JPH0730995B2 - Plate fin type condenser - Google Patents

Plate fin type condenser

Info

Publication number
JPH0730995B2
JPH0730995B2 JP1666087A JP1666087A JPH0730995B2 JP H0730995 B2 JPH0730995 B2 JP H0730995B2 JP 1666087 A JP1666087 A JP 1666087A JP 1666087 A JP1666087 A JP 1666087A JP H0730995 B2 JPH0730995 B2 JP H0730995B2
Authority
JP
Japan
Prior art keywords
liquid
flow
heat transfer
condensed
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1666087A
Other languages
Japanese (ja)
Other versions
JPS63187085A (en
Inventor
幾雄 藤田
吉豊 大久保
章 三原
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP1666087A priority Critical patent/JPH0730995B2/en
Publication of JPS63187085A publication Critical patent/JPS63187085A/en
Publication of JPH0730995B2 publication Critical patent/JPH0730995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、上部から気体(凝縮されるガス)を導入して
凝縮させ、凝縮液を下部に導出する凝縮室を備えたプレ
ートフィン式凝縮器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a plate fin type condensation equipped with a condensing chamber for introducing gas (gas to be condensed) from the upper part to condense it and discharging the condensate to the lower part. Regarding vessels.

〔従来の技術〕[Conventional technology]

従来、空気液化分離装置等に用いられるプレートフィン
式凝縮器は、特開昭56−56592号公報に示されるよう
に、多数の垂直方向平行な仕切板により仕切られて蒸発
室と凝縮室が交互に積層されており、各室内には垂直方
向に伝熱フィンが配設され流路を形成している。
BACKGROUND ART Conventionally, a plate fin type condenser used in an air liquefaction separation device or the like has an evaporation chamber and a condensation chamber which are partitioned by a large number of vertical parallel partition plates as shown in JP-A-56-56592. The heat transfer fins are vertically arranged in each chamber to form a flow path.

前記蒸発室には蒸発する液体酸素等が、また凝縮室には
凝縮するガスである窒素ガス等がそれぞれ導入され、窒
素ガス等のガスは凝縮して液体窒素等の凝縮液となり凝
縮器の下部から導出される。
Liquid oxygen or the like to be evaporated is introduced into the evaporation chamber, and nitrogen gas or the like which is a gas to be condensed is introduced into the condensation chamber, and the gas such as nitrogen gas is condensed into a condensed liquid such as liquid nitrogen or the like. Derived from.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来のプレートフィン式凝縮器の凝縮室
は、上部からガスを導入して凝縮させ下部に導出する間
に、凝縮した凝縮液が仕切板や伝熱フィン表面の伝熱面
を膜状に覆って伝熱抵抗となり、凝縮側の伝熱性能を低
下させていた。
However, in the condensing chamber of the conventional plate fin type condenser, while the gas is introduced from the upper part, condensed and discharged to the lower part, the condensed condensate forms a film on the heat transfer surface of the partition plate or the heat transfer fin surface. It covered and became heat transfer resistance, reducing the heat transfer performance on the condensation side.

特に大型の空気液化分離装置では、凝縮器の高さを高く
した凝縮器が種々考えられているが、この場合縦方向の
流路が長くなるため、凝縮器の下部では液膜が厚くなり
この流下液膜が凝縮伝熱上の伝熱抵抗となり凝縮器の伝
熱性能の低下度が大きくなる。
In particular, for large-sized air liquefaction separation devices, various condensers in which the height of the condenser is increased are considered, but in this case, since the flow path in the vertical direction becomes long, the liquid film becomes thicker in the lower part of the condenser. The falling liquid film becomes a heat transfer resistance on the heat transfer of condensation, and the degree of deterioration of the heat transfer performance of the condenser increases.

そこで前記特開昭56−56592号公報に示されるもので
は、凝縮室を上下方向に分割して凝縮室の流路長を短く
し、液膜を薄くしているが、凝縮器の高さを高くして三
段以上に分割した場合には気液の導入や導出のための配
管等が複雑になり、また上下の室を気密に仕切る等の手
間が掛かりその製作も面倒になる。
Therefore, in the one disclosed in Japanese Patent Laid-Open No. 56-56592, the condensing chamber is divided in the vertical direction to shorten the flow path length of the condensing chamber and thin the liquid film. If the height is increased and divided into three or more stages, the piping for introducing and discharging gas and liquid becomes complicated, and it takes time and labor to partition the upper and lower chambers in an airtight manner, which makes its manufacturing troublesome.

そこで本発明は、伝熱面に生じる液膜を薄くして熱交換
効率を向上させるとともに製作の容易なプレートフィン
式凝縮器を提供することを目的とする。
Therefore, it is an object of the present invention to provide a plate fin type condenser which is thin and easy to manufacture while improving the heat exchange efficiency by thinning the liquid film generated on the heat transfer surface.

〔問題点を解決するための手段〕[Means for solving problems]

上記した目的を達成するために本発明は、プレートフィ
ン式凝縮器において、凝縮室内に凝縮液を集合させる液
集合路を設けるとともに、該液集合路により集合された
凝縮液を流下させる液流下路を設けたことを特徴として
いる。
In order to achieve the above object, the present invention provides a plate fin type condenser in which a liquid collecting passage for collecting the condensed liquid is provided in the condensing chamber, and a liquid flow passage for flowing down the condensed liquid collected by the liquid collecting passage. It is characterized by the provision of.

そして上記構成のプレートフィン式凝縮器においては、
液集合路が液流下路に向かって下り勾配を備えた有孔波
形フィンであることを特徴とするもの、液集合路が水力
方向に配置された伝熱フィンの一部又は全部を液流下路
に向かって下り高配を設けたものであることを特徴とす
るもの、液流下路が垂直方向に配置された伝熱フィンの
一部であることを特徴とするもの、液流下路がフィンの
ピッチの広い伝熱フィンを垂直方向に配置したものであ
ることを特徴とするもの、液流下路が垂直方向に配置さ
れた伝熱フィンの両側に形成された空間部であることを
特徴とするもの、液流下路が垂直方向に配置された伝熱
フィン間に形成された空間部であることを特徴とするも
の、および液流下路が凝縮器の外部に配置されているこ
とを特徴とするものをそれぞれ含むものである。
And in the plate fin type condenser having the above configuration,
The liquid collecting passage is a perforated corrugated fin having a downward slope toward the liquid flowing passage, and the liquid collecting passage is provided with a part or all of the heat transfer fins arranged in the hydraulic direction. Characterized by the provision of a high-ranking downward flow toward the bottom, the liquid flow down passage being part of a vertically arranged heat transfer fin, the liquid flow down passage being the pitch of the fins. Characterized by arranging heat transfer fins having a large width in the vertical direction, and characterized in that the liquid flow down passage is a space formed on both sides of the heat transfer fins arranged in the vertical direction. , Characterized in that the liquid flow down passage is a space formed between the heat transfer fins arranged in the vertical direction, and characterized in that the liquid flow down passage is arranged outside the condenser Are included respectively.

〔作 用〕[Work]

従って、凝縮室内において凝縮液を流路の伝熱面部分か
ら適宜排出して伝熱面の液膜を薄くすることによって流
下液膜による伝熱抵抗を減少させ、熱交換効率を向上さ
せることにより凝縮伝熱性能が向上する。また高さを高
くした高性能の凝縮器の製作が可能となる。
Therefore, by appropriately discharging the condensate from the heat transfer surface portion of the flow path in the condensing chamber to thin the liquid film on the heat transfer surface, the heat transfer resistance due to the falling liquid film is reduced and the heat exchange efficiency is improved. Condensation heat transfer performance is improved. Moreover, it becomes possible to manufacture a high-performance condenser having a high height.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。尚、
以下の説明中、符号a,b,c,dは、上段より下段に向かっ
て、各段ごとに付した符号を示し、第2実施例以下の説
明において重複する部分は図面においてのみ表示し、そ
の説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. still,
In the following description, the reference symbols a, b, c, d indicate the reference numbers assigned to each stage from the upper stage toward the lower stage, and the duplicated portions in the following description of the second embodiment are shown only in the drawings, The description is omitted.

まず第1図は本発明の第1実施例を示すもので、プレー
トフィン式凝縮器1の凝縮室2は、上部及び両側のサイ
ドバー3,4と仕切板(図示せず)により縦長箱状に形成
され、上部には導入ノズル5を備えた入口ヘッダー6
が、また下部には不凝縮ガスRの導出管7と導出ノズル
8を備えた出口ヘッダー9が設けられている。
First, FIG. 1 shows the first embodiment of the present invention. The condensing chamber 2 of the plate fin type condenser 1 has a vertically long box shape by upper and side bars 3 and 4 and partition plates (not shown). The inlet header 6 which is formed in
However, an outlet header 9 provided with a non-condensable gas R outlet pipe 7 and an outlet nozzle 8 is provided in the lower portion.

凝縮室2には、上部に入口ヘッダー6に連通するガス分
配板10が設けられ、その下方に流路11、液集合路12及び
液流下路13が設けられている。
A gas distribution plate 10 communicating with the inlet header 6 is provided in the upper part of the condensing chamber 2, and a flow path 11, a liquid collecting path 12 and a liquid flow path 13 are provided below the gas distribution plate 10.

流路11は波形伝熱フィンの折曲線を垂直に配置してなる
もので、上下の液集合路12a,12bを挟んで3段に設けら
れており、中段の流路11bと下段の流路11cの両側のサイ
ドバー4,4の近傍をそれぞれ液流下路13a,13bとしてい
る。
The flow path 11 is formed by vertically arranging the bent curves of the corrugated heat transfer fins, and is provided in three stages with the upper and lower liquid collecting paths 12a and 12b interposed therebetween, and the middle flow path 11b and the lower flow path are provided. The vicinity of the side bars 4, 4 on both sides of 11c are defined as liquid flow down passages 13a, 13b, respectively.

前記液集合路12は、凝縮室2の中央部から両側のサイド
バー4,4に向け、下り勾配を設けて配置された有孔波形
伝熱フィン(パーフォレートフィン)からなるもので、
該フィンの通孔は、気体を通過させ、液体を僅かにしか
通過させない程度の小径形状とされている。
The liquid collecting passage 12 is composed of perforated corrugated heat transfer fins (perforate fins) arranged with a downward slope from the central portion of the condensation chamber 2 toward the side bars 4, 4 on both sides.
The through hole of the fin has a small-diameter shape that allows gas to pass therethrough and allows liquid to pass only slightly.

入口ヘッダー6から凝縮室2に導入された凝縮される窒
素ガス等のガスGは、ガス分配板10により一段目の流路
11aに均一に分配され、隣接する蒸発室の液化酸素等の
冷媒と仕切板および伝熱フィンを介して熱交換を行い液
化酸素を蒸発させると同時に自身は一部が凝縮し凝縮液
Lとなる。
The condensed gas G such as nitrogen gas introduced from the inlet header 6 into the condensing chamber 2 is passed through the gas distribution plate 10 to the first stage flow path.
11a are evenly distributed, and heat is exchanged with a refrigerant such as liquefied oxygen in an adjacent evaporation chamber through a partition plate and heat transfer fins to evaporate the liquefied oxygen and at the same time, a part of the condensed itself becomes a condensed liquid L. .

凝縮液Lは、表面張力により液集合路12aの通孔を通過
せずに勾配により流下して集合され、二段目の流路11b
の両側の液流下路13a,13aに流下する。
The condensate L does not pass through the through holes of the liquid collecting passage 12a due to the surface tension but flows down and is collected by a gradient, and the second-stage flow passage 11b.
To the liquid flow-down paths 13a, 13a on both sides of.

一段目の流路11aで凝縮しなかったガスGは、液集合路1
2aの通孔を通過して二段目の流路11bに流下し、再び隣
接する蒸発室の冷媒と熱交換を行い、一部が凝縮して凝
縮液Lとなり、下段の液集合路12bにて集合され、液流
下路13b,13bに流下する。
The gas G that has not condensed in the first-stage flow passage 11a is the liquid collecting passage 1
After passing through the through hole of 2a, it flows down into the flow passage 11b of the second stage, heat exchanges with the refrigerant of the adjacent evaporation chamber again, and a part of it condenses into the condensate L, and then into the liquid collecting passage 12b of the lower stage. Are gathered together and flow down to the liquid flow down paths 13b and 13b.

三段目の流路11cで凝縮室2に導入されたガスGのほと
んど全量が凝縮し、上段で凝縮した凝縮液Lと共に出口
ヘッダー9に流下してノズル8より導出される。
Almost all of the gas G introduced into the condensing chamber 2 is condensed in the flow passage 11c in the third stage, flows down to the outlet header 9 together with the condensed liquid L condensed in the upper stage, and is discharged from the nozzle 8.

また凝縮室2内で凝縮しない希ガス等の不凝縮ガスR
は、出口ヘッダー9の導出管7から排出される。
Also, a non-condensable gas R such as a rare gas that does not condense in the condensing chamber 2
Is discharged from the outlet pipe 7 of the outlet header 9.

このように、流路11で凝縮した凝縮液Lは、液集合路12
によりサイドバー4近傍に設けられた液流下路13に集合
されて流下するため、流路11の伝熱面の液膜が厚くなる
のを防止でき、ガスGの凝縮が効率よく行われる。
In this way, the condensed liquid L condensed in the flow path 11 is the liquid collecting path 12
As a result, the liquid flows are collected and flow down in the liquid flow-down passage 13 provided near the side bar 4, so that the liquid film on the heat transfer surface of the flow path 11 can be prevented from becoming thick, and the gas G can be condensed efficiently.

また凝縮液Lの流下を容易にするため、液流下路13とな
る部分の波形伝熱フィンのピッチを広くしてもよい。ま
た本実施例では液集合路12a,12bを介して流路11を三段
に構成したがこれは三段に限らず四段以上の複数段でも
良いことは勿論である。
Further, in order to facilitate the flow-down of the condensate L, the pitch of the corrugated heat transfer fins in the part which becomes the liquid flow-down passage 13 may be widened. Further, in the present embodiment, the flow passage 11 is configured in three stages via the liquid collecting passages 12a and 12b, but it is needless to say that the number of stages is not limited to three and may be four or more.

第2図は本発明の第2実施例を示すもので、ガスの流路
21が四段に、また液集合路22が三段に交互に配置されて
おり、凝縮液Lの量がガスGに比べて多くなる下段ほど
流路長が短くされている。
FIG. 2 shows a second embodiment of the present invention, in which the gas flow path is
21 are arranged alternately in four stages, and liquid collecting channels 22 are arranged alternately in three stages, and the flow passage length is shortened in the lower stage where the amount of the condensed liquid L is larger than that in the gas G.

また二段目以下の各流路21b,21c,21d及び各液集合路22
a,22b,22cと両サイドバー4,4との間には伝熱板を配置せ
ずに空間部が形成されて液流下路23,23とされ、凝縮液
Lの流下を容易としている。
In addition, each of the flow passages 21b, 21c, 21d and the liquid collecting passages 22 of the second stage and below.
A space is formed between a, 22b, 22c and both side bars 4, 4 without forming a heat transfer plate to form liquid flow-down paths 23, 23, which facilitates the flow-down of the condensed liquid L.

液流下路23を流下した凝縮液Lと最下段の流路21dで凝
縮した凝縮液Lは、下部サイドバー24上の液集合路25に
より集合して、下部両側に配置された出口ヘッダー26,2
6に設けられた液導出ノズル8から導出される。
The condensate L flowing down the liquid flow path 23 and the condensate L condensed in the lowermost flow path 21d are collected by the liquid collecting path 25 on the lower sidebar 24, and the outlet headers 26 arranged on both sides of the lower part, 2
It is led out from a liquid lead-out nozzle 8 provided in 6.

不凝縮ガスRは出口ヘッダー26の導出管7と液流下路23
の上部に設けられたヘッダー27から排出される。
The non-condensable gas R flows through the outlet pipe 7 of the outlet header 26 and the liquid flow path 23.
Is discharged from the header 27 provided on the upper part of the.

第3図は本発明の第3実施例を示すもので、凝縮室2の
中央部に液流下路を設けた例である。即ち二段目及び三
段目の流路31b,31cの中央部の波形伝熱フィンのピッチ
を広くし、また四段目の流路31dの中央部には波形伝熱
フィンを配置せずに、下段になるにつれて広くなる空間
部を形成し、両側のサイドバー4,4側から中央部に向け
て下り勾配を設けられた液集合路32により集合される凝
縮液Lの液流下路33としている。
FIG. 3 shows a third embodiment of the present invention, which is an example in which a liquid flow down passage is provided in the central portion of the condensation chamber 2. That is, the pitch of the corrugated heat transfer fins in the central portions of the second and third flow passages 31b, 31c is widened, and the corrugated heat transfer fins are not arranged in the central portion of the fourth flow passage 31d. As a liquid flow down path 33 for the condensate L collected by a liquid collecting path 32 that forms a space portion that widens toward the lower stage and has a downward slope from the side bars 4, 4 on both sides toward the central portion. There is.

凝縮液Lは、下部の液集合部34により中央部に集合さ
れ、下部のサイドバー35,35の間に設けられた出口ヘッ
ダー36から導出される。
The condensate L is collected in the central portion by the lower liquid collecting portion 34 and is led out from the outlet header 36 provided between the lower side bars 35, 35.

また不凝縮ガスRは中段の液集合路32bの両側に設けら
れたヘッダー37,37から導出される。
Further, the non-condensable gas R is led out from the headers 37, 37 provided on both sides of the liquid collecting passage 32b in the middle stage.

第2図及び第3図に示すように、液流下路23,33を空間
状とすることにより凝縮液Lの流下を促進し、流路21,3
1での凝縮液Lの滞留をさらに少なく出来る。
As shown in FIG. 2 and FIG. 3, by making the liquid flow-down paths 23, 33 spatial, the flow-down of the condensate L is promoted and the flow paths 21, 3
The retention of the condensate L in 1 can be further reduced.

また液流下路33を下方ほど広く形成したことにより、流
路31の凝縮液Lを凝縮室2から速やかに導出できるの
で、流路31の伝熱面積を有効に活用できる。
Further, since the liquid flow-down passage 33 is formed wider toward the lower side, the condensate L in the flow passage 31 can be promptly drawn out from the condensation chamber 2, so that the heat transfer area of the flow passage 31 can be effectively utilized.

第4図は本発明の第4実施例を示すもので、有孔波形伝
熱フィンを用いて流路41とし、流路41自体に両側のサイ
ドバー4,4に向かう下り勾配を設けて液集合路を兼用さ
せ、流路41とサイドバー4,4の間の空間部を液流下路42
としている。
FIG. 4 shows a fourth embodiment of the present invention, in which a corrugated heat transfer fin is used as the flow path 41, and the flow path 41 itself is provided with a downward gradient toward the side bars 4, 4 on both sides. The combined flow path is also used, and the space between the flow path 41 and the side bars 4, 4 is used as the liquid flow down path 42.
I am trying.

凝縮液Lの多くなる下部の流路41dは、勾配を上部の流
路41aと変えているが、上下とも同じ勾配としてもよ
く、一部分のみに勾配を設けてもよい。41a,…41dの長
さおよび勾配はガスによる圧力損失と生成した液による
伝熱抵抗との関係による最良のものを定める。また製作
上の便宜を考慮して決める。
The lower flow path 41d in which the condensed liquid L is large has a different gradient from the upper flow path 41a, but the upper and lower flow paths 41d may have the same gradient, or only a part thereof may have a gradient. The lengths and gradients of 41a, ... 41d determine the best one due to the relationship between the pressure loss due to the gas and the heat transfer resistance due to the generated liquid. In addition, it is decided considering the convenience of production.

入口ヘッダー6から分配板10を通って流路41aに導入さ
れたガスGは有孔波形伝熱フィンの通孔を通過して順次
下方の流路41b,41c,41dに流入しつつ、その一部が凝縮
して凝縮液Lとなる。
The gas G introduced from the inlet header 6 into the flow path 41a through the distribution plate 10 passes through the through holes of the corrugated heat transfer fins with holes and sequentially flows into the lower flow paths 41b, 41c and 41d. The part condenses into a condensate L.

凝縮液Lは、各流路41ごとにその一部が液流下路42に流
下して流路41上から排出されるので、流路41の伝熱面上
に次第に凝縮液Lが溜まり液膜が増すのを防止できる。
A part of the condensate L flows down into the liquid flow-down passage 42 for each flow passage 41 and is discharged from above the flow passage 41. Therefore, the condensate L gradually accumulates on the heat transfer surface of the flow passage 41 and a liquid film. Can be prevented from increasing.

液流下路42を流下した凝縮液Lおよび液集合路43により
集合された凝縮液Lは、前記第2実施例と同様に、下部
両側に配置された出口ヘッダー44から導出され、不凝縮
ガスRは出口ヘッダー44の導出管7と、液流下路42の上
部に設けられたヘッダー45から導出される。
The condensed liquid L flowing down the liquid flow-down passage 42 and the condensed liquid L collected by the liquid collecting passage 43 are led out from the outlet headers 44 arranged on both sides of the lower portion, as in the second embodiment, and the non-condensed gas R is discharged. Is led out from the outlet pipe 7 of the outlet header 44 and the header 45 provided above the liquid flow down passage 42.

第5図は本発明の第5実施例を示すもので、流路51の間
に設けられた液集合路52には、両側のサイドバー4に向
かう下り勾配を有するスラントバー53が設けられてお
り、凝縮液Lと共にガスGを両側に設けられたヘッダー
54に導出している。また、スライドバー53の下方には、
ガスGを流路51に戻すための分配板57が設けられてい
る。
FIG. 5 shows a fifth embodiment of the present invention, in which the liquid collecting path 52 provided between the flow paths 51 is provided with slant bars 53 having a downward slope toward the side bars 4 on both sides. And a header provided with gas G on both sides together with condensate L
54. Also, below the slide bar 53,
A distribution plate 57 for returning the gas G to the flow path 51 is provided.

一段目の流路51aで凝縮した凝縮液Lは、ヘッダー54aで
ガスGと分離され、液流下路55となる管56内に流下して
下方に導出される。
The condensate L condensed in the first-stage flow path 51a is separated from the gas G by the header 54a, flows down into the pipe 56 serving as the liquid flow-down path 55, and is discharged downward.

またガスGは凝縮室2内に戻され、分配板57aにより下
段の流路51bに均一に導入される。
Further, the gas G is returned into the condensing chamber 2 and uniformly introduced into the lower flow path 51b by the distribution plate 57a.

また各ヘッダー54と液流下路55となる管56には上方に不
凝縮ガスRの導出管7,58,59がそれぞれ設けられてい
る。
Further, the header 54 and the pipe 56 serving as the liquid flow-down passage 55 are provided with the non-condensable gas R outlet pipes 7, 58, 59, respectively, above.

三段目の流路51cで凝縮した凝縮液Lは、液集合路60で
集合し、出口ヘッダー61から導管8を経て液流下路55に
導出される。なお、前記スライトバー53は開口や切欠き
を有し、上下の伝熱フィン間を流体が連通するものであ
っても良い。また液集合フィン52に孔無しフィンを使用
する場合は上記スライトバー53は省略しても良い。
The condensed liquid L condensed in the third-stage flow passage 51c is collected in the liquid collecting passage 60, and is led out from the outlet header 61 to the liquid flow passage 55 through the conduit 8. The slit bar 53 may have an opening or a cutout so that fluid can communicate between the upper and lower heat transfer fins. Further, when the fins without holes are used as the liquid collecting fins 52, the slite bar 53 may be omitted.

このように、液流下路55を凝縮室2と別に設ければ、ガ
スGの流路51となる凝縮室2内の有効伝熱面積を減少さ
せることがない。
Thus, if the liquid flow-down passage 55 is provided separately from the condensing chamber 2, the effective heat transfer area in the condensing chamber 2 which becomes the flow path 51 for the gas G is not reduced.

上記各実施例に示すごとく、伝熱面となる流路長や液集
合路の勾配の角度あるいは流路の段数、さらに液流下路
の構造等を各種組合せて、凝縮させるガスの種類や量な
どの条件により最適な凝縮器を容易に製作でき、また凝
縮されるガスの導入、導出は凝縮器の高さを高くして、
段数が増加した場合でも数少ないノズルの接続で済むた
め、精留塔等への組込みも容易である。
As shown in each of the above examples, various combinations of the length of the flow path to be the heat transfer surface, the angle of the gradient of the liquid collecting path or the number of steps of the flow path, the structure of the liquid flow down path, etc., the kind and amount of the gas to be condensed, etc. The optimum condenser can be easily manufactured according to the conditions of, and the height of the condenser is increased for introducing and discharging the condensed gas,
Even if the number of stages is increased, only a few nozzles need to be connected, so that it can be easily incorporated into a rectification tower or the like.

尚、蒸発室側の冷媒は必ずしも全量蒸発する必要は無
く、凝縮室側のガスを凝縮させるものであればよい。
The entire amount of the refrigerant on the evaporation chamber side does not necessarily have to be evaporated, and any gas that condenses the gas on the condensation chamber side may be used.

〔発明の効果〕〔The invention's effect〕

本発明は以上説明したように、プレートフィン式凝縮器
において、凝縮室内に凝縮液を集合させ、伝熱フィン部
から凝縮液を適宜排出する液集合路を設けるとともに、
該液集合路により集合された凝縮液を流下させる液流下
路を設けたから、凝縮室内の伝熱面に凝縮液化して流下
する凝縮液の液膜が流下するにつれて厚くなり、熱交換
効率が低下するのを防止でき、凝縮器の高さを高くした
場合でも効率の良い凝縮器の製作が可能となる。
As described above, the present invention, in the plate fin type condenser, collects the condensate in the condensing chamber, and provides a liquid collecting path for appropriately discharging the condensate from the heat transfer fins.
Since the liquid flow-down path for allowing the condensed liquid collected by the liquid collecting path to flow down is provided, the liquid film of the condensed liquid that is condensed and liquefied on the heat transfer surface in the condensation chamber becomes thicker as it flows down, and the heat exchange efficiency decreases. Therefore, even if the height of the condenser is increased, an efficient condenser can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例を示すもので、第1図はプレートフ
ィン式凝縮器の第1実施例を示す断面図、第2図は同第
2実施例を示す断面図、第3図は同第3実施例を示す断
面図、第4図は同第4実施例を示す断面図、第5図は同
第5実施例を示す断面図である。 1……プレートフィン式凝縮器、2……凝縮室、3,4…
…サイドバー、6,9……ヘッダー、11……流路、12……
液集合路、13……液流下路、G……凝縮されたガス、L
……凝縮液
FIG. 1 shows an embodiment of the present invention. FIG. 1 is a sectional view showing a first embodiment of a plate fin type condenser, FIG. 2 is a sectional view showing the second embodiment, and FIG. FIG. 4 is a sectional view showing a third embodiment, FIG. 4 is a sectional view showing the fourth embodiment, and FIG. 5 is a sectional view showing the fifth embodiment. 1 ... Plate fin type condenser, 2 ... Condensing chamber, 3, 4 ...
… Sidebar, 6,9 …… Header, 11 …… Flow path, 12 ……
Liquid collecting path, 13 ... Liquid flow down path, G ... Condensed gas, L
...... Condensate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−56592(JP,A) 実開 昭59−148594(JP,U) 特公 昭40−18206(JP,B1) 特公 昭50−1704(JP,B1) 特公 平4−14209(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-56-56592 (JP, A) Actually developed 59-148594 (JP, U) JP-B 40-18206 (JP, B1) JP-B 50- 1704 (JP, B1) Japanese Patent Publication 4-14209 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上下方向に伝熱フィンを配設した凝縮室を
備え、該凝縮室の上部から気体を導入して凝縮させ、凝
縮液を下部に導出するプレートフィン式凝縮器におい
て、前記凝縮室内に前記凝縮液を集合させる液集合路を
設けるとともに、該液集合路により集合された凝縮液を
流下させる液流下路を設けたことを特徴とするプレート
フィン式凝縮器。
1. A plate fin type condenser comprising a condensing chamber having heat transfer fins arranged in the vertical direction, wherein gas is introduced from the upper part of the condensing chamber to condense and the condensed liquid is led out to the lower part. A plate fin type condenser characterized in that a liquid collecting path for collecting the condensed liquid is provided in the chamber, and a liquid flow-down path for flowing down the condensed liquid collected by the liquid collecting path is provided.
JP1666087A 1987-01-27 1987-01-27 Plate fin type condenser Expired - Lifetime JPH0730995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1666087A JPH0730995B2 (en) 1987-01-27 1987-01-27 Plate fin type condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1666087A JPH0730995B2 (en) 1987-01-27 1987-01-27 Plate fin type condenser

Publications (2)

Publication Number Publication Date
JPS63187085A JPS63187085A (en) 1988-08-02
JPH0730995B2 true JPH0730995B2 (en) 1995-04-10

Family

ID=11922491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1666087A Expired - Lifetime JPH0730995B2 (en) 1987-01-27 1987-01-27 Plate fin type condenser

Country Status (1)

Country Link
JP (1) JPH0730995B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774755B1 (en) 1998-02-09 2000-04-28 Air Liquide PERFECTED BRAZED PLATE CONDENSER AND ITS APPLICATION TO DOUBLE AIR DISTILLATION COLUMNS
DE10257916A1 (en) * 2002-12-11 2004-06-24 Linde Ag heat exchangers

Also Published As

Publication number Publication date
JPS63187085A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
US7640970B2 (en) Evaporator using micro-channel tubes
US5875838A (en) Plate heat exchanger
US6085529A (en) Precooler/chiller/reheater heat exchanger for air dryers
US5613554A (en) A-coil heat exchanger
US4606745A (en) Condenser-evaporator for large air separation plant
US20060054310A1 (en) Evaporator using micro-channel tubes
US6128920A (en) Dephlegmator
US4699209A (en) Heat exchanger design for cryogenic reboiler or condenser service
JPH09236393A (en) Steam condensing module provided with unitary laminate ventilation condenser
US20070028649A1 (en) Cryogenic air separation main condenser system with enhanced boiling and condensing surfaces
EP1067347B1 (en) Downflow liquid film type condensation evaporator
TWI392842B (en) Reflux condenser
JPH09206588A (en) Liquid-vapor contactor
US4458750A (en) Inlet header flow distribution
JPH0730995B2 (en) Plate fin type condenser
JP3879302B2 (en) Condenser
JPH0755380A (en) Heat exchanger
JP4497527B2 (en) Refrigeration equipment
JPH0788924B2 (en) Condensing evaporator
JPH03117887A (en) Heat exchanger
JPH0534082A (en) Condensor/evaporator
JP2787593B2 (en) Evaporator
WO2024017504A1 (en) A heat exchanger with a vapor-liquid distributor
JPS6314058A (en) Condenser
CN219037714U (en) Heat exchanger