JP4240693B2 - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP4240693B2
JP4240693B2 JP31440099A JP31440099A JP4240693B2 JP 4240693 B2 JP4240693 B2 JP 4240693B2 JP 31440099 A JP31440099 A JP 31440099A JP 31440099 A JP31440099 A JP 31440099A JP 4240693 B2 JP4240693 B2 JP 4240693B2
Authority
JP
Japan
Prior art keywords
tube group
steam
air
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31440099A
Other languages
Japanese (ja)
Other versions
JP2001133168A (en
Inventor
浩一 井上
照明 坂田
直幹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31440099A priority Critical patent/JP4240693B2/en
Publication of JP2001133168A publication Critical patent/JP2001133168A/en
Application granted granted Critical
Publication of JP4240693B2 publication Critical patent/JP4240693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、復水器に関し、さらに詳しくは、銅系冷却管を備えたものであっても、アンモニアアタックに対する信頼性を向上できるとともに、伝熱性能を向上できる復水器に関する。
【0002】
【従来の技術】
図8は、本願出願人による特願平10−176160にかかる復水器の要部を模式的に示す縦断面図である。図示しない胴本体内には、蒸気タービンから排出された蒸気Sを復水するための冷却管群1が配置されている。この冷却管群1は、たとえば銅系金属からなり、互いに平行にかつ水平方向に延在した多数の冷却管から構成され、水平トレイとしての仕切板2を境にして上部管群1aと下部管群1bとに区画された一体型となっている。そして、この冷却管群1は、上部管群1aの側部外郭形状を、仕切板2から上方になるに従い幅が狭くなるような勾配を有する傾斜形状となすとともに、下部管群1bの側部外郭形状を最下端部の幅が最も狭くなるように形成されている。
【0003】
空気移動通路3は、上部管群1aおよび下部管群1bの断面の中央部に、断面形状が板状になるようにして冷却管の管軸方向に延設されている。空気抽出部4は、空気移動通路3の途中に設けられ、図示しない空気抽出器に連通している。また、この空気抽出部4に至る蒸気流路は、全体を狭隘化してあり、蒸気の凝縮が進むに従ってその流速が低下するのを低減している。なお、上記空気移動通路3は、この空気抽出部4を貫通してさらに下方まで延設されている。
【0004】
このように形成された復水器において、蒸気タービン出口の低圧の蒸気Sは、上部管群1aおよび下部管群1bに流入する。上部管群1aおよび下部管群1bは、上述した勾配形状にて形成されているので、管群1a,1bの外周部での蒸気の流れが均等化されて静圧分布が一定となり、管群1a,1bの外周から一様に同管群1a,1b内への蒸気の流入がなされる。
【0005】
上部管群1aおよび下部管群1b内を流れた蒸気は、冷却管内の冷却水と熱交換することによって凝縮され、凝縮ドレン水となり、密度の大きい凝縮ドレン水は管群の外側下方に流下する。また、蒸気に含まれている空気は、上部管群1aおよび下部管群1bから、空気移動通路3に流入して空気抽出部4にて冷却された後、当該空気移動通路3を管軸方向に流れて大気中に排出される。
【0006】
【発明が解決しようとする課題】
しかしながら、空気抽出部4に至る蒸気流路を全体的に狭隘化し、蒸気の凝縮が進むに従ってその流速が低下するのを低減しているものの十分ではなく、蒸気が凝縮する最終地点である最終凝縮部5近傍では、蒸気量が少なくなるため流速が低下し、局所的に流れの滞留部(空気高濃度部)が発生する。これにより、空気(非凝縮ガス)溜まりが生じて凝縮伝熱に寄与しない冷却管ができ、復水性能が劣化するとともに、アンモニアアタック(腐食)の発生が起こり得るという問題点があった。
【0007】
一方、かかるアンモニアアタックに対処するために、冷却管をチタンなどの耐食性に優れた材料にて形成する手段も採用されているが、コストアップとなるとともに、同一伝熱性能を有する銅系冷却管と比べると、強度が低下してしまうという問題点があった。
【0008】
この発明は、上記に鑑みてなされたものであって、銅系冷却管でのアンモニアアタックに対する信頼性を向上できるとともに、伝熱性能を向上できる復水器を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために、この発明の請求項1にかかる復水器は、水平設置された水平トレイを境にして当該水平トレイの上部に配設された上部管群と、前記水平トレイの下部に配設された下部管群と、前記上部管群および前記下部管群の中央部に貫設された空気移動通路と、前記空気移動通路に連通して設けられ蒸気に含まれる空気を抽出する空気抽出部とを備え、さらに前記上部管群および前記下部管群を経て前記空気抽出部に至る蒸気の流速を保持する流速保持手段を備え、当該両管群中に蒸気の流れの滞留部が発生するのを防止するようにしたものであり、前記流速保持手段は、前記空気抽出部近傍であって蒸気が凝縮する最終地点である最終凝縮部近傍に流速を一定以上に保持するための狭隘流路部を形成する流路調整板を備えるとともに、当該狭隘流路部を経た蒸気を通過させる小孔を有した小孔形成板を備え、かつ前記流路調整板に複数の小孔を設けたものである
【0010】
上部管群および下部管群内を流れた蒸気は、冷却管内の冷却水と熱交換することによって凝縮し、凝縮ドレン水および空気となり、密度の大きい凝縮ドレン水は管群の外側下方に流下し、ホットウェルに落下する。また、上部管群および下部管群内を経た蒸気および空気は、流速保持手段によって流速を保持されながら、空気抽出部に至る。流速保持手段において、上部管群および下部管群内を経た蒸気および空気は、流路調整板によって狭隘流路部に導かれ、一定以上の流速を保持しつつ小孔形成板の小孔を通過する。これにより、気流速度が著しく低下することを回避でき、空気溜まりの発生に対する安全性を確保できる。
【0011】
したがって、最終凝縮部にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生が防止される。これによって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止し、凝縮熱伝達率が低下するのを防止できるとともに、冷却管が銅系金属によって形成されていても、アンモニアアタックが起こりにくくなる。
【0015】
しかも流速保持手段は、流路調整板に複数の小孔を設けたものであるから、流路調整板近傍での流れの滞留部の発生を防止でき、当該部位でのアンモニアアタックの発生を防止できるので、さらにアンモニアアタックに対する信頼性を向上できる。
【0016】
また、水平設置された水平トレイを境にして当該水平トレイの上部に配設された上部管群と、前記水平トレイの下部に配設された下部管群と、前記上部管群および前記下部管群の中央部に貫設された空気移動通路と、前記空気移動通路に連通して設けられ蒸気に含まれる空気を抽出する空気抽出部とを備え、さらに前記上部管群および前記下部管群を経て前記空気抽出部に至る蒸気の流速を保持する流速保持手段を備え、当該両管群中に蒸気の流れの滞留部が発生するのを防止するようにしたものであり、前記流速保持手段は、前記空気抽出部近傍であって蒸気が凝縮する最終地点である最終凝縮部近傍に流速を一定以上に保持するための一の狭隘流路部を形成する複数の流路調整板を備えてもよい。上部管群および下部管群内を経た蒸気および空気は、複数の流路調整板によって狭隘流路部に導かれ、空気抽出部に至る。
【0017】
このとき、狭隘流路部の流路面積を気相流量見合いに設定しておけば、気流速度を一定以上に保持でき、最終凝縮部にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生が防止される。したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止し、凝縮熱伝達率が低下するのを防止できるとともに、冷却管が銅系金属によって形成されていても、アンモニアアタックが起こりにくくなる。
【0018】
なお、流速保持手段は、空気抽出部近傍に多孔板を設けて形成したものであってもよい。上部管群および下部管群内を経た蒸気および空気は多孔板で整流され、流速分布が均一化されて空気抽出部に至る。このとき、流速分布が均一化されるため、著しく低下する部位がなくなり、最終凝縮部にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生が防止される。
【0019】
また、流速保持手段は、空気抽出部近傍に一部の冷却管を配置しないようにして形成したものであってもよい。これにより、部品点数を低減しつつ、流速分布を均一化し、当該部分での著しい流速の低下およびこれに伴う流れの滞留部の発生を防止でき、さらにアンモニアアタックに対する信頼性を向上できる。
【0020】
【発明の実施の形態】
以下、この発明にかかる復水器の実施の形態につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0021】
(実施の形態1)
図1は、この発明の実施の形態1にかかる復水器の空気抽出部付近を示す縦断面図である。なお、以下の説明において、既に説明した部材と同一もしくは相当する部材には、同一の符号を付して、重複説明を省略する。
【0022】
流路調整板6は、狭隘流路部7,8を形成するとともに、後述する小孔9に蒸気を導くために、空気抽出部4の近傍、すなわち、上述した最終凝縮部5近傍に配設されたものである。この流路調整板6の両側端部は、上部管群1aおよび下部管群1bを支持するために配設された図示しない管支持板にそれぞれ固定されている。この流路調整板6は、たとえば、炭素鋼板にて形成されている。
【0023】
また、この流路調整板6と同様に、図示しない管支持板に固定された小孔形成板10は、狭隘流路部7,8を経た蒸気を通過させる小孔9を中央に有している。この小孔9は、いわゆるオリフィスとして形成でき、その配設個数は、設定すべき抽出流量を勘案して決定される。この小孔形成板10は、たとえば、炭素鋼板にて形成されている。
【0024】
このように形成された復水器において、上部管群1aおよび下部管群1b内を流れた蒸気は、冷却管内の冷却水と熱交換することによって凝縮され、凝縮ドレン水および空気となり、密度の大きい凝縮ドレン水は管群の外側下方に流下し、図示しないホットウェルに落下する。
【0025】
また、上部管群1aおよび下部管群1b内を経た蒸気および空気は、流路調整板6によって狭隘流路部7,8に導かれ、小孔形成板10の小孔9を通過する。このとき、狭隘流路部7,8の流路断面積を適切に選ぶことによって著しい低流速部の発生を回避し、最終凝縮部5にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生が防止される。
【0026】
したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止し、凝縮熱伝達率が低下するのを防止できるとともに、上記冷却管が銅系金属によって形成されていても、アンモニアアタックが起こりにくくなる。
【0027】
なお、空気は、上部管群1aおよび下部管群1bから、空気移動通路3に流入し、最終凝縮部5を経て空気抽出部4を管軸方向に流れて大気中に排出される。
【0028】
以上のように、この実施の形態1にかかる復水器によれば、簡易な構造によって、最終凝縮部5にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生を防止できる。したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止でき、凝縮熱伝達率が低下するのを防止できるとともに、上記冷却管が銅系金属によって形成されていても、アンモニアアタックを起こりにくくし、装置の信頼性を向上できる。
【0029】
なお、上記実施の形態1においては、冷却管を銅系金属によって形成するものとして説明したが、これに限定されず、たとえば、銅系金属の冷却管にニッケルメッキを施したものを使用してもよく、これによって、アンモニアアタックに対する信頼性をさらに向上できる。また、流路調整板6も同様に、これらのメッキを施してもよい。その場合、冷却管および流路調整板6の両者は、同一材料にて形成することが好ましい。
【0030】
(実施の形態2)
図2は、この発明の実施の形態2にかかる復水器の流路調整板を示す斜視図、図3は、他の流路調整板を示す斜視図である。この実施の形態2は、図2に示すように、上記実施の形態1で示した流路調整板6に複数の角孔12を設け、あるいは、図3に示すように、上記実施の形態1で示した流路調整板6に複数の丸孔13を設けることによって、流路調整板6近傍での流れの滞留部の発生を防止し、当該部位でのアンモニアアタックの発生を防止するようにしたものである。なお、角孔12および丸孔13の径および個数は、設定すべき流量を勘案して決定される。なお、孔形状が上記形状に限定されないことは言うまでもない。
【0031】
このように形成された復水器において、上部管群1aおよび下部管群1b内を経た蒸気および空気は、流路調整板6によって狭隘流路部7,8に導かれるとともに、一部の蒸気等は、角孔12(あるいは丸孔13)を直接通過し、小孔形成板10の小孔9を通過する。その後の動作は、上記実施の形態1の場合と同様であるので、重複説明を省略する。
【0032】
以上のように、この実施の形態2にかかる復水器によれば、上記実施の形態1と同様の効果を奏するほか、流路調整板6近傍での流れの滞留部の発生を防止でき、当該部位でのアンモニアアタックの発生を防止できるので、さらにアンモニアアタックに対する信頼性を向上できる。
【0033】
(実施の形態3)
図4は、この発明の実施の形態3にかかる復水器の空気抽出部付近を示す縦断面図である。流路調整板14,15は、狭隘流路部16を形成するために、空気抽出部4の近傍、すなわち、上述した最終凝縮部5近傍に配設されたものである。これらの流路調整板14,15の両側端部は、上部管群1aおよび下部管群1bを支持するために配設された図示しない管支持板にそれぞれ固定されている。また、流路調整板15の下端部には、図示しないドレン孔が設けられている。これらの流路調整板14,15は、たとえば、炭素鋼板にて形成されている。
【0034】
このように形成された復水器において、上部管群1aおよび下部管群1b内を経た蒸気および空気は、流路調整板14,15によって狭隘流路部16に導かれ、空気抽出部4に至る。このとき、狭隘流路部16の流路面積を適切に選ぶことによって、流速が著しく低下する部位が発生するのを回避でき、最終凝縮部5にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生が防止される。したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止し、凝縮熱伝達率が低下するのを防止できるとともに、上記冷却管が銅系金属によって形成されていても、アンモニアアタックが起こりにくくなる。
【0035】
以上のように、この実施の形態3にかかる復水器によれば、簡易な構造によって、最終凝縮部5にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生を防止できる。したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止でき、凝縮熱伝達率が低下するのを防止できるとともに、上記冷却管が銅系金属によって形成されていても、アンモニアアタックを起こりにくくし、装置の信頼性を向上できる。
【0036】
(実施の形態4)
図5は、この発明の実施の形態4にかかる復水器の空気抽出部付近を示す縦断面図である。多孔板17は、空気抽出部4の近傍、すなわち、上述した最終凝縮部5近傍に配設されたものである。この多孔板17の両側端部は、上部管群1aおよび下部管群1bを支持するために配設された図示しない管支持板に固定されている。この多孔板17は、たとえば、炭素鋼板にて形成されている。
【0037】
このように形成された復水器において、上部管群1aおよび下部管群1b内を経た蒸気および空気は、多孔板17によって整流され、空気抽出部4に至る。このとき、流速分布が均一化されるので、著しい低流速部の発生を回避でき、最終凝縮部5にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生が防止される。したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止し、凝縮熱伝達率が低下するのを防止できるとともに、上記冷却管が銅系金属によって形成されていても、アンモニアアタックが起こりにくくなる。
【0038】
以上のように、この実施の形態4にかかる復水器によれば、きわめて簡易な構造によって、最終凝縮部5にて従来生じていた著しい流速の低下およびこれに伴う流れの滞留部の発生を防止できる。したがって、蒸気中に含まれる空気(非凝縮ガス)の濃度が高くなるのを防止でき、凝縮熱伝達率が低下するのを防止できるとともに、上記冷却管が銅系金属によって形成されていても、アンモニアアタックを起こりにくくし、装置の信頼性を向上できる。
【0039】
(実施の形態5)
図6は、この発明の実施の形態5にかかる復水器の空気抽出部付近を示す縦断面図である。この実施の形態5にかかる発明は、空気抽出部4の近傍、すなわち、上述した最終凝縮部5近傍に、冷却管の一部を配設しないで冷却管未配置部18を形成することによって、流速分布を均一化し、当該部分での著しい流速の低下およびこれに伴う流れの滞留部の発生を防止するものである。
【0040】
これによって、部品点数を低減しつつ、上記実施の形態4の場合と同様の効果を奏することができる。なお、上記冷却管未配置部18に多孔板を適宜設けることによって、所望の流速分布に調節することも可能である。
【0041】
(実施の形態6)
図7は、この発明の実施の形態6にかかる復水器の空気抽出部付近を示す縦断面図である。上記実施の形態1〜5が、同一ピッチにて配設された冷却管のうち、一部の冷却管を配設せずに、当該部分に流路調整板6等を配設して構成したものであるのに対し、本実施の形態6は、図中の斜線で示した冷却管群の冷却管配設ピッチを適宜変更・調節するとともに、小孔9を有する小孔形成板10を配設することによって、流速分布を均一化し、流れの滞留部の発生を防止したものである。これによって、上記実施の形態4の場合と同様の効果を奏することができる。
【0042】
【発明の効果】
以上説明したように、この発明にかかる復水器(請求項1)によれば、水平設置された水平トレイを境にして当該水平トレイの上部に配設された上部管群と、前記水平トレイの下部に配設された下部管群と、前記上部管群および前記下部管群の中央部に貫設された空気移動通路と、前記空気移動通路に連通して設けられ蒸気に含まれる空気を抽出する空気抽出部とを備え、さらに前記上部管群および前記下部管群を経て前記空気抽出部に至る蒸気の流速を保持する流速保持手段を備え、当該両管群中に蒸気の流れの滞留部が発生するのを防止するようにしたものであり、前記流速保持手段は、空気抽出部近傍であって蒸気が凝縮する最終地点である最終凝縮部近傍に流速を一定以上に保持するための狭隘流路部を形成する流路調整板を備えるとともに、当該狭隘流路部を経た蒸気を通過させる小孔を有した小孔形成板を備えたので、当該両管群中に蒸気の流れの滞留部が発生するのを防止でき、凝縮伝熱に寄与しない冷却管ができるのを防止できるため、凝縮性能を向上できる。また、当該流れの滞留部の発生を防止できるので、銅系冷却管を備えたものであっても、アンモニアアタックに対する信頼性を向上できる。しかも、流路調整板に複数の小孔を設けたので、当該流路調整板近傍での流れの滞留部の発生を防止でき、当該部位でのアンモニアアタックの発生を防止し、さらにアンモニアアタックに対する信頼性を向上できる。
【0045】
また、水平設置された水平トレイを境にして当該水平トレイの上部に配設された上部管群と、前記水平トレイの下部に配設された下部管群と、前記上部管群および前記下部管群の中央部に貫設された空気移動通路と、空気移動通路に連通して設けられ蒸気に含まれる空気を抽出する空気抽出部とを備え、さらに上部管群および下部管群を経て空気抽出部に至る蒸気の流速を保持する流速保持手段を備え、この流速保持手段は、空気抽出部近傍であって蒸気が凝縮する最終地点である最終凝縮部近傍に流速を一定以上に保持するための一の狭隘流路部を形成する複数の流路調整板を備えれば、管群中に蒸気の流れの滞留部が発生するのを防止でき、凝縮伝熱に寄与しない冷却管ができるのを防止できるため、凝縮性能を向上できるとともに、銅系冷却管を備えたものであっても、アンモニアアタックに対する信頼性を向上できる。
【0046】
なお、流速保持手段は、空気抽出部近傍に多孔板を設けて形成すれば、さらに簡易な構造によって、管群中に蒸気の流れの滞留部が発生するのを防止でき、凝縮伝熱に寄与しない冷却管ができるのを防止できる。したがって、凝縮性能を向上できるとともに、銅系冷却管を備えたものであっても、アンモニアアタックに対する信頼性を向上できる。
【0047】
また、流速保持手段は、空気抽出部近傍に一部の冷却管を配置しないようにして形成すれば、容易に流速分布を均一化でき、管群中に蒸気の流れの滞留部が発生するのを防止できるため、銅系冷却管を備えたものであっても、アンモニアアタックに対する信頼性を向上できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1にかかる復水器の空気抽出部付近を示す縦断面図である。
【図2】この発明の実施の形態2にかかる復水器の流路調整板を示す斜視図である。
【図3】他の流路調整板を示す斜視図である。
【図4】この発明の実施の形態3にかかる復水器の空気抽出部付近を示す縦断面図である。
【図5】この発明の実施の形態4にかかる復水器の空気抽出部付近を示す縦断面図である。
【図6】この発明の実施の形態5にかかる復水器の空気抽出部付近を示す縦断面図である。
【図7】この発明の実施の形態6にかかる復水器の空気抽出部付近を示す縦断面図である。
【図8】従来における復水器の要部を模式的に示す縦断面図である。
【符号の説明】
S 蒸気
1 冷却管群
1a 上部管群
1b 下部管群
2 仕切板
3 空気移動通路
4 空気抽出部
5 最終凝縮部
6、14、15 流路調整板
7、8、16 狭隘流路部
9 小孔
10 小孔形成板
12 角孔
13 丸孔
17 多孔板
18 冷却管未配置部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condenser, and more particularly, to a condenser that can improve reliability against ammonia attack and improve heat transfer performance even if it has a copper-based cooling pipe.
[0002]
[Prior art]
FIG. 8 is a longitudinal sectional view schematically showing a main part of a condenser according to Japanese Patent Application No. 10-176160 filed by the present applicant. A cooling pipe group 1 for condensing the steam S discharged from the steam turbine is disposed in a trunk body (not shown). The cooling pipe group 1 is composed of a number of cooling pipes made of, for example, copper-based metal and extending in parallel with each other in the horizontal direction. The upper pipe group 1a and the lower pipe are separated by a partition plate 2 as a horizontal tray. It is an integrated type partitioned into a group 1b. And this cooling pipe group 1 makes the side part outline shape of the upper pipe group 1a into the inclined shape which has a gradient which becomes narrow as it goes upwards from the partition plate 2, and the side part of the lower pipe group 1b. The outer shape is formed so that the width of the lowermost end is the narrowest.
[0003]
The air moving passage 3 extends in the center of the cross section of the upper tube group 1a and the lower tube group 1b in the tube axis direction of the cooling tube so that the cross-sectional shape is a plate shape. The air extraction unit 4 is provided in the middle of the air movement passage 3 and communicates with an air extractor (not shown). Further, the steam flow path leading to the air extraction unit 4 is narrowed as a whole, and the decrease in the flow rate as the steam condenses is reduced. The air movement passage 3 extends through the air extraction unit 4 further downward.
[0004]
In the condenser thus formed, the low-pressure steam S at the outlet of the steam turbine flows into the upper tube group 1a and the lower tube group 1b. Since the upper tube group 1a and the lower tube group 1b are formed in the above-described gradient shape, the flow of steam at the outer periphery of the tube groups 1a and 1b is equalized, the static pressure distribution becomes constant, and the tube group Steam flows into the tube groups 1a and 1b uniformly from the outer periphery of 1a and 1b.
[0005]
The steam that has flowed through the upper tube group 1a and the lower tube group 1b is condensed by exchanging heat with the cooling water in the cooling tube to become condensed drain water, and the condensed drain water having a high density flows down outside the tube group. . Further, the air contained in the steam flows from the upper tube group 1a and the lower tube group 1b into the air moving passage 3 and is cooled by the air extraction unit 4, and then the air moving passage 3 is moved in the tube axis direction. To be discharged into the atmosphere.
[0006]
[Problems to be solved by the invention]
However, although the steam flow path leading to the air extraction unit 4 is narrowed as a whole and the flow rate is reduced as the steam condenses, the final condensing is the final point where the steam condenses. In the vicinity of the part 5, the flow rate is reduced because the amount of steam is reduced, and a flow staying part (high air concentration part) is locally generated. As a result, an air (non-condensable gas) pool is generated, and a cooling pipe that does not contribute to condensation heat transfer is formed, so that the condensate performance is deteriorated and ammonia attack (corrosion) can occur.
[0007]
On the other hand, in order to cope with such ammonia attack, a means for forming the cooling pipe with a material having excellent corrosion resistance such as titanium is also employed, but this increases the cost and has the same heat transfer performance. Compared to the above, there is a problem that the strength is lowered.
[0008]
The present invention has been made in view of the above, and an object of the present invention is to provide a condenser capable of improving the reliability against ammonia attack in a copper-based cooling pipe and improving heat transfer performance.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a condenser according to claim 1 of the present invention includes an upper tube group disposed on an upper portion of the horizontal tray with respect to a horizontally installed horizontal tray, and the horizontal tray. A lower tube group disposed in a lower portion of the upper tube group, an air movement passage penetrating through a central portion of the upper tube group and the lower tube group, and air contained in the steam provided in communication with the air movement passage. And a flow rate holding means for holding the flow rate of the steam that reaches the air extraction unit through the upper tube group and the lower tube group, and the flow of the steam stays in both the tube groups. parts are all SANYO which is adapted to prevent the occurrence, the flow rate holding means, steam a said air extractor vicinity to hold the flow rate or constant at the final condensation section near the final point to condense A flow path adjustment plate that forms a narrow flow path section for Rutotomoni, comprising a small hole forming plate having a small hole for passing the steam through the narrow flow path portion, and is provided with a plurality of small holes in the flow path adjustment plate.
[0010]
The steam that has flowed in the upper and lower tube groups is condensed by exchanging heat with the cooling water in the cooling pipes, and becomes condensed drain water and air. The dense condensed drain water flows down to the outside of the pipe group. Fall into the hot well. The steam and air that have passed through the upper tube group and the lower tube group reach the air extraction unit while the flow rate is maintained by the flow rate holding unit. In the flow rate holding means, the steam and air that have passed through the upper tube group and the lower tube group are guided to the narrow channel part by the channel adjusting plate, and pass through the small hole of the small hole forming plate while maintaining a flow rate above a certain level. To do. Thereby, it can avoid that an airflow speed falls remarkably and can ensure the safety | security with respect to generation | occurrence | production of an air pocket.
[0011]
Therefore, a significant decrease in the flow velocity that has conventionally occurred in the final condensing part and the occurrence of a flow retaining part accompanying this are prevented. As a result, the concentration of air (non-condensable gas) contained in the steam can be prevented from being increased, the condensation heat transfer coefficient can be prevented from being lowered, and the cooling pipe is made of a copper-based metal. Ammonia attack is less likely to occur.
[0015]
Moreover, the flow rate holding means, since is provided with a plurality of small holes in the flow path adjustment plate, it is possible to prevent the occurrence of retention of the flow in the flow path adjustment plate near, the generation of ammonia attack in the region Therefore, the reliability against ammonia attack can be further improved.
[0016]
In addition, an upper tube group disposed at the upper part of the horizontal tray with respect to the horizontally installed horizontal tray, a lower tube group disposed at the lower part of the horizontal tray, the upper tube group, and the lower tube An air moving passage penetrating in a central portion of the group, and an air extracting portion provided in communication with the air moving passage for extracting air contained in the steam, and further comprising the upper tube group and the lower tube group. It is provided with a flow rate holding means for holding the flow rate of the steam passing through to the air extraction part, and prevents the staying part of the steam flow from occurring in both the tube groups, the flow rate holding means , it is provided with a plurality of flow path adjustment plate forming one of the narrow flow path portion of the steam to a said air extractor vicinity to hold the flow rate or constant at the final condensation section near the final point to condense Good. The steam and air that have passed through the upper tube group and the lower tube group are guided to the narrow channel portion by the plurality of channel adjustment plates and reach the air extraction unit.
[0017]
At this time, if the channel area of the narrow channel part is set to match the gas phase flow rate, the air flow rate can be maintained at a certain level or more, and a significant decrease in the flow rate that has conventionally occurred in the final condensing part and the accompanying flow Occurrence of the stagnant portion is prevented. Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the vapor from increasing, prevent the condensation heat transfer coefficient from decreasing, and even if the cooling pipe is made of copper-based metal, ammonia Attacks are less likely to occur.
[0018]
Incidentally, the flow rate holding means may it der those formed by a perforated plate provided in the vicinity of the air extraction unit. The steam and air that have passed through the upper tube group and the lower tube group are rectified by the perforated plate, the flow velocity distribution is made uniform, and the air extraction unit is reached. At this time, since the flow velocity distribution is made uniform, there is no portion where the flow rate is remarkably lowered, and a significant flow velocity drop that has conventionally occurred in the final condensing portion and the accompanying flow retention portion are prevented.
[0019]
Further, the flow rate holding means may it der those formed so as not to place a portion of the cooling tube in the vicinity of the air extraction unit. Thereby, while reducing the number of parts, the flow velocity distribution can be made uniform, the flow velocity at that portion can be significantly reduced, and the occurrence of a flow retention portion can be prevented. Further, the reliability against ammonia attack can be improved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a condenser according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[0021]
(Embodiment 1)
1 is a longitudinal sectional view showing the vicinity of an air extraction portion of a condenser according to Embodiment 1 of the present invention. In the following description, members that are the same as or correspond to those already described are assigned the same reference numerals, and redundant description is omitted.
[0022]
The flow path adjusting plate 6 forms the narrow flow path portions 7 and 8, and is disposed in the vicinity of the air extraction portion 4, that is, in the vicinity of the above-described final condensing portion 5 in order to guide the vapor to the small hole 9 described later. It has been done. Both end portions of the flow path adjusting plate 6 are respectively fixed to tube support plates (not shown) disposed to support the upper tube group 1a and the lower tube group 1b. The flow path adjusting plate 6 is formed of, for example, a carbon steel plate.
[0023]
Similarly to the flow path adjusting plate 6, the small hole forming plate 10 fixed to a tube support plate (not shown) has a small hole 9 at the center for allowing the vapor passing through the narrow flow path portions 7 and 8 to pass therethrough. Yes. The small holes 9 can be formed as so-called orifices, and the number of the small holes 9 is determined in consideration of the extraction flow rate to be set. The small hole forming plate 10 is formed of, for example, a carbon steel plate.
[0024]
In the condenser thus formed, the steam that has flowed in the upper tube group 1a and the lower tube group 1b is condensed by exchanging heat with the cooling water in the cooling tube, and becomes condensed drain water and air. Large condensed drain water flows down outside the tube group and falls into a hot well (not shown).
[0025]
The steam and air that have passed through the upper tube group 1 a and the lower tube group 1 b are guided to the narrow channel portions 7 and 8 by the channel adjusting plate 6 and pass through the small holes 9 of the small hole forming plate 10. At this time, by appropriately selecting the flow path cross-sectional areas of the narrow flow path portions 7 and 8, the occurrence of a significant low flow rate portion is avoided, and a significant decrease in flow rate that has conventionally occurred in the final condensing unit 5 and the flow accompanying this. Occurrence of the stagnant portion is prevented.
[0026]
Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the steam from increasing, prevent the condensation heat transfer coefficient from decreasing, and even if the cooling pipe is formed of a copper-based metal, Ammonia attack is less likely to occur.
[0027]
Air flows from the upper tube group 1a and the lower tube group 1b into the air moving passage 3, flows through the final condensing unit 5 through the air extraction unit 4 in the direction of the tube axis, and is discharged into the atmosphere.
[0028]
As described above, according to the condenser according to the first embodiment, with a simple structure, a significant reduction in the flow velocity that has conventionally occurred in the final condensing unit 5 and the occurrence of a flow retaining part accompanying this are prevented. it can. Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the steam from being increased, prevent the condensation heat transfer rate from being lowered, and even if the cooling pipe is formed of a copper-based metal, Ammonia attack is less likely to occur and the reliability of the device can be improved.
[0029]
In Embodiment 1 described above, the cooling pipe is described as being formed of a copper-based metal. However, the present invention is not limited to this. For example, a copper-based metal cooling pipe with nickel plating is used. As a result, the reliability against ammonia attack can be further improved. Similarly, the flow path adjusting plate 6 may be plated. In that case, it is preferable that both the cooling pipe and the flow path adjusting plate 6 are formed of the same material.
[0030]
(Embodiment 2)
2 is a perspective view showing a flow path adjusting plate of a condenser according to a second embodiment of the present invention, and FIG. 3 is a perspective view showing another flow path adjusting plate. In the second embodiment, as shown in FIG. 2, a plurality of square holes 12 are provided in the flow path adjusting plate 6 shown in the first embodiment, or, as shown in FIG. By providing a plurality of round holes 13 in the flow path adjusting plate 6 shown in FIG. 6, it is possible to prevent the occurrence of a staying part of the flow in the vicinity of the flow path adjusting plate 6 and to prevent the occurrence of ammonia attack at the site. It is what. The diameter and number of the square holes 12 and the round holes 13 are determined in consideration of the flow rate to be set. Needless to say, the hole shape is not limited to the above shape.
[0031]
In the condenser thus formed, the steam and air that have passed through the upper tube group 1a and the lower tube group 1b are guided to the narrow flow channel portions 7 and 8 by the flow channel adjusting plate 6 and a part of the steam. Etc. pass directly through the square holes 12 (or round holes 13) and through the small holes 9 of the small hole forming plate 10. Subsequent operations are the same as those in the first embodiment, and a duplicate description is omitted.
[0032]
As described above, according to the condenser according to the second embodiment, in addition to the same effects as the first embodiment, it is possible to prevent the occurrence of a staying part of the flow in the vicinity of the flow path adjusting plate 6, Since the occurrence of ammonia attack at the part can be prevented, the reliability against ammonia attack can be further improved.
[0033]
(Embodiment 3)
FIG. 4 is a longitudinal sectional view showing the vicinity of the air extraction portion of the condenser according to the third embodiment of the present invention. The flow path adjusting plates 14 and 15 are disposed in the vicinity of the air extraction section 4, that is, in the vicinity of the final condensing section 5 described above, in order to form the narrow flow path section 16. Both end portions of the flow path adjusting plates 14 and 15 are respectively fixed to tube support plates (not shown) disposed to support the upper tube group 1a and the lower tube group 1b. Further, a drain hole (not shown) is provided at the lower end of the flow path adjusting plate 15. These flow path adjusting plates 14 and 15 are formed of, for example, a carbon steel plate.
[0034]
In the condenser thus formed, the steam and air that have passed through the upper tube group 1a and the lower tube group 1b are guided to the narrow flow channel portion 16 by the flow channel adjusting plates 14 and 15, and are sent to the air extraction unit 4. It reaches. At this time, by appropriately selecting the flow passage area of the narrow flow passage portion 16, it is possible to avoid the occurrence of a portion where the flow velocity is remarkably lowered, and the significant reduction in the flow velocity conventionally generated in the final condensing portion 5 and Occurrence of the accompanying flow retention is prevented. Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the steam from increasing, prevent the condensation heat transfer coefficient from decreasing, and even if the cooling pipe is formed of a copper-based metal, Ammonia attack is less likely to occur.
[0035]
As described above, according to the condenser according to the third embodiment, a simple structure prevents a significant decrease in the flow velocity that has conventionally occurred in the final condensing unit 5 and the occurrence of a flow retention part associated therewith. it can. Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the steam from being increased, prevent the condensation heat transfer rate from being lowered, and even if the cooling pipe is formed of a copper-based metal, Ammonia attack is less likely to occur and the reliability of the device can be improved.
[0036]
(Embodiment 4)
FIG. 5 is a longitudinal sectional view showing the vicinity of an air extraction unit of a condenser according to Embodiment 4 of the present invention. The perforated plate 17 is disposed in the vicinity of the air extraction unit 4, that is, in the vicinity of the final condensing unit 5 described above. Both end portions of the perforated plate 17 are fixed to a tube support plate (not shown) arranged to support the upper tube group 1a and the lower tube group 1b. The porous plate 17 is formed of, for example, a carbon steel plate.
[0037]
In the condenser thus formed, the steam and air that have passed through the upper tube group 1 a and the lower tube group 1 b are rectified by the perforated plate 17 and reach the air extraction unit 4. At this time, since the flow velocity distribution is made uniform, the occurrence of a remarkably low flow velocity portion can be avoided, and the significant decrease in the flow velocity that has conventionally occurred in the final condensing portion 5 and the accompanying occurrence of a flow retention portion are prevented. . Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the steam from increasing, prevent the condensation heat transfer coefficient from decreasing, and even if the cooling pipe is formed of a copper-based metal, Ammonia attack is less likely to occur.
[0038]
As described above, according to the condenser according to the fourth embodiment, with a very simple structure, a significant reduction in the flow velocity that has conventionally occurred in the final condensing unit 5 and the generation of a staying part of the flow associated therewith can be achieved. Can be prevented. Therefore, it is possible to prevent the concentration of air (non-condensable gas) contained in the steam from being increased, prevent the condensation heat transfer rate from being lowered, and even if the cooling pipe is formed of a copper-based metal, Ammonia attack is less likely to occur and the reliability of the device can be improved.
[0039]
(Embodiment 5)
FIG. 6 is a longitudinal sectional view showing the vicinity of an air extraction portion of a condenser according to Embodiment 5 of the present invention. In the invention according to the fifth embodiment, the cooling pipe non-arranged portion 18 is formed in the vicinity of the air extraction unit 4, that is, in the vicinity of the final condensing unit 5 described above without arranging a part of the cooling pipe. The flow velocity distribution is made uniform to prevent a significant decrease in the flow velocity at the portion and the occurrence of a flow retention portion.
[0040]
As a result, the same effects as in the case of the fourth embodiment can be achieved while reducing the number of parts. In addition, it is also possible to adjust to a desired flow velocity distribution by appropriately providing a perforated plate in the cooling pipe non-arranged portion 18.
[0041]
(Embodiment 6)
FIG. 7: is a longitudinal cross-sectional view which shows the air extraction part vicinity of the condenser concerning Embodiment 6 of this invention. The first to fifth embodiments are configured by disposing the flow path adjusting plate 6 or the like in the portion without disposing some of the cooling tubes disposed at the same pitch. In contrast to this, in the sixth embodiment, the cooling pipe arrangement pitch of the cooling pipe group indicated by the oblique lines in the figure is appropriately changed and adjusted, and the small hole forming plate 10 having the small holes 9 is arranged. By installing, the flow velocity distribution is made uniform, and the occurrence of a flow retention portion is prevented. As a result, the same effects as those of the fourth embodiment can be obtained.
[0042]
【The invention's effect】
As described above, according to the condenser according to the present invention (Claim 1), the upper tube group disposed at the upper part of the horizontal tray with the horizontally installed horizontal tray as a boundary, and the horizontal tray A lower tube group disposed in a lower portion of the upper tube group, an air movement passage penetrating through a central portion of the upper tube group and the lower tube group, and air contained in the steam provided in communication with the air movement passage. And a flow rate holding means for holding the flow rate of the steam that reaches the air extraction unit through the upper tube group and the lower tube group, and the flow of the steam stays in both the tube groups. The flow rate holding means is for holding the flow rate above a certain level in the vicinity of the final condensing part, which is the final point where the steam condenses near the air extracting part. Provided with a flow path adjustment plate that forms a narrow flow path section Since both provided with small holes formed plate having a small hole for passing the steam through the narrow flow path portion, it can prevent the residence of the flow of steam in the two pipe groups occurs, the condensation heat transfer Condensation performance can be improved because it is possible to prevent the formation of a cooling pipe that does not contribute to heat. Moreover, since the generation | occurrence | production of the stay part of the said flow can be prevented, even if it is provided with the copper-type cooling pipe, the reliability with respect to an ammonia attack can be improved. In addition, since the flow path adjusting plate is provided with a plurality of small holes, it is possible to prevent the occurrence of a stagnation part of the flow in the vicinity of the flow path adjusting plate, to prevent the occurrence of ammonia attack at the site, and further against the ammonia attack. Reliability can be improved.
[0045]
Further, the upper tube group arranged on top of the horizontal tray with horizontal installed and the horizontal tray border, the lower tube group arranged on the bottom of the horizontal tray, the upper tube group and the lower An air moving passage penetrating through the central portion of the tube group, and an air extracting portion that communicates with the air moving passage and extracts air contained in the steam, and further passes through the upper tube group and the lower tube group. A flow rate holding means for holding the flow rate of the steam reaching the extraction unit is provided, and this flow rate holding unit holds the flow rate above a certain level in the vicinity of the final condensing unit, which is the final point where the vapor condenses near the air extracting unit. one lever comprises a plurality of flow path adjustment plate forming a narrow flow path portion, can prevent the residence of the steam flow occurs during tube bundle, can cooling tube that does not contribute to the condensation heat transfer Condensation performance can be improved and copper can be prevented. It is a structure having a cooling tube, thereby improving the reliability of the ammonia attack.
[0046]
If the flow rate holding means is formed by providing a porous plate in the vicinity of the air extraction part, it is possible to prevent the generation of a stagnant part of the steam flow in the tube group with a simpler structure, contributing to condensation heat transfer. It is possible to prevent a cooling pipe from being formed. Therefore, the condensation performance can be improved, and the reliability against ammonia attack can be improved even if a copper cooling pipe is provided.
[0047]
Further, the flow rate holding means, be formed so as not to place a portion of the cooling tube in the vicinity of the air extraction unit, can be easily equalized flow velocity distribution, the residence of the steam flow occurs during tube bank Therefore, the reliability against ammonia attack can be improved even with a copper-based cooling pipe.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the vicinity of an air extraction unit of a condenser according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing a flow path adjusting plate of a condenser according to a second embodiment of the present invention.
FIG. 3 is a perspective view showing another flow path adjusting plate.
FIG. 4 is a longitudinal sectional view showing the vicinity of an air extraction unit of a condenser according to a third embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing the vicinity of an air extraction unit of a condenser according to a fourth embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing the vicinity of an air extraction unit of a condenser according to a fifth embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing the vicinity of an air extraction unit of a condenser according to a sixth embodiment of the present invention.
FIG. 8 is a longitudinal sectional view schematically showing a main part of a conventional condenser.
[Explanation of symbols]
S Steam 1 Cooling tube group 1a Upper tube group 1b Lower tube group 2 Partition plate 3 Air movement passage 4 Air extraction unit 5 Final condensing units 6, 14, 15 Channel adjustment plates 7, 8, 16 Narrow channel unit 9 Small hole 10 small hole forming plate 12 square hole 13 round hole 17 perforated plate 18 cooling pipe non-arranged portion

Claims (1)

水平設置された水平トレイを境にして当該水平トレイの上部に配設された上部管群と、
前記水平トレイの下部に配設された下部管群と、
前記上部管群および前記下部管群の中央部に貫設された空気移動通路と、
前記空気移動通路に連通して設けられ蒸気に含まれる空気を抽出する空気抽出部と、
を備えた復水器において、
前記上部管群および前記下部管群を経て前記空気抽出部に至る蒸気の流速を保持する流速保持手段を備え、当該両管群中に蒸気の流れの滞留部が発生するのを防止するようにし、
前記流速保持手段は、前記空気抽出部近傍であって蒸気が凝縮する最終地点である最終凝縮部近傍に流速を一定以上に保持するための狭隘流路部を形成する流路調整板を備えるとともに、当該狭隘流路部を経た蒸気を通過させる小孔を有した小孔形成板を備え、かつ前記流路調整板に複数の小孔を設けたことを特徴とする復水器。
An upper tube group disposed at the upper part of the horizontal tray, with the horizontal tray set as a boundary,
A lower tube group disposed at a lower portion of the horizontal tray;
An air movement passage penetrating in a central portion of the upper tube group and the lower tube group;
An air extraction unit that is provided in communication with the air movement passage and extracts air contained in the steam;
In the condenser with
It is provided with a flow rate holding means for holding the flow rate of the steam that reaches the air extraction section through the upper tube group and the lower tube group, and prevents the generation of the stay portion of the steam flow in both the tube groups. ,
The flow rate holding means includes a flow path adjusting plate that forms a narrow flow path portion for holding a flow rate at a certain level or more near the final condensing portion that is in the vicinity of the air extraction portion and is the final point where the steam is condensed. A condenser comprising a small hole forming plate having small holes through which steam passing through the narrow flow channel portion is passed, and a plurality of small holes provided in the flow channel adjusting plate.
JP31440099A 1999-11-04 1999-11-04 Condenser Expired - Fee Related JP4240693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31440099A JP4240693B2 (en) 1999-11-04 1999-11-04 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31440099A JP4240693B2 (en) 1999-11-04 1999-11-04 Condenser

Publications (2)

Publication Number Publication Date
JP2001133168A JP2001133168A (en) 2001-05-18
JP4240693B2 true JP4240693B2 (en) 2009-03-18

Family

ID=18052902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31440099A Expired - Fee Related JP4240693B2 (en) 1999-11-04 1999-11-04 Condenser

Country Status (1)

Country Link
JP (1) JP4240693B2 (en)

Also Published As

Publication number Publication date
JP2001133168A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP3057018B2 (en) Steam condensing module with integrated stacked vent condenser
JPH1089859A (en) Water vapor condensing device using aeration type condenser having freezing protecting device
KR970066264A (en) Steam condenser
KR100194778B1 (en) Avenger
JP5403978B2 (en) Condenser
CN201016589Y (en) Shell-and-tube steam-water heat exchanger
PL201326B1 (en) Steam super heater comprising shield pipes
EP0049116A2 (en) Feedwater heater
JP2002130867A (en) Condenser for refrigerating machine
JP2576292B2 (en) Condenser and power plant using the same
JP4240693B2 (en) Condenser
CN101033917A (en) shell-and-tube steam and water heat exchanger
US3887002A (en) Air-cooled heat exchanger with after-condenser
US6296049B1 (en) Condenser
JP2008241211A (en) Horizontal inflow type condenser and its operation method
EP1548383A1 (en) Condenser
JP3879302B2 (en) Condenser
JP4562853B2 (en) Water heater
JP3314599B2 (en) Condenser and power plant
KR100922120B1 (en) Moisture separation heater
US3973624A (en) Condenser
JP2511149B2 (en) Water heater
JP3697331B2 (en) Condenser
JP3758605B2 (en) Condenser
AU712064B2 (en) Steam condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4240693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees