JP2000018845A - Cooling pipe device for condenser - Google Patents

Cooling pipe device for condenser

Info

Publication number
JP2000018845A
JP2000018845A JP10176160A JP17616098A JP2000018845A JP 2000018845 A JP2000018845 A JP 2000018845A JP 10176160 A JP10176160 A JP 10176160A JP 17616098 A JP17616098 A JP 17616098A JP 2000018845 A JP2000018845 A JP 2000018845A
Authority
JP
Japan
Prior art keywords
condenser
tube group
group
steam
cooling pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10176160A
Other languages
Japanese (ja)
Inventor
Naomiki Hasegawa
直幹 長谷川
Koichi Inoue
浩一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10176160A priority Critical patent/JP2000018845A/en
Publication of JP2000018845A publication Critical patent/JP2000018845A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a condenser which is improved in safety and reliability by improving the cooling performance of the condenser by remedying the flowing mode of a steam flow in the condenser and, at the same time, reducing the size of the condenser by reducing the height of the condenser and preventing the occurrence of a failure, such as the water leakage, etc., in the air extracting section of the condenser. SOLUTION: In a condenser which condenses steam by cooling the steam by means of a cooling pipe group laid in an outer shell 1 of the condenser, the pipe group is divided into an upper pipe subgroup 21 laid above a horizontal tray and a lower pipe subgroup 22 laid below the tray 6 and the lateral outline shape of the subgroup 21 is tapered in such a way that the width of the subgroup 21 becomes narrower as going upward from the tray 6. In addition, the side contour shape of the subgroup 22 is formed in such a way that the width of the subgroup 22 becomes the narrowest at, at least, the bottom end of the subgroup 22. In addition, a vertical air moving passage 4 is provided through the upper and lower pipe subgroups 21 and 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は復水器における冷却
管の配置構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arrangement of cooling pipes in a condenser.

【0002】[0002]

【従来の技術】図3は火力発電プラントの蒸気タービン
出口低圧蒸気を復水する復水器における冷却管配置構造
の従来の1例を示す。
2. Description of the Related Art FIG. 3 shows a conventional example of a cooling pipe arrangement structure in a condenser for condensing low-pressure steam at a steam turbine outlet of a thermal power plant.

【0003】図3において、60は復水器の外殻であ
り、その内部には上部管群52及び下部管群53の2つ
の冷却管群が配設されている。61は上記各管群52,
53の周囲に設けられた外周スチームレーン、51は上
位管群52と下位管群53との間に設けられた中間スチ
ームレーンである。
In FIG. 3, reference numeral 60 denotes an outer shell of the condenser, in which two cooling pipe groups, an upper pipe group 52 and a lower pipe group 53, are arranged. Reference numeral 61 denotes each of the tube groups 52,
An outer steam lane 51 provided around the periphery 53 is an intermediate steam lane provided between the upper tube group 52 and the lower tube group 53.

【0004】上記上位管群52及び下位管群53は、外
周側に外部管群54が、内周側に内部管群56が夫々配
設され、上記外部管群54と内部管群56の間に内部ス
チームレーン55が設けられている。さらに上記内部管
群56の内側には空気通路としてのエアコア57が設け
られている。
The upper tube group 52 and the lower tube group 53 are provided with an outer tube group 54 on the outer peripheral side and an inner tube group 56 on the inner peripheral side, respectively. Is provided with an internal steam lane 55. Further, an air core 57 as an air passage is provided inside the inner tube group 56.

【0005】また、上記外部管群54は、冷却管の分布
が疎の疎散部58が外側に、冷却管の分布が密の密集部
59がその内側に夫々設けられており、上記疎散部58
は上記復水器の外殻60と上記上位、下位管群52,5
3との間に形成される上記外周スチームレーン61を通
る蒸気の管群内部への流入をスムーズにするため、管群
の間毎に冷却管の無い蒸気通路を半径方向に設けてい
る。
[0005] The external pipe group 54 is provided with a sparse portion 58 in which the distribution of the cooling pipes is sparse, and a dense portion 59 in which the distribution of the cooling tubes is dense. Part 58
Is the outer shell 60 of the condenser and the upper and lower pipe groups 52, 5
In order to make the flow of the steam passing through the outer steam lane 61 formed between the tube groups 3 into the inside of the tube group smooth, a steam passage without a cooling pipe is provided in the radial direction between the tube groups.

【0006】上記復水器において、外周スチームレーン
61及び中間スチームレーン51を廻流する蒸気は外部
管群54の疎散部58に入り、同疎散部58の上記半径
方向の蒸気通路に沿って同疎散部58内を流れて、冷却
管内の冷却水によって冷却され一部が復水する。そし
て、上記疎散部58を経た蒸気は密集部52に入って冷
却管内の冷却水によって冷却され、大部分が凝縮、復水
される。
In the above condenser, the steam circulating through the outer steam lane 61 and the intermediate steam lane 51 enters the diffused portion 58 of the outer tube group 54, and flows along the radial steam passage of the diffused portion 58. Then, the water flows through the scattered portion 58 and is cooled by the cooling water in the cooling pipe, and a part of the water is condensed. The steam that has passed through the sparse portion 58 enters the dense portion 52 and is cooled by the cooling water in the cooling pipe, and most of the steam is condensed and condensed.

【0007】内部スチームレーン55においては、上記
外部管群54において未だ凝縮していない蒸気を集めて
内部管群56に流入せしめられる。同内部管群56にお
いては、この蒸気を再度冷却して空気と凝縮ドレンの発
生を促進させる。そして上記空気はエアコア57に集め
られて、同エアコア57に連通される管軸方向の空気抽
出管(図示省略)から大気中に放出される。また密度の
大きい上記凝縮ドレンは管群の外側下方に流下する。
[0007] In the internal steam lane 55, steam that has not been condensed in the external tube group 54 is collected and flown into the internal tube group 56. In the internal tube group 56, the steam is cooled again to promote the generation of air and condensed drain. The air is collected by the air core 57 and is discharged into the atmosphere from an air extraction pipe (not shown) in the pipe axis direction communicating with the air core 57. Further, the above-mentioned condensed drain having a large density flows downward and outside the tube group.

【0008】尚、上記蒸気の流動時において、中間スチ
ームレーン51は、上位管群52及び下位管群53にお
いて蒸気のラジアルフロー(半径方向流)が実現される
よう、蒸気を上位、下位管群52、53間に導かせる作
用をなす。
During the flow of the steam, the intermediate steam lane 51 transmits the steam to the upper and lower pipe groups so that the upper pipe group 52 and the lower pipe group 53 realize the radial flow (radial flow) of the steam. It acts to guide between 52 and 53.

【0009】[0009]

【発明が解決しようとする課題】しかしながら図3に示
すような従来の復水器の冷却管配置構造においては次の
ような問題点がある。
However, the conventional cooling pipe arrangement structure of the condenser as shown in FIG. 3 has the following problems.

【0010】(1)上位、下位管群52、53が疎散部
58を有するとともに上位管群52と下位管群53との
間に中間スチームレーン55を有しているため、復水器
の高さが高くなる。このため、復水器の据付けのための
掘り込み深さが大となって、復水器据付けの土建費が高
騰する。
(1) Since the upper and lower pipe groups 52 and 53 have the sparse portion 58 and the intermediate steam lane 55 between the upper pipe group 52 and the lower pipe group 53, Height increases. For this reason, the digging depth for installing the condenser becomes large, and the construction cost of installing the condenser rises.

【0011】(2)エアコア57の位置と上位、下位管
群52、53との関係がラジアルフロータイプのため
に、エアコア57に接続される空気抽出管の取り出しが
冷却管の管軸方向となって、空気抽出管が復水器の水室
を貫通する構造となる。このため、上記空気抽出管から
復水器の胴内に冷却水が流入する可能性がある。
(2) Since the relationship between the position of the air core 57 and the upper and lower pipe groups 52 and 53 is of a radial flow type, the extraction of the air extraction pipe connected to the air core 57 is in the pipe axis direction of the cooling pipe. Thus, the structure is such that the air extraction pipe passes through the water chamber of the condenser. For this reason, there is a possibility that the cooling water flows into the body of the condenser from the air extraction pipe.

【0012】尚、上記不具合に対処する手段として、エ
アコア57から復水器の胴部を貫通させて空気抽出管を
取り出す手段も考えられるが、かかる手段の場合は、冷
却管群がラジアルフロータイプのため蒸気、空気及び凝
縮ドレンの流れが乱されて復水器性能が低下する。
As means for coping with the above problem, a means for extracting the air extraction pipe by penetrating the body of the condenser from the air core 57 can be considered, but in the case of such means, the cooling pipe group is of a radial flow type. Therefore, the flow of steam, air and condensed drain is disturbed, and the condenser performance is reduced.

【0013】本発明の目的は、復水器内における蒸気流
の流動態様を改善することにより復水器の冷却性能を向
上するとともに、復水器の高さを低減して復水器の小型
化をなし、さらには空気抽出部における漏水等の不具合
の発生を防止して安全性、信頼性が向上された復水器を
提供することにある。
An object of the present invention is to improve the cooling performance of the condenser by improving the flow of the steam flow in the condenser, and to reduce the height of the condenser to reduce the size of the condenser. Another object of the present invention is to provide a condenser with improved safety and reliability by preventing the occurrence of problems such as water leakage in the air extraction unit.

【0014】[0014]

【課題を解決するための手段】本発明は上記のような問
題点を解決するもので、その要旨とする第1の手段は、
外殻の内部に多数の冷却管からなる冷却管群を設置し、
同冷却管群と上記外殻との間に形成される外周スチーム
レーンを経た蒸気を上記冷却管群に導入し、同冷却管内
の冷却流体と熱交換して凝縮させるようにした復水器に
おいて、上記冷却管群は、水平方向に設置された水平ト
レイを境にして、これよりも上部に設けられた上部管群
と、下部に設けられた下部管群とよりなり、上記上部管
群の側部外郭形状を上記水平トレイから上方になるに従
い幅が狭くなるような勾配を有する傾斜形状となすとと
もに、上記下部管群の側部外郭形状を少なくとも最下端
部の幅が最も狭くなるように構成したことを特徴とする
復水器の冷却管装置にある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and the first means, which is the gist thereof, is:
A cooling pipe group consisting of many cooling pipes is installed inside the outer shell,
In a condenser in which steam passing through the outer peripheral steam lane formed between the cooling pipe group and the outer shell is introduced into the cooling pipe group, and exchanges heat with a cooling fluid in the cooling pipe to condense. The cooling tube group is composed of an upper tube group provided above and a lower tube group provided below the horizontal tray, which is provided in a horizontal direction. The side outer shape is made to have an inclined shape having such a gradient that the width becomes narrower as going upward from the horizontal tray, and the side outer shape of the lower tube group is set so that the width of at least the lowermost end is the narrowest. The cooling pipe device of the condenser characterized by the above-mentioned structure.

【0015】また第2の手段は、上記第1の手段におい
て、上記上部管群の側部外郭形状は、上記水平トレイの
部位にある横端管列から、横管列を縦方向に5列上昇し
て縦管列を1列内側にずらすような勾配となすととも
に、上記下部管群の側部外郭形状は、下端両側の角部を
円弧に近い面取り形状となす。
A second means is the first means, wherein the side outer shape of the upper tube group is such that five horizontal tube rows are vertically arranged from the horizontal end tube row at the horizontal tray portion. In addition to forming a gradient so as to ascend and shift the vertical pipe row inward by one row, the side outer shape of the lower pipe group is such that the corners on both sides at the lower end have a chamfered shape close to an arc.

【0016】第3の手段は、上記第1あるいは第2の手
段において、上記上部管群及び下部管群の中央部に、断
面形状が板状の空気移動通路を垂直方向に所定位置まで
貫設してなる。
A third means is that, in the first or second means, an air movement passage having a plate-like cross section is vertically penetrated to a predetermined position in a central portion of the upper tube group and the lower tube group. Do it.

【0017】さらに、第4の手段は、上記第1〜第3の
手段の何れかにおいて、上記下部管群の管群厚さ
(L2 )を上部管群の管群厚さ(L1 )に対して、L2
/(L1 +L2 )=0.3以下に構成してなる。
Further, a fourth means according to any one of the first to third means, wherein the tube group thickness (L 2 ) of the lower tube group is changed to the tube group thickness (L 1 ) of the upper tube group. For L 2
/ (L 1 + L 2 ) = 0.3 or less.

【0018】上記各手段によれば、冷却管群を、中間に
スチームレーンを設けることなく上部と下部とを一体と
するとともに、上部管群及び下部管群の側部外郭形状を
上端部あるいは下端部が幅が狭くなる傾斜した形状とし
たので、管群の外周部での蒸気の流れが均等化されて、
管群の外周から一様に蒸気を流入させることができる。
これにより、従来のもののような中間スチームレーンや
疎散部を省略することができ、復水器の高さを低減する
ことができる。
According to each of the above means, the cooling pipe group can be integrated into an upper part and a lower part without providing a steam lane in the middle, and the outer shell shape of the upper tube group and the lower tube group can be changed to the upper end or the lower end. Since the section has an inclined shape with a narrow width, the flow of steam at the outer periphery of the tube bank is equalized,
Steam can be made to flow uniformly from the outer periphery of the tube bank.
As a result, the intermediate steam lane and the sparse portion as in the conventional one can be omitted, and the height of the condenser can be reduced.

【0019】また、特に第3の手段によれば、上部管群
及び下部管群の中央部に垂直方向に空気移動通路を所定
長さ貫設したので、上部管群及び下部管群を流れる蒸気
は、従来のもののようなラジアルフローとはならずに、
略水平方向の並行流となって均等に空気移動通路に流入
することとなり、蒸気が通過する冷却管の本数が均等と
なって一様な凝縮が行なわれ、冷却効果が向上する。
According to the third means, in particular, since the air movement passage extends vertically through the predetermined length in the center of the upper tube group and the lower tube group, the steam flowing through the upper tube group and the lower tube group is formed. Is not a radial flow like the conventional one,
As a result, the number of cooling pipes through which the steam passes becomes uniform, uniform condensation is performed, and the cooling effect is improved.

【0020】また、上記のように、蒸気流がラジアルフ
ローでなく、略並行流であるので、空気移動通路に接続
される空気抽出管を復水器水室を貫通させることなく胴
部から取り出すことができ、漏水等の不具合の発生が防
止され安全性が向上する。
Further, as described above, since the steam flow is not a radial flow but a substantially parallel flow, the air extraction pipe connected to the air moving passage is taken out from the body without passing through the condenser water chamber. This prevents the occurrence of problems such as water leakage and improves safety.

【0021】さらに、特に第4の手段によれば、復水器
管群の下部に位置する管群、即ち下部管群の厚さを最小
限としたことにより、伝熱性能の低い上昇蒸気流部の通
路になる部位が少なくなり、上記上昇蒸気流による伝熱
性能の低下を最小限とし、復水器全体として伝熱性能の
向上が得られる。
Further, according to the fourth means, in particular, the thickness of the tube group located at the lower part of the condenser tube group, that is, the lower tube group is minimized, so that the ascending steam flow having low heat transfer performance is achieved. The number of passages in the section is reduced, minimizing the decrease in heat transfer performance due to the rising steam flow, and improving the heat transfer performance of the entire condenser.

【0022】[0022]

【発明の実施の形態】以下図1〜図2を参照して本発明
の実施形態につき詳細に説明する。図1は本発明の実施
形態に係る復水器の冷却管群の配置構造を示す構成図、
図2は上部管群の配置構造を示す構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 is a configuration diagram showing an arrangement structure of a cooling pipe group of a condenser according to an embodiment of the present invention,
FIG. 2 is a configuration diagram showing an arrangement structure of the upper tube group.

【0023】図1において、1は復水器の外殻であり、
その内部には復水器管群2が配設されている。3は上記
復水器管群2の周囲と外殻1の内面との間に設けられた
外周スチームレーンで、蒸気タービンの低圧タービン出
口の蒸気が通流している。
In FIG. 1, 1 is the outer shell of the condenser,
Inside thereof, a condenser tube group 2 is provided. Reference numeral 3 denotes an outer peripheral steam lane provided between the periphery of the condenser tube group 2 and the inner surface of the outer shell 1, through which steam from a low-pressure turbine outlet of the steam turbine flows.

【0024】上記復水器管群2は、水平トレイ6を境に
して上部管群21と下部管群22とに区画された一体型
となっている。上記上部管群21の厚さL2 と下部管群
22の厚さL1 の比は、最も最適値としてL2 :L1
7:3、つまり、L2 /(L 1 +L2 )=0.3に構成
され、下部管群22の厚さを最小限としている。
The condenser tube group 2 is separated from the horizontal tray 6
And divided into an upper tube group 21 and a lower tube group 22
It has become. Thickness L of the upper tube group 21TwoAnd lower tube group
22 thickness L1Is the most optimal value of LTwo: L1=
7: 3, that is, LTwo/ (L 1+ LTwo) = 0.3
Thus, the thickness of the lower tube group 22 is minimized.

【0025】4は空気移動通路であり、上記上部管群2
1及び下部管群22の断面の中央部に、断面形状が板状
になるようにして冷却管の管軸方向に延設されている。
5は上記空気移動通路4の途中に設けられた空気冷却部
であり、上記空気移動通路4はこの空気冷却部5を貫通
してさらに下方まで延設されている。
Reference numeral 4 denotes an air moving passage,
At the center of the cross section of each of the first and lower pipe groups 22, the cooling pipe extends in the pipe axis direction so that the cross section becomes plate-like.
Reference numeral 5 denotes an air cooling unit provided in the middle of the air moving passage 4, and the air moving passage 4 penetrates the air cooling unit 5 and extends further downward.

【0026】また、上記上部管群21の外郭形状は、図
2に示すように、上記空気冷却部5の水平トレイ6の部
位にある横端管列Aから頂部の横管列Bまでは、横管列
を縦方向(蒸気流Sの方向)に5列(5a)上昇して縦
管列を1列(b)内側にずらすような勾配Zが管群の両
側部に付されている。また、上記下部管群22の外郭形
状において、下端部は角部7を有する形状となってお
り、同角部7は円弧に近い面取り形状となっている。そ
して、図1においてl1 ≒l2 ≒l3 となるように構成
されている。
As shown in FIG. 2, the outer pipe group 21 has an outer shape from a horizontal pipe row A at the horizontal tray 6 of the air cooling unit 5 to a horizontal pipe row B at the top. Gradients Z are provided on both sides of the tube bank so that the horizontal tube row is raised in the vertical direction (the direction of the steam flow S) by five rows (5a) and the vertical pipe row is shifted inward by one row (b). Further, in the outer shape of the lower tube group 22, the lower end portion has a shape having a corner portion 7, and the corner portion 7 has a chamfered shape close to an arc. Then, in FIG. 1, it is configured such that l 1 ≒ l 2 ≒ l 3 .

【0027】上記のように構成された復水器において、
蒸気タービン出口の低圧の蒸気Sは外周スチームレーン
3を通流した後、上部管群21及び下部管群22に流入
する。この際において、上部管群21は、図2に示すよ
うに、冷却管がその両側部に勾配Zを付して配設されて
おり、また、下部管群22には円弧形状に近い角部7を
設けているので、上記管群21,22の外周部での蒸気
の流れが均等化されて静圧分布が一定となる。これによ
り、上記管群21,22の外周から一様に同管群21,
22内への蒸気の流入がなされる。
In the condenser configured as described above,
The low-pressure steam S at the steam turbine outlet flows through the outer steam lane 3 and then flows into the upper tube group 21 and the lower tube group 22. At this time, as shown in FIG. 2, the upper tube group 21 has cooling pipes arranged with slopes Z on both sides thereof, and the lower tube group 22 has corner portions close to an arc shape. 7, the flow of steam at the outer peripheral portions of the tube groups 21 and 22 is equalized, and the static pressure distribution becomes constant. Thereby, the pipe groups 21, 21 are uniformly distributed from the outer circumference of the pipe groups 21, 22.
The flow of steam into 22 is performed.

【0028】上記上部管群21内及び下部管群22を流
れた蒸気は冷却管内の冷却水と熱交換することによって
冷却されて凝縮ドレン水及び空気となり、密度の大きい
凝縮ドレンは管群の外側下方に流下する。また、上記空
気は上部管群21及び下部管群22から、これらの中央
部に垂直方向に所定距離まで貫設された板状断面の空気
移動通路4に流入して空気冷却部5にて冷却された後、
上記空気移動通路4を管軸方向に流れて大気中に排出さ
れる。
The steam flowing through the upper tube group 21 and the lower tube group 22 is cooled by exchanging heat with cooling water in the cooling tubes to become condensed drain water and air. It flows down. Further, the air flows from the upper tube group 21 and the lower tube group 22 into an air moving passage 4 having a plate-shaped cross section vertically penetrated to a central portion thereof by a predetermined distance and cooled by the air cooling unit 5. After that,
The gas flows through the air moving passage 4 in the tube axis direction and is discharged into the atmosphere.

【0029】この際において、上記空気移動通路4は上
部管群21及び下部管群22の中央部を垂直方向に最適
位置まで貫設されているので、上部管群21及び下部管
群22を流れた蒸気は略水平方向の並行流となって均等
に上記空気移動通路4内に流入することとなり、蒸気が
通過する冷却管の本数が均等となり、一様な冷却がなさ
れる。
At this time, since the air transfer passage 4 extends vertically through the center of the upper tube group 21 and the lower tube group 22 to an optimum position, the air flow passage 4 flows through the upper tube group 21 and the lower tube group 22. The steam thus produced flows into the air moving passage 4 uniformly as a parallel flow in a substantially horizontal direction, so that the number of cooling pipes through which the steam passes becomes uniform, and uniform cooling is performed.

【0030】また上記のように復水器の上部、下部管群
21,22を流れる蒸気は従来のもののようなラジアル
フローでなく、略水平方向の並行流となるので、上記空
気移動通路4に接続される空気抽出管を復水器の側部か
ら引き出すことができ、従来のもののように復水器水室
を貫通することを要しない。
Further, as described above, the steam flowing through the upper and lower pipe groups 21 and 22 of the condenser is not a radial flow as in the conventional one, but is a substantially horizontal parallel flow. The connected air extraction tube can be drawn out from the side of the condenser, without having to penetrate the condenser water chamber as in the prior art.

【0031】さらに、上記復水器管群の下部に位置する
冷却管群、即ち下部管群22の管群厚さL2 を上部管群
21の厚さL1 に対して、上記のようにL1 :L2
7:3程度にして、最小限になるように構成しているの
で、伝熱性能の低い上昇蒸気流部の通路になる部位が少
なくなる。
Furthermore, a cooling pipe group positioned in the lower portion of the condenser tube bundle, i.e. the tube bundle thickness L 2 of the lower tube bundle 22 with respect to the thickness L 1 of the upper tube bundle 21, as described above L 1 : L 2 =
Since it is configured to be about 7: 3 and minimized, the number of passages of the rising steam flow section having low heat transfer performance is reduced.

【0032】即ち、本発明に係る復水器におけるような
管外凝縮熱伝達では、水平蒸気流及び下降蒸気流に較べ
て上昇蒸気流は熱伝達率が低い。従って、この実施形態
においては、上記のように上昇蒸気流部の通路を少なく
したので、伝熱性能の低下を最小限とすることができ
る。
That is, in the out-of-tube condensation heat transfer as in the condenser according to the present invention, the ascending steam flow has a lower heat transfer coefficient than the horizontal steam flow and the descending steam flow. Therefore, in this embodiment, since the number of passages of the rising steam flow portion is reduced as described above, a decrease in heat transfer performance can be minimized.

【0033】[0033]

【発明の効果】本発明は以上のように構成されており、
本発明によれば、冷却管群を上部と下部とを水平トレイ
を介して一体とするとともに、上部管群及び下部管群の
側部外郭形状を上端部あるいは下端部が幅が狭くなる傾
斜した形状としたので、管群の外周から一様に蒸気を流
入させることができる。
The present invention is configured as described above.
According to the present invention, the upper and lower cooling tube groups are integrated with each other via a horizontal tray, and the side outer shapes of the upper and lower tube groups are inclined such that the upper end or the lower end has a narrow width. The shape allows the steam to flow uniformly from the outer periphery of the tube bank.

【0034】これにより、従来のもののような中間スチ
ームレーンや疎散部を省略することができて、復水器の
高さを低減することができ、復水器を小型化できるとと
もに、復水器据付けのための掘り込み深さを浅くするこ
とができて、復水器の製造コスト及び据付けのための土
建コストを低減できる。
As a result, the intermediate steam lane and the sparse portion as in the conventional one can be omitted, the height of the condenser can be reduced, and the condenser can be downsized. The digging depth for the installation of the vessel can be made shallow, so that the manufacturing cost of the condenser and the construction cost for the installation can be reduced.

【0035】また請求項3の発明によれば、上部管群及
び下部管群を流れる蒸気は従来のもののようにラジアル
フローとならず、略水平方向の並行流となって、均等に
空気移動通路に流入することとなり、蒸気が通過する冷
却管の本数が均等となって一様な凝縮が行なわれ、冷却
効率が向上する。また、上記のように、蒸気流がラジア
ルフローでなく、略並行流であるので、空気移動通路に
接続される空気抽出管を復水器の水室を貫通させること
なく胴部から取り出すことができ、漏水等の不具合の発
生が防止され安全性、信頼性が向上する。
According to the third aspect of the present invention, the steam flowing through the upper tube group and the lower tube group does not have a radial flow as in the conventional case, but has a substantially horizontal parallel flow, so that the air moving passage is evenly distributed. And the number of the cooling pipes through which the steam passes becomes uniform, uniform condensation is performed, and the cooling efficiency is improved. Further, as described above, since the steam flow is not a radial flow but a substantially parallel flow, it is possible to take out the air extraction pipe connected to the air movement passage from the body without penetrating the water chamber of the condenser. It is possible to prevent the occurrence of troubles such as water leakage, thereby improving safety and reliability.

【0036】さらに請求項4のように構成すれば、復水
器の下部に位置する冷却管群の厚さを最小限としたこと
により、伝熱性能の低い上昇蒸気流部の通路になる部位
が少なくなり、上記上昇蒸気流による伝熱性能の低下を
最小限とし、復水器全体として伝熱性能の向上が得られ
る。
According to a fourth aspect of the present invention, since the thickness of the cooling pipe group located at the lower part of the condenser is minimized, a portion that becomes a passage of the ascending steam flow portion having low heat transfer performance is provided. The heat transfer performance of the condenser as a whole can be improved by minimizing the deterioration of the heat transfer performance due to the rising steam flow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る復水器の冷却管群の配
置構造を示す構成図。
FIG. 1 is a configuration diagram showing an arrangement structure of a cooling pipe group of a condenser according to an embodiment of the present invention.

【図2】上記実施形態における上部管群の配置構造を示
す構成図。
FIG. 2 is a configuration diagram showing an arrangement structure of an upper tube group in the embodiment.

【図3】従来の復水器の冷却管群の配置を示す構成図。FIG. 3 is a configuration diagram showing an arrangement of a cooling pipe group of a conventional condenser.

【符号の説明】[Explanation of symbols]

1 外殻 2 復水器管群 3 外周スチームレーン 4 空気移動通路 6 水平トレイ 7 角部 21 上部管群 22 下部管群 DESCRIPTION OF SYMBOLS 1 Outer shell 2 Condenser tube group 3 Perimeter steam lane 4 Air movement passage 6 Horizontal tray 7 Corner 21 Upper tube group 22 Lower tube group

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外殻の内部に多数の冷却管からなる冷却
管群を設置し、同冷却管群と上記外殻との間に形成され
る外周スチームレーンを経た蒸気を上記冷却管群に導入
し、同冷却管内の冷却流体と熱交換して凝縮させるよう
にした復水器において、上記冷却管群は、水平方向に設
置された水平トレイを境にして、これよりも上部に設け
られた上部管群と、下部に設けられた下部管群とよりな
り、上記上部管群の側部外郭形状を上記水平トレイから
上方になるに従い幅が狭くなるような勾配を有する傾斜
形状となすとともに、上記下部管群の側部外郭形状を少
なくとも最下端部の幅が最も狭くなるように構成したこ
とを特徴とする復水器の冷却管装置。
A cooling pipe group including a plurality of cooling pipes is installed inside an outer shell, and steam passing through an outer peripheral steam lane formed between the cooling pipe group and the outer shell is supplied to the cooling pipe group. In the condenser which is introduced and exchanges heat with the cooling fluid in the cooling pipe to condense, the cooling pipe group is provided above and above a horizontal tray installed in a horizontal direction. The upper tube group and the lower tube group provided at the lower portion, and the side outer shape of the upper tube group has an inclined shape having a gradient such that the width becomes narrower as going upward from the horizontal tray. A cooling pipe device for a condenser, wherein a side outer shape of the lower tube group is configured such that at least a width of a lowermost end portion is the smallest.
【請求項2】 上記上部管群の側部外郭形状は、上記水
平トレイの部位にある横端管列から、横管列を縦方向に
5列上昇して縦管列を1列内側にずらすような勾配とな
すとともに、上記下部管群の側部外郭形状は、下端両側
の角部を円弧に近い面取り形状となした、請求項1に記
載の復水器の冷却管装置。
2. The side outer shape of the upper tube group is such that the horizontal tube row is raised five rows in the vertical direction from the horizontal tube row at the horizontal tray portion, and the vertical pipe row is shifted inward by one row. 2. The condenser cooling pipe device according to claim 1, wherein the slope is formed as described above, and the side outer shell shape of the lower tube group is formed by chamfering the corners on both sides of the lower end close to an arc. 3.
【請求項3】 上記上部管群及び下部管群の中央部に、
断面形状が板状の空気移動通路を垂直方向に所定位置ま
で貫設してなる請求項1又は2に記載の復水器の冷却管
装置。
3. The central part of the upper tube group and the lower tube group,
The cooling pipe device for a condenser according to claim 1 or 2, wherein the plate-shaped air movement passage extends vertically to a predetermined position.
【請求項4】 上記下部管群の管群厚さ(L2 )を上部
管群の管群厚さ(L 1 )に対して、L2 /(L1
2 )=0.3以下に構成してなる請求項1ないし3の
何れかに記載の復水器の冷却管装置。
4. The tube group thickness (L) of the lower tube groupTwo) At the top
Tube bundle thickness (L 1) For LTwo/ (L1+
LTwo) = 0.3 or less.
A condenser pipe device for the condenser according to any one of the above.
JP10176160A 1998-06-23 1998-06-23 Cooling pipe device for condenser Withdrawn JP2000018845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176160A JP2000018845A (en) 1998-06-23 1998-06-23 Cooling pipe device for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176160A JP2000018845A (en) 1998-06-23 1998-06-23 Cooling pipe device for condenser

Publications (1)

Publication Number Publication Date
JP2000018845A true JP2000018845A (en) 2000-01-18

Family

ID=16008724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176160A Withdrawn JP2000018845A (en) 1998-06-23 1998-06-23 Cooling pipe device for condenser

Country Status (1)

Country Link
JP (1) JP2000018845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97208A1 (en) * 2000-10-24 2003-07-18 Mitsubishi Heavy Ind Ltd Condenser for refrigerating machine
WO2015111318A1 (en) * 2014-01-23 2015-07-30 三菱日立パワーシステムズ株式会社 Condenser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97208A1 (en) * 2000-10-24 2003-07-18 Mitsubishi Heavy Ind Ltd Condenser for refrigerating machine
US7028762B2 (en) 2000-10-24 2006-04-18 Mitsubishi Heavy Industries, Ltd. Condenser for refrigerating machine
WO2015111318A1 (en) * 2014-01-23 2015-07-30 三菱日立パワーシステムズ株式会社 Condenser
KR20160078467A (en) 2014-01-23 2016-07-04 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Condenser
CN105793659A (en) * 2014-01-23 2016-07-20 三菱日立电力系统株式会社 Condenser
JPWO2015111318A1 (en) * 2014-01-23 2017-03-23 三菱日立パワーシステムズ株式会社 Condenser
US10502492B2 (en) 2014-01-23 2019-12-10 Mitsubishi Hitachi Power Systems, Ltd. Condenser for condensing steam from a steam turbine

Similar Documents

Publication Publication Date Title
US5018572A (en) Steam condenser
US7028762B2 (en) Condenser for refrigerating machine
US3844344A (en) Cooling tower
JP4376276B2 (en) Heat exchange coil
US7610952B2 (en) Steam condenser with two-pass tube nest layout
KR100194778B1 (en) Avenger
CN100580360C (en) Condenser
JP2000018845A (en) Cooling pipe device for condenser
AU722526B2 (en) Steam condenser
CN210400126U (en) Falling film uniform distribution device capable of improving film distribution and exhaust performance
JP3879302B2 (en) Condenser
US20090032233A1 (en) Heat exchanger deep bundle air extractor
CN106323024A (en) Evaporative type condenser
JP2018009723A (en) Condenser
US7481264B2 (en) Steam condenser
JP3314599B2 (en) Condenser and power plant
US20210041176A1 (en) Three-stage heat exchanger for an air-cooled condenser
JP4607664B2 (en) Condenser
JP3758605B2 (en) Condenser
JP3483697B2 (en) Feed water heater for boiling water reactor
US1353642A (en) Condenser
JPS5883179A (en) Condenser
JPH0720638Y2 (en) Vortex prevention device for fast breeder reactor
JPH0233023Y2 (en)
JPS61205789A (en) Drain removing device for condenser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906