIG. 1, the steam flows substantially parallel to the side wall of the container 2 at the steam inlet 40. That is, the direction of the steam flow at the steam inlet 40 is the vertical direction.
[0036]
Inside the tube nest, only the vapor condenses on the outer surfaces of the cooling tubes 10a and 10b. The condensed water generated by this condensation falls downward due to gravity and flows out from the condensate outlet 3 a provided on the bottom surface 3 of the container. Uncondensed vapor and non-condensable gas that have not been condensed in the tube nest flow into the extraction pipe 5 from a large number of holes (not shown) provided in the extraction pipe 5, and pass through a vacuum pump (not shown) or the like. Exhausted to the outside of the condenser.
[0037]
Here, of the steam flow flowing in from the steam inlet 40, a component (hereinafter referred to as descending steam) that descends the left and right steam channels 41 of the tube nest 1 and reaches the steam channel 42 on the lower side of the tube nest 1. The width of the steam channel affecting the component) will be described. As the width of the steam flow path 41 that affects the descending steam component, the distance between the envelopes 14a and 14b of the tube groups 12a and 12b shown by the broken lines in FIG. In FIG. 3, the envelopes 14a and 14b ignore the recesses formed by the steam channels 11a and 11b, and correspond to the lines that approximate the shapes of the outer peripheral portions of the cooling pipes 10a and 10b with convex polygons. The envelopes 14a and 14b can also be said to be envelopes of the lower tube nest 1a and the upper tube nest 1b.
[0038]
As shown in FIG. 1, the lateral width of the envelope 14 b of the upper tube 1 b slightly increases toward the lower side of the container 2 (the direction of the steam flow). As a result, the width of the steam channel 41 that affects the descending steam component slightly decreases toward the lower side of the container 2 on the side (lateral) of the upper tube nest 1b. That is, in the upper tube nest 1b, the lateral width of the lower end (hereinafter referred to as tube nest width) is maximized, and the width of the steam channel 41 on the side of the lower end is minimized.
On the other hand, the tube width at the upper end of the lower tube nest 1a is substantially equal to the tube width at the lower end of the upper tube 1b. In addition, the lateral width of the envelope 14 a of the lower tube nest 1 a gradually (smoothly) increases toward the lower side of the container 2. As a result, the width of the steam channel 41 that affects the descending steam component gradually decreases toward the lower side of the container 2 on the side of the lower tube nest 1a. That is, in the lower tube nest 1 a, the tube nest width gradually increases toward the lower side of the container 2, and the width of the steam channel 41 on the side of the tube nest gradually decreases toward the lower side of the container 2.
[0039]
The characteristics of the above-mentioned tube nest width are summarized as follows. That is, the tube width of the upper tube nest 1b is maximized at the lower end. The tube width at the upper end of the lower tube nest 1a is substantially equal to the tube width at the lower end of the upper tube 1b. The nest width of the lower nest 1a gradually increases toward the lower side of the container 2 and becomes maximum near the lower end. In FIG. 1, the tube width at the lower end of the upper tube nest 1b is about 65% of the inner width of the container 2, and the maximum tube nest width of the lower tube nest 1a is about 80% of the inner width of the container 2.
[0040]
As the entire tube nest, the tube width gradually increases toward the lower side of the container 2 and becomes maximum near the lower end portion of the lower tube nest 1a. However, the width of the steam channel 41 is sufficiently larger than the widths of the steam channels 11a and 11b even at a position where the tube nest width is maximum in the entire tube nest.
[0041]
According to this embodiment having such a feature, the width of the upper nest 1b can be made relatively narrow while the width of the steam channel 41 is sufficiently widened, so that the steam flow of the upper nest 1b can be reduced. Resistance can be reduced. In addition, since a large amount of steam can reach the lower nest 1a through the wide steam channel 41, the amount of steam flowing into the lower nest 1a having a large temperature difference between the steam and the cooling water can be increased sufficiently. A good condensing performance.
[0042]
Therefore, even when the temperature difference between the steam and the cooling water becomes small in the upper tube nest 1b, the resistance of the upper tube nest 1b to the steam flow can be reduced, and high condensing performance can be secured in the entire tube nest. Further, since the tube width of the lower tube nest 1a gradually increases toward the lower side of the container 2, the occupancy ratio of the cooling tube at a limited height can be reduced. Contributes to reduction.
[0043]
Furthermore, by providing a plurality of steam passages 11b extending in the vertical direction in the upper tube nest 1b, resistance to the steam flow introduced into the upper tube nest 1b can be reduced. Similarly, by providing a plurality of steam passages 11a extending in the horizontal direction in the lower tube nest 1a, resistance to the steam flow introduced into the lower tube nest 1a can be reduced. That is, since the resistance inside the tube nest can be reduced, it is possible to suppress the decrease in the saturation temperature of the steam accompanying the pressure loss and improve the heat transfer performance.
[0044]
In the case of the present embodiment, the amount of steam condensation is large and the steam speed is fast in the lower tube 1a. In FIG. 1, by adjusting the width and length of the steam flow path 11a, the cooling pipe occupancy ratio (total cross-sectional area of cooling pipe / nest section area) of the lower pipe nest 1a is changed to the cooling pipe of the upper nest 1b. The pressure loss of the lower tube nest 1a and the upper tube nest 1b is made equal to the occupation rate. Here, the tube cross-sectional area is the area of the envelope 14a or 14b.
[0045]
If the pressure loss of the lower tube nest 1a and the upper tube nest 1b are equal, the extraction tube 5 can be made a low pressure part. As a result, the non-condensable gas is collected in the extraction pipe 5 which is a low-pressure part, and is quickly discharged. This also contributes to ensuring high condensation performance. In addition, in order to make the cooling pipe occupation rate of the lower tube nest 1a smaller than the cooling tube occupation rate of the upper tube nest 1b, the number of the steam flow paths 11b may be increased.
[0046]
In the above embodiment, the nest width at the upper end of the lower nest 1a is made substantially equal to the nest width at the lower end of the upper nest 1b. In order to reduce the resistance of the nest to steam flow, the nest width at the upper end of the lower nest 1a may be smaller than the nest width at the lower end of the upper nest 1b.
[0047]
Moreover, in the said Example, by providing the extraction pipe | tube 5 in the space between the lower side nest 1a and the upper side nest 1b, size reduction of an apparatus is attained using space effectively. However, the position of the extraction tube 5 may be moved upward or downward. In this case, what is necessary is just to determine the cross-sectional area and shape of the steam flow paths 11a and 11b so that a low voltage | pressure part may become the position of the extraction pipe | tube 5. FIG.
[0048]
Next, a second embodiment in which the present invention is applied to a two-fold flow condenser will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view of a second embodiment corresponding to FIG. This embodiment differs from the first embodiment in the shape of the steam flow path 11a of the lower tube nest 1a. Other configurations are almost the same as those of the first embodiment, and thus description thereof is omitted here.
[0049]
The steam channel 11a of the present embodiment extends obliquely downward from the envelope 14a of the tube group 12a toward the inside of the lower tube nest 1a. A total of six such steam passages 11a are provided on each side of the lower tube nest 1a, three each.
[0050]
In the case of the present embodiment, the shape of the lower end portion of the lower tube nest 1a is slightly different from that in FIG. 1, but the features relating to the tube nest width are the same as in the first embodiment. Also in FIG. 4, the cooling tube occupancy of the lower tube nest 1a is smaller than the cooling tube occupancy of the upper tube nest 1b. Therefore, the same effect as the first embodiment can be obtained.
[0051]
Next, a third embodiment in which the present invention is applied to a two-fold flow condenser will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view of a third embodiment corresponding to FIG. This embodiment is different from the first embodiment in the shape of the lower tube nest 1a. Other configurations are almost the same as those of the first embodiment, and thus description thereof is omitted here.
[0052]
In the case of the present embodiment, the lateral width of the envelope 14a of the tube group 12a increases once gradually (gradually) toward the lower side of the container 2, and then gradually decreases. That is, the maximum nest width of the lower nest 1a is located in the middle part in the vertical direction (vertical direction). Also in this case, the maximum nest width of the lower nest 1a is set to about 80% of the inner width of the container 2.
As a result, on the side of the lower tube nest 1a, the width of the steam flow path 41 that affects the descending steam component is gradually decreased and minimized toward the lower side of the container 2, and then gradually increased. Also in FIG. 5, the cooling pipe occupation ratio of the lower tube nest 1a is smaller than the cooling pipe occupation ratio of the upper tube nest 1b.
[0053]
Therefore, in this embodiment, the same effect as that of the first embodiment can be obtained. Further, in the case of the present embodiment, the maximum value of the nest width of the lower nest 1a is located in the middle part in the vertical direction, so that the steam flow that flows around the lower nest 1a and flows into the lower nest 1a Resistance can be reduced.
[0054]
Next, a fourth embodiment in which the present invention is applied to a two-fold flow condenser will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view of a fourth embodiment corresponding to FIG. The present embodiment is an example in which the shapes of the upper tube nest 1b and the container 2 are changed in the third embodiment of FIG. The other configuration is almost the same as that of the third embodiment, and the description is omitted here.
In the case of the present embodiment, the shape of the envelope 14b on the upper surface of the upper tube nest 1b is a smoother curve (upwardly convex curve) than FIGS. As a result, the rate at which the lateral width of the envelope 14 b increases toward the lower side of the container 2 is larger than those in FIGS. 1 and 5. Moreover, the cross-sectional shape of the container bottom surface 3 is semicircular. As a result, on the side of the lower tube nest 1a, the width of the steam channel 41 that affects the descending steam component is minimum at the lower end of the lower tube nest 1a. Furthermore, also in FIG. 5, the cooling pipe occupation ratio of the lower tube nest 1a is smaller than the cooling pipe occupation ratio of the upper tube nest 1b.
[0055]
Therefore, in this embodiment, the same effect as that of the first embodiment can be obtained. Furthermore, in the case of the present embodiment, by making the container bottom 3 cylindrical, the pressure resistance performance (pressure strength) is improved as compared to the first embodiment, and the manufacturing cost of the container can be reduced. This effect is effective for a small condenser that easily forms a cylindrical shape.
[0056]
Next, a fifth embodiment in which the present invention is applied to a two-fold flow condenser will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view of a fifth embodiment corresponding to FIG. This embodiment is an example in which cooling pipes are also arranged in the steam flow paths 11a and 11b in the fourth embodiment of FIG. In other words, FIG. 6 shows an example in which the tube nest is configured by only the tube group without changing the shapes of the envelopes 14a and 14b. The other configuration is almost the same as that of the fourth embodiment, and the description is omitted here.
[0057]
As shown in FIG. 7, in this embodiment, in order to make the extraction pipe 5 a low pressure part, the interval W5a between the cooling pipes 10a of the lower nest 1a with a large amount of vapor condensation is set to the cooling pipe 10b of the upper nest 1b. Is larger than the interval W5b. Thereby, the cooling pipe occupation rate of the lower tube nest 1a is made smaller than the cooling tube occupation rate of the upper tube nest 1b to reduce the resistance to steam.
[0058]
Also in the present embodiment, the width of the upper flow nest 1b can be made relatively narrow while the width of the vapor flow path 41 is sufficiently widened, so that the resistance of the upper flow nest 1b to the vapor flow can be reduced. In addition, since a large amount of steam can reach the lower nest 1a through the wide steam channel 41, the amount of steam flowing into the lower nest 1a having a large temperature difference between the steam and the cooling water can be increased sufficiently. A good condensing performance. Therefore, even when the temperature difference between the steam and the cooling water becomes small in the upper tube nest 1b, the resistance of the upper tube nest 1b to the steam flow can be reduced, and high condensing performance can be secured in the entire tube nest.
[0059]
Next, a sixth embodiment in which the present invention is applied to a two-fold flow condenser will be described with reference to FIGS. FIG. 9 is a schematic longitudinal sectional view of the sixth embodiment, FIG. 8 is a sectional view taken along line AA of FIG. 9, and FIG. 10 is a diagram showing an arrangement of cooling pipes in the tube nest of FIG. The present embodiment is an example in which a condensing part for condensing uncondensed vapor in the extraction pipe 5 is provided in the lower tube nest 1a in the first embodiment of FIG. Other configurations are almost the same as those of the first embodiment, and thus description thereof is omitted here.
[0060]
In the case of a present Example, the 1st condensation part which condenses the vapor | steam which flowed in from the vapor | steam inflow port 40 directly, and the 2nd condensation part which condenses the uncondensed vapor | steam which was not condensed by the 1st condensation part are provided. The first condensing part is composed of an upper tube nest 1b and a lower tube nest 1a. The second condensing unit is composed of a steam cooling unit 1c arranged in the lower tube nest 1a.
[0061]
As shown in FIG. 8, the steam cooling section 1 c is formed by partitioning a part of the cooling pipe of the lower tube nest 1 a located immediately below the extraction pipe 5 with a partition plate 53. The steam cooling unit 1c is a region having a rectangular cross section as shown in FIG. As shown in FIG. 9, one end (left end in FIG. 9) of the partition plate 53 in the tube axis direction is fixed to the side wall on the cooling water inflow side of the container 2, and the other end (right end in FIG. 9) is fixed to the support plate 9. Has been. That is, the steam cooling unit 1c is installed in a region corresponding to two spans partitioned by the support plate 9 in the tube axis direction. In FIG. 9, a part of the partition plate 53 is notched and displayed for easy understanding of the structure.
[0062]
Actually, as shown in FIG. 10, the steam cooling section 1c is composed of a large number of cooling pipes 10c. That is, the solid line represented as the steam cooling unit 1c in FIG. 8 indicates the envelope of the cooling pipe 10c. The partition plate 53 has an upper end connected to the extraction pipe 5 and a lower end connected to the exhaust pipe 51. The exhaust pipe 51 is installed adjacent to the side wall of the container 2 on the cooling water inflow side. In FIG. 9, the number of cooling pipes is thinned out for easy understanding of the structure.
[0063]
In the present embodiment, uncondensed vapor that has not been condensed in the upper tube nest 1b and the lower tube nest 1a flows into the extraction tube 5 from a plurality of holes (not shown) provided in the extraction tube 5, Among the plurality of holes, the holes are introduced into the space cooled by the partition plate 53 and introduced into the steam cooling unit 1c. The uncondensed steam is further condensed in the steam cooling section 1c, and the remaining gas (including non-condensed gas) is exhausted from the exhaust pipe 51 to the outside. Due to the influence of condensation of uncondensed steam in the steam cooling part 1 c, the pressure of the steam cooling part 1 c becomes smaller than the outer peripheral part of the tube nest 1.
[0064]
The present embodiment also has the same tube width characteristics as in FIG. 1, and the cooling tube occupancy of the lower tube nest 1a is smaller than the cooling tube occupancy of the upper tube 1b. The same effect as the example can be obtained. Furthermore, in the case of the present embodiment, uncondensed steam that has not been condensed in the upper tube nest 1b and the lower tube nest 1a flows into the cooling water that flows from the inflow water chamber 6 (cooling water having the lowest temperature in the condenser). Can be condensed again. Since the flow rate of the steam extracted by the extraction pipe 5 increases due to the influence of condensation in the steam cooling section 1c, the extraction effect of the non-condensable gas mixed in the steam becomes higher.
[0065]
In addition, although the present Example demonstrated the example which installed the steam cooling part 1c in the area | region for 2 spans of a pipe-axis direction, it is not limited to 2 spans. That is, if necessary, the length in the tube axis direction occupied by the steam cooling unit 1c may be increased or decreased.
[0066]
Next, a seventh embodiment in which the present invention is applied to a two-fold flow condenser will be described with reference to FIG. FIG. 11 is a schematic cross-sectional view of a seventh embodiment corresponding to FIG. The present embodiment is an example in which the structure of the steam cooling unit 1c, the position of the exhaust pipe 51, and the like are changed in the sixth embodiment of FIG. The other configuration is almost the same as that of the sixth embodiment, and the description thereof is omitted here.
[0067]
In the present embodiment, the lateral width of the steam cooling section 1c is made larger than that in FIG. 8, and a partition plate 53a is provided at the center upper portion in the lateral width direction of the steam cooling section 1c as shown in FIG. An upper end of the partition plate 53 a is connected to the extraction pipe 5, and a space is formed between the lower end of the partition plate 53 a and the partition plate 53. Similarly to the partition plate 53, the partition plate 53a is installed in a region corresponding to two spans in the tube axis direction. That is, the steam cooling unit 1c is divided into a first cooling unit 1c1 and a second cooling unit 1c2 by the partition plate 53a.
[0068]
The upper part of the first cooling part 1 c 1 communicates with a plurality of holes of the extraction pipe 5, and the upper part of the second cooling part 1 c 2 is connected to the exhaust pipe 51. The 1st cooling part 1c1 and the 2nd cooling part 1c2 are connected by the lower end part, and the condensate piping 53b is connected to the lower end of this communication part. The exhaust pipe 51 penetrates the side wall of the container 2 through the space between the upper tube nest 1b and the lower tube nest 1a. The condensate piping 53b extends to the lower side of the lower tube nest 1a, and the tip thereof is bent in a U shape. The exhaust pipe 51 and the condensate pipe 53b are installed adjacent to the side wall of the container 2 on the cooling water inflow side, for example.
[0069]
In the present embodiment, the uncondensed steam that has flowed into the steam cooling unit 1c from the hole provided in the extraction pipe 5 descends in the first cooling unit 1c1, changes the flow direction at the lower end thereof, and the second cooling unit Ascend in 1c2. At this time, the uncondensed vapor is condensed in the first cooling unit 1c1 and the second cooling unit 1c2, and the remaining gas (including non-condensed gas) is exhausted from the exhaust pipe 51 to the outside. The condensate produced in the steam cooling part 1c descends due to gravity and enters the condensate pipe 53b, and temporarily accumulates in the U-shaped part, which is the tip of the condensate, and the overflow from the U-shaped part accumulates on the container bottom surface 3.
[0070]
Also in the present embodiment, the cooling pipe occupation ratio of the lower tube nest 1a is smaller than the cooling pipe occupation ratio of the upper tube nest 1b. Further, since the uncondensed steam is condensed in the steam cooling part 1 c, the pressure of the steam cooling part 1 c is smaller than the outer peripheral part of the tube nest 1. Further, the condensate is stored in the U-shaped portion of the condensate pipe 53b, thereby preventing steam from flowing into the steam cooling part 1c through the condensate pipe 53b.
[0071]
In this embodiment, the same effect as in the sixth embodiment can be obtained. Further, in the case of the present embodiment, by separating the exhaust pipe 51 and the condensate pipe 53b, the length of the condensate pipe 53b in the vertical direction can be increased even when the width of the steam flow path 42 below the pipe nest is small. Take long. Therefore, even when the pressure difference between the steam cooling portion 1c and the outer periphery of the tube nest 1 becomes excessive due to fluctuations in the heat load, etc., there is an effect of preventing the condensate retained in the U-shaped portion from flowing into the exhaust pipe 51. .
[0072]
【The invention's effect】
According to the present invention, since the tube width of the upper tube nest can be made relatively narrow while ensuring the width of the steam channel, resistance to the vapor flow of the upper tube nest can be reduced. Moreover, since the amount of steam reaching the lower tube nest through the wide steam channel can be increased, the amount of condensation in the lower tube nest where the temperature difference between the steam and the cooling water is large can be increased. Therefore, even when the temperature difference between the steam and the cooling water is small in the upper tube nest, high condensing performance can be secured in the entire tube nest.
[0073]
In addition, a plurality of steam passages extending downward in the upper tube nest and a plurality of steam channels extending in the lateral direction in the lower tube nest are introduced into the upper tube nest and the lower tube nest. The resistance to the generated steam flow can be reduced. Therefore, it is possible to suppress a decrease in the saturation temperature of the steam accompanying the pressure loss and improve the heat transfer performance.
[0074]
Also, by making the cooling tube occupancy of the lower tube nest smaller than the cooling tube occupancy of the upper tube nest, the pressure loss of the upper tube nest and the lower tube nest can be made almost equal, and the upper tube nest and the lower tube nest The extraction pipe arranged between the tube nests can be a low pressure part. Therefore, the non-condensable gas can be collected in the extraction pipe and quickly discharged. This also contributes to ensuring high condensation performance.
[0075]
Further, since the extraction tube is disposed in the space between the upper tube nest and the lower tube nest, the device can be reduced in size by effectively using the space.
[0076]
In addition, by providing a steam cooling unit for condensing uncondensed steam extracted in the extraction pipe, the flow rate of the steam extracted in the extraction pipe increases, so the extraction effect of the non-condensable gas mixed in the steam is increased. Can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view taken along line AA in FIG.
FIG. 2 is a schematic longitudinal sectional view of a first embodiment in which the present invention is applied to a two-fold flow condenser.
FIG. 3 is a diagram showing an arrangement of cooling pipes in the tube nest of FIG. 1;
FIG. 4 is a schematic cross-sectional view of a second embodiment in which the present invention is applied to a two-fold flow condenser.
FIG. 5 is a schematic cross-sectional view of a third embodiment in which the present invention is applied to a two-fold flow condenser.
FIG. 6 is a schematic cross-sectional view of a fourth embodiment in which the present invention is applied to a two-fold flow condenser.
FIG. 7 is a schematic cross-sectional view of a fifth embodiment in which the present invention is applied to a two-fold flow condenser.
8 is a cross-sectional view taken along line AA in FIG.
FIG. 9 is a schematic longitudinal sectional view of a sixth embodiment in which the present invention is applied to a two-fold flow condenser.
10 is a diagram showing an arrangement of cooling pipes in the tube nest of FIG. 8. FIG.
FIG. 11 is a schematic cross-sectional view of a seventh embodiment in which the present invention is applied to a two-fold flow condenser.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Tube nest, 1a ... Lower tube nest, 1b ... Upper tube nest, 1c ... Steam cooling part, 2 ... Container, 3 ... Container bottom surface, 3a ... Condensate outlet, 5 ... Extraction pipe, 6 ... Inflow water chamber, DESCRIPTION OF SYMBOLS 7 ... Folding water chamber, 8 ... Outflow water chamber, 9 ... Support plate, 10, 10a, 10b ... Cooling pipe, 11a, 11b, 13, 41, 42 ... Steam flow path, 12a, 12b ... Tube group, 40 ... Steam Inlet 51, exhaust pipe, 53, 53a, partition plate.

Claims (14)

複数の冷却管が密集して配列された管巣が上下方向に2分割され、その下側管巣に冷却水を供給して、その上側管巣から前記冷却水を流出させる二折流型の復水器において、
蒸気の流入口が前記管巣の上方に位置し、前記上側管巣の管巣幅は下方に向けて増大し、前記下側管巣の上端の管巣幅は前記上側管巣の下端の管巣幅以下であり、前記上側管巣及び前記下側管巣からなる前記管巣における最大管巣幅は、前記下側管巣の上端以外で、該下側管巣の上端と下端の間にあるように構成されていることを特徴とする復水器。
A nest in which a plurality of cooling pipes are densely arranged is divided into two in the vertical direction, a cooling water is supplied to the lower nest, and the cooling water flows out from the upper nest. In the condenser,
The steam inlet is located above the tube nest, the tube width of the upper tube nest increases downward, and the tube width at the upper end of the lower tube nest is the tube at the lower end of the upper tube nest. and a nest width or less, the maximum tube nest width of the tube nest made of the upper tube nest and the lower tube nest, except the upper end of the lower tube nest, between the upper and lower ends of the lower side tube nest condenser, characterized in that Oh is configured so that.
蒸気の流入口を上部に有する容器と、該容器内で上下方向に2分割され複数の冷却管が密集して配列された上側管巣及び下側管巣と、前記容器の内壁と前記上側管巣及び下側管巣の外周との間に形成された第1蒸気流路とを備え、前記下側管巣に冷却水を供給して前記上側管巣から前記冷却水を流出させる二折流型の復水器において、
前記上側管巣部の前記第1蒸気流路の幅は下方に向けて減少し、前記下側管巣の上端部の前記第1蒸気流路の幅は前記上側管巣の下端部の前記第1蒸気流路の幅以上であり、前記内壁と前記上側管巣及び下側管巣の外周で形成された第1蒸気流路の幅は、前記下側管巣部の上端以外、該下側管巣部の上端と下端の間で最小となるように構成されていることを特徴とする復水器。
A container having a steam inlet at the top; an upper and lower tube nest in which a plurality of cooling pipes are densely arranged in the vertical direction in the container; the inner wall of the container and the upper tube A first steam flow path formed between the nest and the outer periphery of the lower tube nest, and supplying the cooling water to the lower tube nest and causing the cooling water to flow out from the upper tube nest In the type of condenser,
The width of the first steam channel in the upper tube nest portion decreases downward, and the width of the first steam channel in the upper end portion of the lower tube nest is the first width in the lower end portion of the upper tube nest. The width of the first steam channel that is equal to or greater than the width of one steam channel and formed on the outer periphery of the inner wall and the upper and lower tube nests is lower than the upper end of the lower tube nest. A condenser configured to be minimized between an upper end and a lower end of a side tube nest.
請求項1又は2において、前記上側管巣はその上面から下方に延びた複数の第2蒸気流路を備え、該第2蒸気流路の幅は前記上側管巣を構成する冷却管の間隔よりも大きくなるように構成されていることを特徴とする復水器。  3. The upper nest according to claim 1 or 2, wherein the upper nest includes a plurality of second steam passages extending downward from an upper surface thereof, and the width of the second steam channel is determined by an interval between cooling pipes constituting the upper nest. Condenser characterized by being configured to be larger. 請求項1又は2において、前記下側管巣はその側面から横方向に延びた複数の第2蒸気流路を備え、該第2蒸気流路の幅は前記下側管巣を構成する冷却管の間隔よりも大きくなるように構成されていることを特徴とする復水器。  3. The lower pipe nest according to claim 1 or 2, wherein the lower nest includes a plurality of second steam passages extending laterally from the side surface, and the width of the second steam passage is a cooling pipe constituting the lower nest. It is comprised so that it may become larger than the space | interval of, The condenser characterized by the above-mentioned. 請求項3又は4において、前記第1蒸気流路の幅は、前記第2蒸気流路の幅よりも大きくなるように構成されていることを特徴とする復水器。  5. The condenser according to claim 3, wherein a width of the first steam channel is configured to be larger than a width of the second steam channel. 請求項1乃至5の何れかにおいて、前記蒸気に含まれる不凝縮ガスを抽出するための抽出管が、前記上側管巣と前記下側管巣の間の空間に配置されていることを特徴とする復水器。  6. The method according to claim 1, wherein an extraction pipe for extracting non-condensable gas contained in the vapor is disposed in a space between the upper tube nest and the lower tube nest. Condenser. 請求項6において、前記下側管巣の横断面での包絡線の面積に対する該下側管巣内の冷却管の総断面積の比である冷却管占有率が、前記下側管巣の前記冷却管の間隔を前記上側管巣の前記冷却管の間隔よりも大きくすることにより、または前記下側管巣の前記第2蒸気流路の幅と長さを調節することにより、または前記上側管巣の前記第2蒸気流路の数を増やすことにより前記上側管巣の前記冷却管占有率よりも小さくなるように構成されていることを特徴とする復水器。  7. The cooling pipe occupancy ratio, which is the ratio of the total cross-sectional area of the cooling pipe in the lower tube nest to the area of the envelope in the cross section of the lower tube nest, is the lower tube nest. By making the interval between the cooling tubes larger than the interval between the cooling tubes in the upper tube nest, or by adjusting the width and length of the second steam channel in the lower tube nest, or the upper tube A condenser configured to be smaller than the cooling pipe occupation ratio of the upper pipe nest by increasing the number of the second steam flow paths of the nest. 請求項6において、前記抽出管で抽出された未凝縮蒸気を凝縮するための蒸気冷却部が、前記下側管巣を構成する冷却管の一部で構成されていることを特徴とする復水器。  The condensate according to claim 6, wherein a steam cooling part for condensing uncondensed steam extracted by the extraction pipe is constituted by a part of a cooling pipe constituting the lower tube nest. vessel. 請求項8において、前記蒸気冷却部が、前記下側管巣のうち前記冷却水の流入側に配置されていることを特徴とする復水器。  9. The condenser according to claim 8, wherein the steam cooling section is arranged on the cooling water inflow side in the lower tube nest. 請求項8又は9において、前記蒸気冷却部から前記不凝縮ガスを排出するための排気管が、前記上側管巣と前記下側管巣の間の空間に配置されていることを特徴とする復水器。  10. The recovery unit according to claim 8, wherein an exhaust pipe for discharging the non-condensable gas from the steam cooling section is disposed in a space between the upper tube nest and the lower tube nest. Water container. 請求項10において、前記蒸気冷却部で凝縮された凝縮水を前記下側管巣の外側に導く排水管が、前記排気管とは別に設置されていることを特徴とする復水器。  11. The condenser according to claim 10, wherein a drain pipe that guides the condensed water condensed in the steam cooling section to the outside of the lower tube nest is provided separately from the exhaust pipe. 水平方向に管軸を有し、互いに平行に配列された複数の冷却管と、密集して配置された前記複数の冷却管によって形成された第1管巣と、密集して配置された前記複数の冷却管によって形成され、前記第1管巣の上側に所定の空間を隔てて配置された第2管巣と、上部に蒸気の流入口を有し、前記第1管巣及び第2管巣を覆う容器と、前記空間に配置され、前記蒸気に含まれる不凝縮ガスを抽出するための抽出管と、前記第1管巣の冷却管から流出した冷却水を前記第2管巣の冷却管に供給する折返し手段とを備えた復水器において、
前記第2管巣の管軸に垂直な横断面での横幅はその下端で最大となり、前記第1管巣の前記横断面での上端の横幅は、前記第2管巣の下端の横幅以下であり、前記第1管巣は、その上端以外に、前記第2管巣の下端の横幅よりも大きな前記横幅を有するように構成されていることを特徴とする復水器。
A plurality of cooling tubes having a tube axis in the horizontal direction and arranged in parallel to each other, a first tube nest formed by the plurality of cooling tubes arranged densely, and the plurality arranged densely A second tube nest disposed above the first tube nest with a predetermined space therebetween, and a steam inlet at the top, the first tube nest and the second tube nest A container covering the container, an extraction pipe for extracting the non-condensable gas contained in the vapor, and cooling water flowing out from the cooling pipe of the first nest In a condenser having a return means for supplying to
The width of the second tube nest in the cross section perpendicular to the tube axis is maximum at its lower end, and the width of the upper end of the first tube nest in the cross section is less than the width of the lower end of the second tube nest. And the first tube nest is configured to have a width larger than the width of the lower end of the second tube nest in addition to the upper end thereof.
請求項12において、前記第1管巣が、前記横断面においてその両側面から水平方向の内側に延びる複数の蒸気流路を有すると共に、前記第2管巣が、前記横断面においてその上面から鉛直方向の下側に延びる複数の蒸気流路を有し、前記水平方向及び前記鉛直方向に延びる蒸気流路の幅が、前記第1管巣及び前記第2管巣を形成する冷却管の間隔よりも大きくなるように構成されていることを特徴とする復水器。  13. The first tube nest according to claim 12, wherein the first tube nest has a plurality of steam passages extending inward in the horizontal direction from both side surfaces in the transverse section, and the second tube nest is perpendicular to the upper surface in the transverse cross section. A plurality of steam passages extending downward in the direction, and a width of the steam passage extending in the horizontal direction and the vertical direction is greater than an interval between cooling pipes forming the first tube nest and the second tube nest Condenser characterized by being configured to be larger. 請求項13において、前記横断面において前記容器の内壁と前記第1管巣及び前記第2管巣の外周側面との間に形成される蒸気流路の幅が、前記水平方向及び前記鉛直方向に延びる蒸気流路の幅よりも大きくなるように構成されていることを特徴とする復水器。  In Claim 13, the width of the steam channel formed between the inner wall of the container and the outer peripheral side surfaces of the first tube nest and the second tube nest in the transverse section is in the horizontal direction and the vertical direction. A condenser configured to be larger than the width of the extending steam flow path.
JP02579999A 1999-02-03 1999-02-03 Condenser Expired - Fee Related JP3879302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02579999A JP3879302B2 (en) 1999-02-03 1999-02-03 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02579999A JP3879302B2 (en) 1999-02-03 1999-02-03 Condenser

Publications (2)

Publication Number Publication Date
JP2000227286A JP2000227286A (en) 2000-08-15
JP3879302B2 true JP3879302B2 (en) 2007-02-14

Family

ID=12175909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02579999A Expired - Fee Related JP3879302B2 (en) 1999-02-03 1999-02-03 Condenser

Country Status (1)

Country Link
JP (1) JP3879302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949540A (en) * 2014-03-26 2015-09-30 上海福宜真空设备有限公司 Gas condensing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607664B2 (en) * 2004-05-28 2011-01-05 株式会社東芝 Condenser
JP2007113808A (en) * 2005-10-19 2007-05-10 Hitachi Ltd Condenser
CN101031767B (en) * 2006-03-27 2012-01-25 布哈拉特强电有限公司 Steam condenser with two channels
CN100498191C (en) * 2006-12-29 2009-06-10 东方电气集团东方汽轮机有限公司 Emulated steam floating flow path device of steam condenser of power station
JP6116113B2 (en) * 2011-04-07 2017-04-19 株式会社豊田中央研究所 Condenser and condensing system provided with the same
JP2013076489A (en) * 2011-09-29 2013-04-25 Toshiba Corp Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949540A (en) * 2014-03-26 2015-09-30 上海福宜真空设备有限公司 Gas condensing device

Also Published As

Publication number Publication date
JP2000227286A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP5136050B2 (en) Heat exchanger
US4168742A (en) Tube bundle
KR100194853B1 (en) Steam condensation module with integrated stacked ventilation condenser
JP4376276B2 (en) Heat exchange coil
EP3184944B1 (en) Multistage liquid-reservoir-type condensation evaporator
JP3879302B2 (en) Condenser
KR20150030229A (en) Heat exchanger
CN102239380B (en) Water separator and system
EP1067347B1 (en) Downflow liquid film type condensation evaporator
WO2007110873A1 (en) Steam condenser with two-pass tube nest layout
KR101447458B1 (en) Reflux condenser
JP3122578B2 (en) Heat exchanger
JP3013344B2 (en) Tube bundle for steam condenser
CN107949761A (en) Heat exchanger with stacking plate
JPH0979769A (en) Heat exchanger with brazing plate and treating method of fluid of two phase in heat exchanger thereof
JP3944227B1 (en) Moisture separator heater
US7481264B2 (en) Steam condenser
JP2010107055A (en) Heat exchanger
JP2002081797A (en) Condenser
US20010025703A1 (en) Condenser
JP4456777B2 (en) Heat exchanger
CN218545333U (en) Condenser
JPH0730995B2 (en) Plate fin type condenser
JP3758605B2 (en) Condenser
WO2024017504A1 (en) A heat exchanger with a vapor-liquid distributor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees