JPH0822244A - Three-dimensional structure model of molecule - Google Patents

Three-dimensional structure model of molecule

Info

Publication number
JPH0822244A
JPH0822244A JP14099195A JP14099195A JPH0822244A JP H0822244 A JPH0822244 A JP H0822244A JP 14099195 A JP14099195 A JP 14099195A JP 14099195 A JP14099195 A JP 14099195A JP H0822244 A JPH0822244 A JP H0822244A
Authority
JP
Japan
Prior art keywords
plate
sides
pieces
model
models
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14099195A
Other languages
Japanese (ja)
Inventor
Takamura Mitsumizu
▲たかむら▼ 三水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14099195A priority Critical patent/JPH0822244A/en
Publication of JPH0822244A publication Critical patent/JPH0822244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

PURPOSE:To make the spread of electron cloud three-dimensionally appealing to visual sensation like a spaced packing type even different from any type of the spaced pack ing type, a skelton type and a sphere-bar type by assembling specific hollow fourteen- faced polyhedrons, etc., as atom models and connecting a plurality thereof, thereby constituting a three-dimensional molecular model. CONSTITUTION:This three-dimensional molecular model is assembled of two pieces of carbon atom models 10 and six pieces of hydrogen atom models 50. The models 10 and the models 50 are the resembling hollow fourteen-faced polyhedrons composed of the plural planes of resembling hexagonal and square plates. The one side of the planes constituting the models 10, i.e., the respective ridges of the cubes are longer than the models 50 and, therefore, the models 10 are formed larger over the entire part. The hollow fourteen-faced polyhedrons constituting the models 10 have four sheets each of the plane parts of the hexagonal shape. First, the arbitrary plane parts of the hexagonal shape of two pieces of the models 10 are connected by connecting parts. Next, total six pieces of the models 50 are connected to all of the plane parts of the hexagonal shape of remaining three sheets each, by which the assembly is completed. As a result, the molecule form as the spread of a nuclear cloud is expressed and the expression of the coupling angles, coupling lengths, etc., is made possible as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、分子の三次元構造模
型に係り、特に正三角形又は六角形板と四角形板とを多
数組み合わせたプラスチックの中空の多面体により構成
される分子の三次元構造模型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional structural model of a molecule, and more particularly to a three-dimensional structural model of a molecule composed of a hollow plastic polyhedron in which a large number of equilateral triangular or hexagonal plates and square plates are combined. It is about.

【0002】[0002]

【従来の技術】すべての化学技術分野では,様々な化学
結合により生ずる化学物質の分子構造を識別表示する手
段として、統一された様式の分子式及び分子構造式が用
いられている。しかし分子構造は、二次元平面上に結合
関係を記す分子構造式のみでは充分にその特性を区別
し、説明するのに困難な場合が多く、その最大の要因
は、分子結合における諸原子の三次元的座標配列の多様
性にある。分子内の原子の挙動を多次元でとらえ、物理
化学的諸現象の解明を目指す立体化学の研究分野におい
ては従来より、分子結合における原子の立体的配列構造
を表現する意味の、分子の三次元構造模型について種々
の提案がなされ、それらは実際に教育および研究の場に
提供されてきた。
2. Description of the Related Art In all chemical technical fields, a unified formula of molecular formulas and molecular structural formulas are used as means for identifying and displaying the molecular structures of chemical substances produced by various chemical bonds. However, the molecular structure is often difficult to distinguish and explain its characteristics sufficiently only by the molecular structural formula that describes the bonding relation on a two-dimensional plane, and the most important factor is the tertiary structure of various atoms in the molecular bond. The diversity of the original coordinate array. In the field of stereochemistry, which aims to elucidate various physical and chemical phenomena by grasping the behavior of atoms in a molecule in three dimensions, the three-dimensional structure of a molecule has traditionally been used to express the three-dimensional arrangement structure of atoms in a molecular bond. Various proposals have been made for structural models, and they have actually been provided to educational and research sites.

【0003】従来の三次元分子構造模型は、図2に示す
ように(A図)空間充填(space fillin
g)型,(B図)骨格(skeletal)型,(C
図)球と棒(ball and stick)型の3つ
の形式に分けられる。ここに示すのはは共に、エタノー
ル(C)の例を比較するものであり、炭素原子2
個と、水素原子6個の結合形状を示している。
As shown in FIG. 2 (FIG. 2A), the conventional three-dimensional molecular structure model has a space fillin.
g) type, (Fig. B) skeletal type, (C
Figure) It can be divided into three types: ball and stick type. Shown here are both to compare the example of ethanol (C 2 H 6 ).
And the bond shape of 6 hydrogen atoms.

【0004】図2(A図)の、空間充填型は、個々の原
子の電子雲境界を球面と仮定し、共有結合原子を個々の
球面の噛みあった形状として3次元分子構造を表現する
模型である。原子境界面のあらましの大きさの比較と、
互いの共有結合状態における立体空間上の座標及び重な
りと広がりを、発泡現象のような3次元形状に組み立て
て示すのが特徴である。
The space-filling type of FIG. 2A is a model in which the electron cloud boundary of each atom is assumed to be a sphere, and covalently bonded atoms are expressed as a meshed shape of each sphere to represent a three-dimensional molecular structure. Is. Comparing the size of the outline of atomic boundaries,
The feature is that the coordinates in the three-dimensional space and the overlap and spread in the covalent bond state of each other are assembled and shown in a three-dimensional shape like a foaming phenomenon.

【0005】図2(B図)の骨格型は、炭素原子の核を
想定する部品(1B)2個が,その共有結合距離を表す
連結捧(3B)で繋がり、更にその炭素原子と水素原子
との共有結合を表す連結棒(4B)6本とで模型を構成
している。棒の長さと、その植え込まれた互いの立体角
度により分子模型を作るので、さきの空間充填型では表
しにくい原子間の共有結合距離と結合角が見易く、同一
分子式の有機化合物における立体配置の異性体を比較表
現するときの便宜さを特徴とする。
In the skeleton type shown in FIG. 2 (B), two parts (1B) assuming a nucleus of a carbon atom are connected by a connecting rod (3B) showing the covalent bond distance, and further, the carbon atom and the hydrogen atom. A model is composed of 6 connecting rods (4B) representing covalent bonds with. Since the molecular model is created by the length of the rod and the three-dimensional angle of the implanted ones, it is easy to see the covalent bond distance and bond angle between the atoms, which are difficult to express in the space-filling type described above, and the configuration of the organic compounds of the same molecular formula It is characterized by the convenience of comparative expression of isomers.

【0006】図2(C図)の球と棒型は,炭素原子(1
C)と、水素原子(5C)と、炭素原子同志の連結棒
(3C)及び,炭素原子と水素原子とを繋ぐ連結棒(4
C)とにより構成されている。この球と棒型の分子模型
は、骨格型の変形であり、共有結合距離に応ずる連結棒
に加えて、個々の原子構造概念の大きさに比例する原子
模型を用意して、大まかな3次元分子構造を表現しよう
としている。
The sphere and rod type shown in FIG.
C), a hydrogen atom (5C), a connecting rod of carbon atoms (3C), and a connecting rod (4) connecting a carbon atom and a hydrogen atom.
C) and. This sphere-and-rod-shaped molecular model is a skeletal deformation, and in addition to the connecting rods that respond to the covalent bond distance, an atomic model that is proportional to the size of each atomic structure concept is prepared, and a rough three-dimensional model is prepared. I am trying to express the molecular structure.

【0007】しかしながら、上述した3種の従来例では
いずれも、化学教育或いは学術研究に利用されるべく、
それらの構成部品を製造するうえで難題を有している。
いづれの方式にしても、原子或いは原子核を表現する部
品に、その表面から中心に向かう垂線をもつ複数の結合
面、或いは法線が部品の中心に向かう複数の結合穴が必
要であり、それらが原子同志の結合角を決定し分子模型
の形状変化を司る。そして、部品の個別の切削穿孔など
の機械加工、あるいは量産効果を期してのプラスチック
成形金型の設計制作にあたり,部品に求められる機能上
の要点すなはち、多様な結合角に対処しうる構造と結合
角制御の精度を確保する上で、高度の技術或いは高価な
工数が必要である。現在まで、図2(A図)の空間充填
型は、専門研究機関などに於ける研究資料としての実施
例が見られるが、わが国も含め教育器材として一般化し
ているのは、図2(C図)の球と棒型の系統である。
However, in the above-mentioned three conventional examples, all of them should be used for chemical education or academic research.
There are challenges in manufacturing those components.
Regardless of which method is used, a component representing an atom or atomic nucleus must have multiple bond surfaces with a perpendicular line from its surface to the center, or multiple bond holes with the normal line toward the center of the part. It determines the bond angle between atoms and controls the shape change of the molecular model. In addition, when performing machining such as individual cutting and drilling of parts, or designing and manufacturing plastic molding dies for mass production, the functional points required for parts, that is, structures that can handle various bond angles In order to secure the precision of the bond angle control, high technology or expensive man-hours are required. To date, the space-filling type of Fig. 2 (A) has been seen as an example of research materials in specialized research institutes, etc. Figure) is a ball-and-stick system.

【0008】[0008]

【発明が解決しようとする課題】この発明は、空間充填
型のように、電子雲の広がりとしての分子形態を表すこ
とができると共に、骨格型及び球と棒型のような結合
角,結合の長さ,分子の大まかな形状等も表現すること
ができ、かつ化学及び立体幾何学の教材として創造的魅
力を持つ分子の三次元構造模型を、従来品と比較し、よ
り製造の容易なプラスチック部品の組み合わせにより提
供することを目的としている。
The present invention can represent the molecular form as the spread of the electron cloud like the space-filling type, and at the same time, the skeleton type and the bond angles and bonds of the sphere and rod type. Compared with conventional products, 3D structural models of molecules that can express length, rough shape of molecules, etc. and are creatively attractive as teaching materials of chemistry and stereogeometry are easier to manufacture than plastics. It is intended to be provided by combining parts.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する為、
この発明に係る分子の三次元構造模型は、正三角形また
は正三角形の3つの角を所定量切断して得られる六角形
にして中央に穴を持つプラスチック板状片(A)複数枚
と、前記正三角形または前記六角形の同一寸法の3辺と
対向2辺の長さが等しく中央に穴を持つ四角形のプラス
チック板状片(B)複数枚とよりなり、前記(A)の同
一寸法の3辺を、前記(B)の等しい長さの2辺と、前
記(A)(B)自身の持つ、折り曲げ機能を併せ持つ相
互の接続手段により接続し、(A)(B)が交互に、互
いの辺を接して平面上に展開する1体の板状片とした
後、接続部を順次接続線に沿って折り曲げて稜とし、最
後に展開形状端面に残されていた所定の接続辺を合わ
せ、接続と曲げ作業により稜として組み立てて得られ、
前記(A)(B)の平面部及び多角形の開口部とにより
形成される、中空の14面体または26面体を原子模型
とし、その複数個の平面部を互いに向かい合わせ、前記
板状片の穴を介し連結して構成する事を特徴とするもの
である。
[Means for Solving the Problems] To achieve the above object,
A three-dimensional structure model of a molecule according to the present invention is a regular plate or a plurality of plastic plate-like pieces (A) each having a hole in the center, which is a hexagon obtained by cutting three corners of a regular triangle. An equilateral triangle or a hexagon having three sides of the same size and two sides of opposite sides having the same length and a square plastic plate-like piece (B) having a hole in the center, and having the same size of (A) The sides are connected to each other by the two sides having the same length (B) and the mutual connection means (A) and (B) which have a folding function, and (A) and (B) are alternately connected to each other. After making a plate-like piece that touches the sides of and expands on a plane, the connection part is sequentially bent along the connection line to form a ridge, and finally the predetermined connection side left on the developed shape end face is matched. , Assembled and obtained as a ridge by connecting and bending work,
A hollow tetrahedron or 26-hedron formed by the flat portions of (A) and (B) and the polygonal opening is used as an atomic model, and a plurality of flat portions thereof are opposed to each other, It is characterized by being connected through a hole.

【0010】[0010]

【作用】この発明は以上のように構成したので、まず正
三角形または六角形の平面部複数面と、四角形の平面部
複数面とともに、多角形状開口部複数を併せ持つ、プラ
スチック板状片よりなる中空の14面体又は26面体を
複数個組み立て、これらを分子模型の構成に必要な原子
模型とする。
Since the present invention is configured as described above, first, a hollow made of a plastic plate-shaped piece having a plurality of equilateral triangular or hexagonal flat surfaces and a plurality of quadrangular flat surfaces and a plurality of polygonal openings. Assemble a plurality of 14-faced or 26-faced, and use these as an atomic model necessary for constructing a molecular model.

【0011】次に個々の原子模型の各平面部より、他原
子模型との共有結合面とするものを選択し、2個の原子
模型の所定の平面部同志を向かい合わせ、互いの連結穴
により連結し、さらに複数個の原子模型を所定の結合角
度及び順序で次々に連結することにより、所望の分子構
造模型を三次元的に構築することができる。
Next, from the planes of the individual atom models, the ones that form covalent bond planes with other atom models are selected, and the predetermined planes of the two atom models are made to face each other. A desired molecular structure model can be three-dimensionally constructed by connecting and further connecting a plurality of atom models one after another at a predetermined bond angle and order.

【0012】[0012]

【実施例】以下、この発明に係る分子の三次元構造模型
を簡明に示す実施例と、基本構造に係わる幾何学的特徴
及びそれを実施する具体的手段につき、添付図面を参照
しつつ、順次詳細に説明する。
EXAMPLES Examples showing a three-dimensional structural model of a molecule according to the present invention, geometrical features related to a basic structure and specific means for implementing the same will be described below with reference to the accompanying drawings. The details will be described.

【0013】図1に、この発明の第1実施例に係る分子
の三次元構造模型の例を斜視図として示す。この実施例
は図2に挙げた従来例と同様にエタノール(C
を表現しており、2個の炭素原子模型(10)と6個の
水素原子模型(50)とにより組み立られている。炭素
原子模型と水素原子模型とは、相似の六角形板及び四角
形板の複数平面により構成されている相似の中空14面
体であるが、炭素原子模型を構成する平面の一辺すなは
ち立体の各稜が水素原子模型よりも長く、従って炭素原
子模型の方が全体に大きくできている。
FIG. 1 is a perspective view showing an example of a three-dimensional structural model of a molecule according to the first embodiment of the present invention. In this example, ethanol (C 2 H 6 ) was used as in the conventional example shown in FIG.
Is represented by two carbon atom models (10) and six hydrogen atom models (50). The carbon atom model and the hydrogen atom model are similar hollow tetrahedrons composed of a plurality of planes of a similar hexagonal plate and a rectangular plate, but each side of the plane that constitutes the carbon atom model The ridge is longer than the hydrogen atom model, so the carbon atom model is larger overall.

【0014】炭素原子模型(10)をなす中空14面体
は、4枚づつの六角形板平面部をもつが、まず2個の炭
素原子模型の任意の六角形板平面部を連結部品により連
結し、次に残り三枚づつの六角形板平面部全てに、計六
個の水素原子模型(50)を連結してこの実施例の組み
立てが完成する。後にこの14面体の幾何学的特徴につ
き述べる通り、1個の炭素原子模型の中心から派生し、
隣の炭素原子模型及び3個の水素原子模型との連結面を
なす4枚の六角形板平面部の中心に足をもつ4本の垂線
は、互いに109.5度の角度で14面体の中心で交差
しており、炭素原子4価の正四面体結合表現の必要条件
を満している。
The hollow tetrahedron forming the carbon atom model (10) has four hexagonal plate flat parts, but first, two hexagonal plate flat parts of two carbon atom models are connected by connecting parts. Then, a total of six hydrogen atom models (50) are connected to all the remaining three hexagonal plate planes to complete the assembly of this embodiment. As I will explain later about the geometrical features of this tetrahedron, it is derived from the center of one carbon atom model,
Four perpendiculars with legs in the centers of the four hexagonal plate planes that form the connecting surface with the adjacent carbon atom model and three hydrogen atom models are the centers of the tetrahedron at an angle of 109.5 degrees. Intersects with and satisfies the necessary conditions for tetravalent bond of tetravalent carbon atom.

【0015】また、2個の炭素原子模型は、互いの六角
形板連結面中央に位置する連結穴に勘合貫通する連結部
品により連結を保持されているが、連結穴の法線を軸と
する相互の旋回が可能であり、炭素原子の結合軸を投影
軸として水素原子の位置関係が旋回変位して生ずる、エ
タノールの各種配座異性体の変化を表現できる。
The two carbon atom models are connected by a connecting part that fits through a connecting hole located in the center of the connecting surfaces of the hexagonal plates, with the normal line of the connecting hole as the axis. Mutual swirling is possible, and changes in various conformers of ethanol caused by swiveling displacement of the positional relationship of hydrogen atoms with the bond axis of carbon atoms as the projection axis can be expressed.

【0016】つぎに、前記実施例原子模型を形成する1
4面体など中空多面体の発想にいたる経緯を述べ、その
幾何学的特徴と原子模型形状としての適性を明らかにす
る。三次元構造模型の必要な有機化学の分子結合では炭
素原子が主要な役割を果たすのは周知の通りであるが、
多くの場合、4価の正4面体結合と呼ばれるように、正
4面体の4頂点を中心で結ぶ互いに約109.5度の角
度の開きをもつ4方向に他原子との共有結合面を持つと
言われている。そこで正4面体の形状をそのまま借りて
原子模型形状とする発想が生ずるが、炭素原子には4価
結合以外に、ベンゼン環などを形成する2重結などの結
合形態があり、正4面体の原型のままではそれらを表現
できない。そこで図3(A図)に示すように、中空の正
4面体が形成できる正3角形の板状辺(31)を用意
し、稜をなす各正3角形の2辺の間に、対向2辺が正3
角形の2辺と長さの等しい4角形の板状片6枚(32)
及び(33)を介して接続すれば、図3(B図)のよう
な中空の14面体が生ずる。若し前記の4角形の板状片
6枚が、3角形となる開口部に臨む2辺の長さが等しい
合同の矩形であるならば、正3角形のの中心を足として
14面体の中心に向かう4本の垂線は正4面体の時と変
わらず、互いに109.5度の角度で14面体中心で一
致するはである。そこで、その様なな中空の14面体の
正3角形面を正4面体結合面とし、正3角形面にはさま
れる矩形面を2重結面に使用すると定義すれば、これを
炭素原子模型の形状として利用できる。また図3(B
図)において、上部一枚の正3角形板を囲む3枚の矩形
板(32)と、下部の3枚の矩形板(33)とを、開口
部に臨む2辺の長さが多少異なる3枚ずつの合同矩形と
すれば、正4面体から受け継いだのとは、やや異なる角
度で各板状片が向き合い、矩形板の2辺を適宜の寸法と
すれば,酸素や窒素などの、正4面体を歪ませた角度の
結合面をもつ原子模型にもて適応ができる。
Next, 1 for forming the atom model of the embodiment
The history of the idea of hollow polyhedra such as tetrahedra is described, and their geometrical characteristics and suitability as atomic model shapes are clarified. It is well known that the carbon atom plays a major role in the molecular bond of organic chemistry that requires a three-dimensional structure model.
In many cases, it has a covalent bond surface with other atoms in four directions with an angle difference of about 109.5 degrees connecting the four vertices of the tetrahedron at the center, which is called tetravalent tetrahedral bond. Is said. Therefore, the idea of borrowing the shape of a regular tetrahedron as it is to create an atom model shape arises, but in addition to tetravalent bonds, carbon atoms have bond forms such as double bonds that form a benzene ring, etc. You cannot express them in the original form. Therefore, as shown in FIG. 3 (A), a regular triangular plate-like side (31) capable of forming a hollow regular tetrahedron is prepared, and two opposing sides of each regular triangle forming a ridge face each other. Side is positive 3
Six square plate-shaped pieces (32) with the same length as the two sides of the square
And (33), a hollow tetrahedron as shown in FIG. 3 (B) is produced. If the above-mentioned six rectangular plate-like pieces are congruent rectangles with the two sides facing the opening forming a triangle being equal in length, the center of the regular triangle is the foot and the center of the tetrahedron is the center. The four perpendiculars to the direction are the same as in the case of the regular tetrahedron, and they coincide with each other at the center of the tetrahedron at an angle of 109.5 degrees. Therefore, if we define that such a regular tetrahedral surface of a hollow tetrahedron is used as a regular tetrahedral bonding surface and a rectangular surface sandwiched by the regular triangular surfaces is used as a double bonding surface, this is a carbon atom model. Available as a shape. In addition, FIG.
In the figure), the three rectangular plates (32) surrounding the upper regular triangular plate and the lower three rectangular plates (33) have slightly different lengths of the two sides facing the opening. If the congruent rectangles are made one by one, it means that each plate-shaped piece faces at a slightly different angle from that inherited from a regular tetrahedron, and if the two sides of the rectangular plate are appropriately sized, oxygen, nitrogen, etc. It can be applied to an atomic model having a bond surface with a distorted angle of a tetrahedron.

【0017】先にのべた原子模型形状の考え方は、更に
正八面体を基本として、より適切な形状に発展させるこ
とがでる。図4は、正八面体(40)の6つの頂点すべ
てを、頂点を形成する4本の稜の長さが個々に正八面体
の稜の半分以下であるような4角錐に似た5面体(4
1)として切り離した姿の斜視図である。ここで始めの
正八面体は6角形(42)8面と新たに生まれた四角形
(43)6面よりなる、14面体に変化している。前記
8面の六角形面は、全て正八面体の各正三角形面の残り
であり、各正三角形面の3辺に足を持つ3本の平面垂線
と中央の垂心は、切り離されずに六角形面にそのまま残
されている。従って任意の六角形面とこれに隣接する四
角形面をへだてた他の3つの六角形面とよりなる4枚1
組の六角形平面は、個々の面に足をもち14面体の内部
で一致する立体垂線の角度で向かい合い、それら4本の
立体垂線の相互のなす角度は全て約109度28分の筈
である。そこで、この4本の立体垂線がほぼ等しい長さ
を持つ様に作られた、同様形状の中空14面体にあって
も、4面一組の六角形面は、メタン(CH)に代表さ
れる4価炭素原子の正四面体分子結合模型を形作れる筈
である。また、切り口から生まれた6面の四角形面は、
ある六面体の構成面と見ることができ、これらも分子結
合面に参画させえる様、程よく設計してこの14面体を
構築すれば、分子模型を組み立てる、各種原子模型形状
として好適のものが生まれると考えられる。
The concept of the atom model shape described above can be further developed into a more appropriate shape based on a regular octahedron. FIG. 4 shows that all six vertices of a regular octahedron (40) have a four-sided pyramid-like shape (4) in which the lengths of the four edges forming the vertices are individually less than half the edges of the regular octahedron.
It is a perspective view of the figure cut away as 1). Here, the first regular octahedron is changed into a tetrahedron, which is composed of a hexagonal (42) 8 surface and a newly formed quadrangle (43) 6 surface. The eight hexagonal faces are all the rest of the equilateral triangular faces of the regular octahedron, and the three plane perpendiculars having legs on the three sides of each equilateral triangle face and the center of the center are not separated, and the hexagonal faces are not separated. It remains as is. Therefore, 4 sheets consisting of an arbitrary hexagonal surface and three other hexagonal surfaces with adjacent square surfaces
The pairs of hexagonal planes have feet on each surface and face each other at the angles of the solid perpendiculars that match inside the tetrahedron, and the angles formed by these four solid perpendiculars should all be about 109 degrees and 28 minutes. . Therefore, even in a hollow tetrahedron of the same shape made so that these four three-dimensional perpendicular lines have almost the same length, a set of four hexagonal surfaces is represented by methane (CH 3 ). It should be possible to form a tetrahedral molecular bond model of a tetravalent carbon atom. In addition, the six quadrangular surfaces created from the cut end are
It can be seen as a constituent surface of a certain hexahedron, and if these 14-hedra are properly designed so that they can also participate in the molecular bonding surface, it will be possible to assemble molecular models and create various atom model shapes suitable for various models. Conceivable.

【0018】図5は、前記の考え方で、正八面体を14
面体に変えるとき、新しく生まれた4角形面の中心も、
旧正八面体の内接球面に接しており、従って14面全て
の立体垂線の長さが等しく、その14本全てが14面体
中心で一致する、最も球に近い立体形状とする事を考え
た場合の、構成要素を示している。図5では破線は旧正
八面体の稜、実線は14面体の稜を示している。(A
図)は、正八面体の6つの頂点を2つづつ、3直面角の
立体座標軸に合わせて配置し、そのいずれの6軸方向か
ら見ても、4頂点を結ぶ四本の稜が正方形となり、1つ
の角で立った様に見える投影形状である。(B図)は、
かりに(A図)を平面図とした時、中心の頂点Pを軸
として45°反時計方向に回転させ、Aの稜を正
面に回して、AをX軸とし、正八面体がそれを構
成する正三角形の4本垂線で囲まれた菱形状に見える角
度の正面図である。(C図)は(A図)において2角4
5°の直角三角形に見えるΔPを、ΔP
の実際の正三角形平面図に置き換えたものであ
る。いま正八面体に半径Rの球が内接するとき、(B
図)において、球は4辺に内接する半径Rの円として描
かれる。そこで、Pで示す頂点を、稜Aの線に
平行で半径Rの円に接するEの線を底稜とする正
4角錐として切り放せば、そこに出来る1辺の長さE
の正方形面は、中心で球Rに接している筈である。
この様にして正八面体の6つの頂点すべてを(B図)に
ある高さP1辺の底稜Eの正4角錐として
切取れば、所定の14面体が得られる。ここで数式1に
示すように、正八面体の1稜の長さ、(B図)における
をLと置けば、(B図)菱形の4辺をなす正三
角形垂線Aは(√3/2)L、Oは元の正
八面体を2個の正四角錐の抱き合わせと見た場合の、そ
の四角錐の高さである故(1/√2)Lとなる。(B
図)において直角三角形ΔAとΔA
は対称の合同形状であるから、線分Aすなはち
(C図)にMで示す6角形の対辺距離は、線分A
(1/2)Lである。ここで又(B図)の直角三
角形ΔAとΔAは相似形状である
から、比例計算式から、線分Tと等しい円の半径
Rの長さは(1/√6)Lとわかる。元の四角錐の高さ
からRの長さを減ずれば、切断する四角錐の高
さQがわかり、再び比例計算式から得られるE
から、四角形の一辺であり六角形の長辺でもあるE
の長さが(1/3)×(3−√3)Lと判明す
る。六角形の平面図は(C図)のようになり、短辺F
は正八面体の稜長Bから六角形の長辺F
の2倍を減じた(1/3)×(2√3−3)Lとな
る。実数としては六角形の長辺は約0.423、短辺は
約0.155を稜長Lに乗じた値である。ここで1辺の
長さに、以上に示した数値の比例関係を持つ、六角形と
正方形の組み合わせが、もっとも球体に近い、3軸対称
の14面体を形作る事が判明する。
FIG. 5 shows the regular octahedron based on the above concept.
When changing to a face, the center of the newly created quadrangular surface
It is in contact with the inscribed sphere of the old regular octahedron, and therefore the lengths of the solid perpendiculars of all 14 surfaces are equal, and all 14 of them match at the center of the tetrahedron. , Showing the components. In FIG. 5, the broken line indicates the ridge of the old regular octahedron, and the solid line indicates the ridge of the tetrahedron. (A
In the figure), two 6 vertices of a regular octahedron are arranged according to the solid coordinate axes of the 3 facet angles, and when viewed from any 6 axis direction, the four edges connecting the 4 vertices are square, It is a projected shape that looks like it stands at one corner. (Figure B) is
On the other hand, when (A figure) is a plan view, it is rotated counterclockwise by 45 ° about the central apex P 0 as an axis, the ridge of A 0 B 0 is turned to the front, and A 1 B 1 is taken as the X axis, FIG. 3 is a front view of a regular octahedron at an angle which looks like a rhombus surrounded by four perpendicular lines of a regular triangle which constitutes the regular octahedron. (Figure C) is a square 4 in (Figure A)
5 ΔP 0 B 0 C 0 looks right triangle °, ΔP 2 B
It is replaced with an actual equilateral triangle plan view of 2 C 2 . When a sphere of radius R is inscribed in a regular octahedron, (B
In the figure), the sphere is drawn as a circle with a radius R inscribed on the four sides. Therefore, if the vertex indicated by P 1 is cut off as a regular quadrangular pyramid whose bottom edge is the line of E 1 F 1 which is parallel to the line of the edge A 1 B 1 and is in contact with a circle of radius R, the Length E 1
The square face of F 1 should be in contact with the sphere R at the center.
In this way, by cutting all six vertices of the regular octahedron as regular quadrangular pyramids of the bottom edge E 1 F 1 of the height P 1 Q 1 1 side at (Fig. B), a predetermined tetrahedron is obtained. Here, as shown in Formula 1, if the length of one edge of a regular octahedron, A 1 B 1 in (B figure) is set as L, (B figure) a regular triangle perpendicular line A 1 P 1 forming the four sides of the rhombus Is (√3 / 2) L, and O 1 P 1 is (1 / √2) L because the original octahedron is the height of two regular pyramids when viewed as a tie of two regular pyramids. . (B
In the figure) right triangles ΔA 1 O 1 S 1 and ΔA 1 T 1 E
Since 1 is a symmetric congruent shape, the distance between opposite sides of the hexagon shown by M 2 N 2 in the line segment A 1 E 1 (Fig. C) is the line segment A 1.
1 O 1 (1/2) L. Here again, since the right triangles ΔA 1 O 1 P 1 and ΔA 1 T 1 E 1 (see FIG. B) have similar shapes, from the proportional calculation formula, the length of the radius R of the circle equal to the line segment T 1 E 1 is calculated. Is found to be (1 / √6) L. If the length of R is subtracted from the original height O 1 P 1 of the quadrangular pyramid, the height Q 1 P 1 of the quadrangular pyramid to be cut can be known, and E 1 obtained from the proportional calculation formula again
From Q 1 , E, which is one side of a quadrangle and is also the long side of a hexagon
The length of 1 F 1 is found to be (1/3) × (3-√3) L. The plan view of the hexagon is as shown in (C) and the short side F 2
L 2 is a regular octahedron edge length B 2 P 2 to a hexagonal long side F 2 G
It is (1/3) × (2√3-3) L obtained by subtracting 2 times 2 As a real number, the long side of the hexagon is about 0.423, and the short side is about 0.155 multiplied by the edge length L. Here, it is found that the combination of hexagons and squares, which have the above-described proportionality of the numerical values to the length of one side, forms a trihedral symmetrical tetrahedron that is closest to a sphere.

【0019】[0019]

【数1】 [Equation 1]

【0020】図6は、前記のような軸対称14面体を、
幾何学的3次元模型として作るため、その6角及び4角
形面の寸法関係を改めて示した参考図である。図6(A
図)は先に述べた球に最も近い軸対称14面体を作る場
合のものであり、平行6角形の長短2辺などが、こよう
な比率の近似値の整数比となる例としては、この図の各
数値に52/3を乗じた、52:26:22:8などが
挙げられる。すなはち、1稜34mmの正八面体をなす
1辺の正3角形の角を全て、1辺22mmの正3角形と
して切り取り、対辺距離26mm、長辺22mm短辺8
mmの平行6角形とし、これと接続する正方形の1辺を
22mmとする、などである。
FIG. 6 shows an axially symmetric dodecahedron as described above,
It is a reference drawing which newly showed the dimensional relationship of the hexagonal and quadrangular surfaces for making as a geometrical three-dimensional model. Figure 6 (A
(Figure) is for making the axisymmetric 14-sided body closest to the sphere described above. As an example in which the long and short 2 sides of a parallelepiped are the integer ratio of the approximate value of this ratio, For example, 52: 26: 22: 8 obtained by multiplying each numerical value in the figure by 52/3. That is, all the sides of a regular triangle with a side of 34 mm and a regular octahedron of 34 mm are cut out as a regular triangle of 22 mm on a side, and the distance between opposite sides is 26 mm, the long side is 22 mm, and the short side is 8.
For example, a parallel hexagon of mm and one side of a square connected to the hexagon is 22 mm.

【0021】図6(B図)は、いま1つの考え方とし
て、平行6角形の対辺距離と正方形の1辺を同一寸法と
して、軸対称14面体を作る時のものである。こちらの
例の近似値整数比としては、34:26:26:8、す
なはち、1辺34mmの正3角形の角を全て、1辺8m
mの正3角形として切り取り、対辺距離と長辺共に26
mm、短辺8mmの平行6角形とし、これと接続する正
方形の1辺も26mmとする、などである。その14面
体形状は図10に示しているが、正方形面の立体中心と
の垂線距離が、6角形面のそれよりもやや短くなる。そ
こで正方形面を炭素同志の2重結合面とする約束で、こ
れを炭素模型形状とすれば、好都合とも思えるが、後に
述べる図17のようなベンゼン基の環状結合を作る場合
には、図6(A図)の寸法関係による14面体形状のほ
うが正六角形に近い連結形状となる利点を持っている。
FIG. 6 (B) shows another way of thinking when making an axisymmetric dodecahedron with the opposite side distance of a parallelepiped and one side of a square having the same size. The approximate value integer ratio of this example is 34: 26: 26: 8, that is, all the corners of a regular triangle of 34 mm on a side are 8 m on a side.
Cut out as a regular triangle of m, and the distance between the opposite side and the long side are 26
mm, short side 8 mm, parallel hexagon, and one side of a square connected to this side is 26 mm. The tetrahedral shape is shown in FIG. 10, but the perpendicular distance from the cubic center of the square surface is slightly shorter than that of the hexagonal surface. Therefore, it seems convenient if the square face is a double bond face of carbon atoms and it is made into a carbon model shape, but when making a benzene ring bond as shown in FIG. Due to the dimensional relationship shown in (A), the tetrahedron shape has the advantage of being a connected shape closer to a regular hexagon.

【0022】以上のべた14面体を具体的に原子模型と
して利用すべく、その実体の製作を試みる場合、所定の
材料よりの切削など機械工作によるか或いは各種塑性加
工の手段では、図2の従来例で述べたのと同様に、原子
模型同志を繋ぐ連結穴の工作を含めて高度の加工技術が
必要となる。しかし、これを3角形又は6角形状及び4
角形状などの板状片の繋がった中空の多面体とするなら
ば、中央に設ける連結穴の工作も含めた組み立て部品と
しての板状片の製作は、特定角度に設計された面や穴を
持つ球体あるいは多面体形状を、一個の立体構造として
製作する場合とは比較にならぬほど容易となり、これが
本発明発想の骨子である。さらに、この14面体には6
角形面が8面あるが、4価の分子結合面としては4面1
組で事足りるゆえ、以下、図7及び図9、図10を参照
しつつ述べる様に、4枚の6角形板状片が、6枚の4角
形板状片と互いに稜をなして接続する、中空多面体形状
としたものである。従ってこの14面体には、4面の6
角形状開口部があり、これが板状片の連続した平面展開
形状からの14面体模型への組み立て及び、模型同志の
連結作業を、極めて容易にする効果をもたらしている。
When attempting to manufacture the solid body of the solid dodecahedron specifically for use as an atomic model, the conventional solid body shown in FIG. 2 is used by means of machining such as cutting from a predetermined material or by means of various plastic working. As mentioned in the example, a high level of processing technology is required, including the fabrication of connecting holes that connect the atom models. However, this is a triangle or hexagon and a 4
If it is a hollow polyhedron in which plate-shaped pieces such as a square shape are connected, the plate-shaped piece as an assembly part including the work of the connecting hole provided in the center has a surface or hole designed at a specific angle. This is much easier than the case of producing a spherical or polyhedral shape as a single three-dimensional structure, and this is the essence of the present invention. In addition, this tetrahedron has 6
There are 8 square faces, but 4 faces as tetravalent molecule-bonding faces 1.
Since a set is sufficient, as will be described below with reference to FIGS. 7, 9 and 10, four hexagonal plate-shaped pieces are connected to the six square plate-shaped pieces with ridges formed therebetween. It has a hollow polyhedron shape. Therefore, this 14-sided body has 6
There is an angular opening, which has the effect of making it extremely easy to assemble a plate-shaped piece from a continuous flat development shape into a dodecahedron model and to connect the models to each other.

【0023】つぎに、図5及び図6で本発明の例として
挙げた軸対称の14面体を、板状片の組み合わせにより
如何にして製作するかの手順を述べる。まず、図6で述
べたように、正三角形の3つの角を対片と平行に切り取
った平行六角形を作図する。ここで生じた平行六角形の
長辺の長さと等しい1辺よりなる正方形を作図し、前記
平行六角形寸法の板状片(A)四枚と当該正方形寸法の
板状片(B)6枚を、中空14面体構築の要素と定め
る。(A)(B)の面積からプラスチック板状片として
の適性厚みを選び、同時に(A)(B)の中央に持つに
共通の穴形状を定める。次に(A)の長片1辺と(B)
の同寸1辺を接続し、かつ接続線に沿って折り曲げられ
る接続手段を選定し、(A)(B)の設計構造に加え
る。この接続手段は、(A)と(B)の接続及び折り曲
げの機能を満足すれば良く、(A)の隣には必ず(B)
が接続するので、(A)(B)相似の形状である必要は
ない。ここで決定した接続構造を(A)(B)に振り分
け、これを(A)はその平行六角形の長辺3辺にもち、
(B)はこれと対応する対向2辺にもつものとする。
Next, a procedure for manufacturing the axially symmetric 14-sided body shown as an example of the present invention in FIGS. 5 and 6 by combining plate-like pieces will be described. First, as described with reference to FIG. 6, a parallelepiped is constructed by cutting three corners of an equilateral triangle in parallel with the pair of pieces. A square consisting of one side equal to the long side of the parallel hexagon generated here is drawn, and four parallel hexagonal plate-like pieces (A) and six square plate-like pieces (B) are drawn. Is defined as an element for constructing a hollow dodecahedron. An appropriate thickness as a plastic plate piece is selected from the areas of (A) and (B), and at the same time, a common hole shape to be held in the center of (A) and (B) is determined. Next, one long piece of (A) and (B)
A connecting means that connects the same side of 1 and is bent along the connecting line is selected and added to the design structure of (A) and (B). This connecting means has only to satisfy the connecting and bending functions of (A) and (B), and (B) must be placed next to (A).
Since they are connected, it is not necessary that they have similar shapes (A) and (B). The connection structure determined here is divided into (A) and (B), and (A) has this on the three long sides of the parallelepiped,
(B) has two opposite sides corresponding to this.

【0024】かくして設計仕様と寸法間係の定まった平
行六角形板(A)と正方形板(B)をプラスチック板状
部品として製造した実施例を図7に示す。図7(B図)
の正方形板には、2辺を平行六角形板と接続させるため
の1辺につき2個1組のトーラス状突起(70)が設け
られており、(A図)の平行六角形板には、3つの長辺
に正方形板のトーラス状突起を受けて接続すると共に、
接続部を折り曲げて稜とする機能を持つ眼鏡フレーム状
の接続片(71)を持っている。図7(C図)に正方形
板のトーラス状突起に平行六角形板の眼鏡フレーム状接
続片を圧入して2枚の板状片を接続し、更にこれを折り
曲げて接続部が稜となる様を(D図)の断面図で示す。
FIG. 7 shows an embodiment in which the parallel hexagonal plate (A) and the square plate (B), whose design specifications and dimensions are fixed, are manufactured as plastic plate parts. Figure 7 (Figure B)
The square plate of is provided with a pair of torus-shaped protrusions (70) per side for connecting two sides to the parallel hexagonal plate, and the parallel hexagonal plate of FIG. While receiving and connecting the square plate torus-shaped projections on the three long sides,
It has an eyeglass frame-shaped connecting piece (71) having a function of bending the connecting portion to form a ridge. In FIG. 7 (C), a pair of plate-shaped connecting pieces of parallel hexagonal plates are press-fitted into the torus-shaped protrusions of the square plate to connect the two plate-shaped pieces, and further, the connection pieces are bent to form ridges. Is shown in a sectional view of FIG.

【0025】平行六角形板、正方形板共に、中央に中空
多面体組み立て後に、他の多面体との連結機能を果た
す、連結穴(72)が設けられている。その連結部品に
は,2枚の板状片を締め合わす目的で一般に利用され
る、ボルト・ナットの組み合わせでもよいが、図8に示
すような乗用車や家庭電化製品の部品として用いられて
いる、カヌークリップ(81)或いはグロメット(8
2)と呼ばれている、多様な板状片結合用プラスチック
部品から、穴寸法に適合するものも利用できる。
Both the parallel hexagonal plate and the square plate are provided at the center with a connecting hole (72) for performing a connecting function with another polyhedron after the hollow polyhedron is assembled. The connecting parts may be a combination of bolts and nuts that are generally used for the purpose of tightening two plate-shaped pieces, but are used as parts of passenger cars and home electric appliances as shown in FIG. Canoe clip (81) or grommet (8
Various plate-shaped piece-bonding plastic parts referred to as 2), which meet the hole size, are also available.

【0026】かくして、図7に示す単純な板状片部品の
組み合わせにより、図5の14面体及び後に述べる26
面体、62面体などの軸対称多面体の組み立てが可能で
あり、更に前記接続機能の仕様を変えずに、1片寸法の
多少異なる前記と相似形状の平行六角形板、正方形板を
組み合わせると多種多様な変形14面体などの多面体が
構築できる。図9は図7に示す部品と接続方法で、平行
六角形板4枚、正方形板6枚の接続された平面展開図を
示しているが、各接続部を順次折り曲げ、展開図に於け
る3ヵ所ずつの所定の接続辺(91、92、93)を繋
ぎ終えると、図10に示す軸対称14面体が組み立てら
れる。図10(A図)はこれを平面上に、その正方形板
面を据えた3面図、図10(B図)は同じようにその平
行六角形板面を据えた3面図である。
Thus, by combining the simple plate-like pieces shown in FIG. 7, the tetrahedron of FIG.
It is possible to assemble an axisymmetric polyhedron such as a tetrahedron, a 62-hedron, etc. Furthermore, a wide variety can be obtained by combining parallel hexagonal plates and square plates similar to the above with a slightly different size of one piece without changing the specifications of the connection function. A polyhedron such as a modified tetrahedron can be constructed. FIG. 9 shows a plan development view in which four parallel hexagonal plates and six square plates are connected by the parts and the connection method shown in FIG. 7, but each connection part is sequentially bent and 3 in the development view. When the predetermined connection sides (91, 92, 93) at each place are connected, the axisymmetric dodecahedron shown in FIG. 10 is assembled. FIG. 10 (A) is a three-sided view in which the square plate surface is placed on a plane, and FIG. 10 (B) is a three-sided view in which the parallel hexagonal plate surface is similarly placed.

【0027】図11、図12は、前記図9及び図10を
参照して述べたのと同じ手法で、前記平行六角形板8
枚、正方形板12枚、先程の倍数の板状片により8角形
の開口部6面を併せ持つ軸対称の26面体が組み立てら
れるのを示しており、図11は板状片の接続平面展開
図、図12(A図)はこれを平面上に正方形板面を据え
た3面図、図12(B図)は同じようにその平行六角形
板面を据えた3面図である。これらの図から判断される
ように、この26面体の、正方形板面の垂線方向より投
射した投影形状は矩形の角を切り取った軸対称の8角
形、同じく八角形開口部方向よりは正方形の角を切り取
った点対称の8角形、平行六角形板面方向よりは正六角
形の角を僅かに落とした点対称の12角形となる。各板
状面の垂線の互いになす角度は、先の14面体よりも複
雑多様であるが、平行六角形板相互の垂線角は約68
度、約109.5度、約136度、そして180度つま
り同軸、の四種類であり、任意の平行六角形板の垂線
と、開口部の対辺で隔たる同じ三面の平行六角形板面の
個々の垂線となす角度は、それぞれ約109.5度であ
り、先の14面体と同様、正四面体結合の成立する組み
合わせとなる。また正方形板相互の垂線角の種類は、9
0度、180度があると共に、図12(B図)の平面図
にみられる通り、平行六角形板と垂直な投射軸の投影形
状外周をなす6面の正方形板の垂線が、26面体の中心
を水平に切る平面上にあり、また、隣同志の正方形板の
なす角度が全て30度であり中心で一致するため、6平
面の交差形状は1つの正六角形をなしている。そこで、
この中空26面体6個を連結すれば、有機化合物物質と
して重要であるシクロヘキサン(C12)の、非平
面構造の炭素環状結合模型を平行六角形板面相互の連結
で作り得ると共に、これと対照的なベンゼン環(C
)の平面炭素環状結合模型もまた、断面が正6角形状
に配列された正方形板面相互の連結で容易に構築し、巨
大分子構造模型に発展させるのに極めて好都合の幾何学
的形状と言える。
11 and 12 show the parallel hexagonal plate 8 in the same manner as described with reference to FIGS. 9 and 10.
FIG. 11 shows that an axisymmetric 26-faced body having 6 sides of octagonal opening portions is assembled by using a sheet, 12 square plates, and a plate-shaped piece of the above-mentioned multiple. FIG. FIG. 12 (A) is a three-sided view in which a square plate surface is placed on a plane, and FIG. 12 (B) is likewise a three-sided view in which the parallel hexagonal plate surface is placed. As can be judged from these figures, the projected shape of this 26-faced body projected from the direction perpendicular to the square plate surface is an axially symmetric octagon with a rectangular corner cut off, and also a square corner rather than an octagonal opening direction. Is a point-symmetrical octagon, which is a point-symmetrical dodecagon in which the corners of a regular hexagon are slightly dropped from the plate surface direction. The angles formed by the perpendiculars of the plate-shaped surfaces are more complex and diverse than those of the above-mentioned 14-sided polygon, but the perpendicular angles between the parallel hexagonal plates are about 68.
There are four types of parallel hexagonal plates, namely, 109.5 degrees, about 136 degrees, and 180 degrees, that is, coaxial, and the normal line of any parallel hexagonal plate and the parallelepiped surface of the same three sides separated by the opposite side of the opening. The angles formed by the individual perpendiculars are about 109.5 degrees, respectively, and like the tetrahedron described above, the combination forms a regular tetrahedral connection. The types of perpendicular angles between square plates are 9
As shown in the plan view of FIG. 12 (B), there are 0 degrees and 180 degrees, and the perpendicular line of the 6-sided square plate forming the outer periphery of the projection shape of the projection axis perpendicular to the parallel hexagonal plate is Since they are on a plane that horizontally cuts the center, and the angles formed by the adjacent square plates are all 30 degrees and they coincide at the center, the intersecting shape of the 6 planes forms one regular hexagon. Therefore,
By connecting 6 hollow 26-sided polyhedrons, a non-planar carbon-carbon bond model of cyclohexane (C 6 H 12 ), which is important as an organic compound substance, can be formed by connecting parallel hexagonal plate surfaces with each other. In contrast to benzene ring (C 6 H
The planar carbon ring bond model of 6 ) is also easily constructed by connecting square plate surfaces whose cross sections are arranged in a regular hexagonal shape, and has a very convenient geometrical shape to develop into a macromolecular structure model. I can say.

【0028】実施例として挙げた、図9、図11の平面
展開図に示した姿の板状部品は、ともに図7で述べた板
状片の接続作業によるものとして説明した。しかし部品
価格の低減と組み立ての簡略化を図り、図7(A図)の
板状片(A)と、(B図)の板状片(B)を、始めから
複数枚づつ交互に接続する板状片、あるいは14面体を
組み立てる(A)(B)10枚よりなる板状片、26面
体を組み立てる(A)(B)20枚よりなる板状片など
の、1体の板状部品として製造する、金型の製作及び成
形加工にも、さして困難な点はなく、請求項2にある提
案要件である。
The plate-like parts shown in the plan development views of FIGS. 9 and 11 given as examples are both explained by the connecting work of the plate-like pieces described in FIG. 7. However, in order to reduce the cost of parts and simplify the assembly, the plate-like pieces (A) in FIG. 7 (A) and the plate-like pieces (B) in (B) are alternately connected to each other from the beginning. As a single plate-shaped component, such as a plate-shaped piece or a plate-shaped piece composed of 10 (A) and (B) plates for assembling a 14-sided body, and a plate-shaped piece composed of 20 plates (A) and (B) for a 26-sided body. There is no difficulty in manufacturing and forming the metal mold, which is the proposed requirement.

【0029】以下に図1と同様に、図10、図12の原
子模型による分子模型組み立ての実施例を挙げて、その
特徴を説明する。図13図14は化学書などの立体座標
異性体に関する項で、常に引き合いに出されるシクロヘ
キサン(C12)の炭素環状結合部分の模型を、図
10の6個の14面体の結合で見せたものである。図1
3は、水素原子との共有結合面(130)計12面のう
ち、3個所づつの2組が、背を向けて平面状に並ぶ椅子
形と呼ばれる炭素原子の配座形状模型であり、同じく図
14は、図13のシクロヘキサンの配座異性体で、前者
よりやや化学的に不安定と説明される、舟形と呼ばれる
形状となっている。そして図13の椅子形模型の6ヵ所
の連結部分(131)を同時に旋回させれば、図14の
舟形を経由し、最初の椅子形の水素原子の位置が裏返し
となった椅子形に戻る、反転と呼ばれるシクロヘキサン
の配座転移現象を、連結したままの動きとして観察する
事が出来る。
Similar to FIG. 1, the features thereof will be described below with reference to an example of assembling a molecular model by the atomic model of FIGS. 10 and 12. FIG. 13 FIG. 14 is a term relating to stereo-coordinate isomers in chemical books and the like, and the model of the cyclohexane (C 6 H 12 ) carbocyclic bond portion that is always referred to is shown by the bond of the 6 tetrahedra in FIG. It is a thing. FIG.
3 is a conformational model of carbon atoms called a chair shape in which two sets of three parts are arranged in a plane with their backs out of a total of 12 covalent bonding surfaces (130) with hydrogen atoms. FIG. 14 is a conformational isomer of cyclohexane in FIG. 13, which has a shape called a boat shape, which is explained to be slightly chemically unstable as compared with the former. Then, if the six connecting portions (131) of the chair-shaped model of FIG. 13 are simultaneously swung, the chair-shaped hydrogen atom of the first chair-shaped returns to the chair-shaped, which is turned upside down, via the boat-shaped of FIG. The conformational transition phenomenon of cyclohexane, which is called inversion, can be observed as a motion of being connected.

【0030】図15は、図1と同様エタノール(C
)を表現しているが、図1では炭素原子模型と水素原
子模型共に相似の中空14面体で表し、両者の区別は板
状片の寸法による形状の大小であったが、図15は同寸
法の板状片による26面体(20)を炭素原子に、14
面体(50)を水素原子に見立てたものである。原子模
型の原子種別を示す方法としては、この様に形状の大小
の差による他、板状片の色彩の組み合わせとの併用によ
り、その多様化は容易である。更に、板状片接部分の仕
様を統一すれば、多少1辺寸法の異なる平行六角形板、
正方形あるいは矩形板との混合でも、立体形状組立て可
能の組み合わせが得られるので、14面体に限っても、
極めて多様な形状が得られる。
FIG. 15 shows ethanol (C 2 H
6 ) is represented, both the carbon atom model and the hydrogen atom model are represented by similar hollow tetrahedrons in FIG. 1, and the distinction between the two is based on the size of the plate, but in FIG. A 26-sided piece (20) with a plate-like piece having a size of
It is a model in which the face piece (50) is regarded as a hydrogen atom. As a method of indicating the atom type of the atomic model, it is easy to diversify not only by the difference in size as described above but also by combining with the color combination of the plate-shaped pieces. Furthermore, if the specifications of the plate-shaped one-sided part are unified, parallel hexagonal plates with slightly different side dimensions,
Even if it is mixed with a square or rectangular plate, a combination that can be assembled into a three-dimensional shape can be obtained, so even if it is limited to a 14-sided body,
A wide variety of shapes are available.

【0031】図10の14面体で、炭素6個が平面上に
環状結合するベンゼン環を形作ろうとして図16の様に
組み立てると6角形の環状結合模型が得られる。しかし
平行六角形板4面を通常の炭素4価結合面、正方形板面
を結合面とするときは、それを挟む平行六角形板2面の
結合を束ねる2重結合と定義して模型表現の統一を図る
約束とすると、此の環状結合は対称位置の2重結合(1
62)2ヵ所と1価結合(161)4ヵ所で、8価の結
合先をもつキノンと呼ばれる特殊な環状基と言うことに
なる。ここでベンゼン環を6ヵ所の1.5重結合(16
3)により成り立つと言う考え方に沿って、平行六角形
板と正方形板面を向き合わせて順に連結し、かつ炭素模
型1個につき1面ずつの平行六角形板が、1価の結合面
(161)として均等に6方向に外を向くように組み立
てのが、図17である。結果は、14面体の6角形投影
形状が正六角形ではないため、連結部1ヵ所につき約5
度程度の角度の食い違いがあり、視覚的にも違和感が生
ずる。これは先に図5と図6(A図)で述べた球に近い
14面体を採用すれば、実用的にさほどの不都合が生じ
ないが、どうしても厳密に正六角形の結合基が欲しい場
合には、次のよう手段がある。
A hexagonal ring-bonding model is obtained by assembling as shown in FIG. 16 in order to form a benzene ring in which six carbon atoms are ring-bonded on a plane in the tetrahedron of FIG. However, when four parallel hexagonal plates are used as ordinary carbon tetravalent bonding faces and square plate faces are used as bonding faces, the bonds of the two parallel hexagonal plates sandwiching the faces are defined as a double bond, which is a model expression. If we promise to unify, this circular bond is a double bond (1
62) It is a special cyclic group called quinone having an octavalent bond at two positions and a monovalent bond (161) at four positions. Here, the benzene ring has six 1.5-fold bonds (16
According to the idea that 3) holds, parallel hexagonal plates and square plate surfaces are faced and connected in order, and one parallel hexagonal plate per carbon model has a monovalent bonding surface (161). 17) are assembled so that they are evenly oriented in the six directions as shown in FIG. The result is that the projected shape of a hexahedron of a tetrahedron is not a regular hexagon, so about 5 points per connecting part
There is a degree of angle discrepancy, which causes a visual discomfort. This is because if the tetrahedron close to the sphere described in FIGS. 5 and 6 (A) is adopted, practically no inconvenience will occur, but if a strictly hexagonal bonding group is strictly required, , There are the following means.

【0032】此処までの実施例で用いた、平行六角形板
と正方形板の組み合わせのみでは、正六角形の投影形状
を持つ、同様な14面体を作るのは幾何学的に無理であ
る。そこで図18の様に、1辺の長さが正方形板と同じ
で、向かい合う内角が約100度及び80度の菱形状四
角形板で、80度の対角線が僅かに曲がる様な折れ目を
持つ板状片を作り、図9の14面体展開図の6枚の正方
形板のうちの4枚を、これに入れ変え,図19の展開図
の様にに接続して組み上げると、図20のような中空多
面体が得られる。この形状は正確には14面体ではな
く、18面体と言うべきものかもしれぬが、2枚の正方
形板とこれを挟む4枚の平行六角形板との個々の稜の内
角は約120度であり、図20の様に正方形板面を平面
におく側面投影形状は、XY軸方向共に正六角形状とな
る。そこでこれを用いてベンゼン環の炭素結合模型を組
めば、、図17の様にしても、また正方形板面が向かい
合う2重結合(162)が1つ置きに3ヵ所有るベンゼ
ン記号の様に組んでも、いずれも図21に示すような、
平面上の正6角形環状基となり、ハニカム状に次々とこ
れを拡張してゆくことができる。
It is geometrically impossible to make a similar tetrahedron having a regular hexagonal projected shape only by the combination of the parallel hexagonal plate and the square plate used in the above embodiments. Therefore, as shown in FIG. 18, a rhomboidal square plate having a side length equal to that of a square plate and facing inside angles of about 100 degrees and 80 degrees, and having a fold line such that a diagonal line of 80 degrees is slightly bent. Fig. 20 is a schematic view of the tetrahedron development view of Fig. 9 in which four of the six square plates are replaced with four pieces and connected as shown in the development view of Fig. 19. Hollow polyhedra are obtained. This shape is not exactly a tetrahedron but rather an 18-sided body, but the internal angle of each ridge between two square plates and four parallel hexagonal plates sandwiching this is about 120 degrees. As shown in FIG. 20, the side surface projection shape in which the square plate surface is a flat surface is a regular hexagonal shape in both the XY axis directions. Therefore, if you construct a carbon bond model of the benzene ring using this, you can also construct it as shown in Fig. 17, or like the benzene symbol in which every other double bond (162) where the square plate faces are in possession of every other three. However, in each case, as shown in FIG.
It becomes a regular hexagonal ring-shaped base on a plane and can be expanded one after another in a honeycomb shape.

【発明の効果】以上詳細に説明した様に、この発明に係
る分子の三次元構造模型は、正三角形または六角形板の
平面部と、その3つの長辺に各々の一辺が接続された四
角形板の平面部と、四角形板平面部の他の面と接続せぬ
2辺により囲まれた多角形開口部とにより形成される、
中空14面体又は中空26面体などを原子模型として組
み立て、その複数を連結して三次元分子模型を構成した
ので、空間充填型,骨格型,球と棒型の何れの型とも異
なりながらも、空間充填型のように電子雲の広がりを3
次元的に視覚に訴えることができると共に、骨格型及び
球と棒型のように、結合角,結合距離と結合形状等につ
いても、理論に沿って概略を表現することができる模型
を、より製造の容易な部品により、提供可能としたもの
である。
As described in detail above, the three-dimensional structural model of a molecule according to the present invention is a plane part of an equilateral triangle or a hexagonal plate and a quadrangle in which one side is connected to the three long sides. Formed by a plane portion of the plate and a polygonal opening surrounded by two sides that are not connected to the other surface of the rectangular plate plane portion,
A hollow 14-faced or a 26-faced hollow was assembled as an atomic model, and a plurality of them were connected to form a three-dimensional molecular model. Therefore, even though it is different from space-filling type, skeleton type, sphere and rod type, space Spreads the electron cloud 3 like a filling type
A model that can be visually appealed in a three-dimensional manner and that can also outline the bond angle, bond distance, bond shape, etc., like the skeleton type and sphere and rod type, according to the theory is manufactured. It is possible to provide by using easy parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例に係る、中空14面体8
個を互いに連結してエタノール(C)を表現し
た、分子の三次元構造模型の一例を示す斜視図である。
FIG. 1 is a hollow tetrahedron 8 according to a first embodiment of the present invention.
Number representing the connecting together to ethanol (C 2 H 6), is a perspective view showing an example of a three-dimensional structure model of the molecule.

【図2】従来見られた、3種類の分子の三次元構造模型
方式を、図1の本発明の実施例同様に、エタノール(C
)を表現した斜視図として示すものである。
FIG. 2 shows a conventional three-dimensional structure model method of three types of molecules, as in the embodiment of the present invention shown in FIG.
2 H 6 ) is shown as a perspective view.

【図3】この発明発想の基点となる、正4面体から正三
角形6面と四角形4面よりなる14面体を形成する考え
方の過程を示してる。
FIG. 3 shows a process of an idea of forming a tetrahedron composed of six regular triangles and four tetragons from a regular tetrahedron, which is a base point of the idea of the invention.

【図4】正八面体の6つの頂点すべてを、4角錐に似た
5面体として切り離したとき、六角形8面と四角形6面
の14面体が形成されることを示す斜視図である。
FIG. 4 is a perspective view showing that when all six vertices of a regular octahedron are cut off as a pentahedron similar to a quadrangular pyramid, a hexahedron of eight sides and a tetragon of six sides of 14 sides are formed.

【図5】正八面体を14面体に変えるとき、全ての面が
正八面体の内接球面に接する、最も球に近い立体形状と
なる条件を、数式1と合わせて示すものである。
FIG. 5 shows, together with the mathematical formula 1, a condition that when a regular octahedron is changed to a tetrahedron, all the surfaces are in contact with the inscribed spherical surface of the regular octahedron and the shape becomes the closest to a sphere.

【図6】本発明の分子模型を構成する中空14面体また
は中空26面体を形作る、平行6角形板の基本形状を示
している。
FIG. 6 shows the basic shape of a parallelepiped that forms a hollow 14-sided body or a hollow 26-sided body that constitutes the molecular model of the present invention.

【図7】中空14面体または中空26面体を形作る、平
行六角形板と正方形板を、相互の接続機能を持たせた構
造のプラスチック部品とした実施例と、その接続方法を
示している。
FIG. 7 shows an embodiment in which a parallel hexagonal plate and a square plate forming a hollow 14-sided body or a hollow 26-sided body are plastic parts having a structure for mutually connecting, and a connecting method therefor.

【図8】中空多面体組み立て後に、連結穴を介して他の
多面体との連結するのに利用できる、一般の乗用車など
にも用いられている連結部品例を示す斜視図である。
FIG. 8 is a perspective view showing an example of a connecting part used for a general passenger car or the like, which can be used for connecting with another polyhedron through a connecting hole after the hollow polyhedron is assembled.

【図9】中空14面体を作る、平行六角形板4枚、正方
形板6枚の接続された、平面展開図を示している。
FIG. 9 shows an unfolded plan view of four parallel hexagonal plates and six square plates making a hollow tetrahedron.

【図10】組み立てられた、中空の軸対称14面体の形
状を、いろいろな角度から示した3面図である。
FIG. 10 is a trihedral view showing the shape of an assembled hollow axisymmetric dodecahedron from various angles.

【図11】中空の26面体を作る、平行六角形板8枚、
正方形板12枚の接続された、平面展開図を示してい
る。
FIG. 11: Eight parallel hexagonal plates for making a hollow 26-sided body,
FIG. 4 shows a connected plan view of 12 square plates.

【図12】組み立てられた、中空の軸対称26面体の形
状を、いろいろな角度から示した3面図である。
FIG. 12 is a trihedral view of the shape of an assembled hollow axisymmetric 26-sided body from various angles.

【図13】6個の中空14面体による、シクロヘキサン
(C12)炭素環状結合部分の、椅子形と呼ばれる
炭素原子の配座形状模型をしめしている。
FIG. 13 is a conformational model of carbon atoms called a chair shape of a cyclohexane (C 6 H 12 ) carbon cyclic bond portion formed by six hollow tetrahedrons.

【図14】6個の中空14面体による、シクロヘキサン
(C12)の炭素環状結合部分の、舟形と呼ばれる
炭素原子の配座形状模型をしめしている。
FIG. 14 shows a conformational shape model of carbon atoms called a boat shape in a carbon cyclic bond portion of cyclohexane (C 6 H 12 ) formed by six hollow tetrahedrons.

【図15】中空の26面体を炭素原子に、中空の14面
体を水素原子に見立てて、エタノール(C)を表
現する分子の三次元構造模型の斜視図である。
FIG. 15 is a perspective view of a three-dimensional structural model of a molecule expressing ethanol (C 2 H 6 ) with a hollow 26-sided body as a carbon atom and a hollow 14-sided body as a hydrogen atom.

【図16】6個の中空14面体による、キノン(C
)の炭素環状結合部分の形状模型をしめしてい
る。
FIG. 16 shows quinone (C 6 O) formed by 6 hollow tetrahedrons.
2 H 4 ), which is a shape model of the carbocyclic bond portion of ( 2 H 4 ).

【図17】6個の中空14面体による、ベンゼン環(C
)の炭素環状結合部分の形状模型をしめしてい
る。
FIG. 17: Benzene ring (C
6H 6 ) shows a model of the shape of the carbocyclic bond part of 6 H 6 ).

【図18】特殊な中空14面体をえるための、向かい合
う内角が約100度及び80度の菱形状四角形板をしめ
している。
FIG. 18 shows diamond-shaped quadrangular plates with facing inner angles of about 100 degrees and 80 degrees for obtaining a special hollow tetrahedron.

【図19】ベンゼン環形成に都合のよい、中空14面体
を作る、平行六角形板4枚、正方形板2枚、菱形状四角
形板4枚の接続された、平面展開図を示している。
FIG. 19 shows a connected plan development view of four parallel hexagonal plates, two square plates and four diamond-shaped quadrangular plates that make a hollow tetrahedron convenient for benzene ring formation.

【図20】図19の、板状片を組み立てて得られる、2
枚の平行6角形面と1枚の正方形面が、平面で交差する
120°の垂線角度で向かい合う、中空14面体の変形
例の3面図である。
FIG. 20 is a view obtained by assembling the plate-shaped pieces of FIG.
FIG. 7 is a three-sided view of a modification of a hollow tetrahedron in which one parallel hexagonal surface and one square surface face each other at a perpendicular angle of 120 ° intersecting with each other in a plane.

【図21】図20の、正六角形の投影形状を持つ、6個
の中空14面体の変形種による、ベンゼン環の炭素結合
部分の形状模型をしめしている。
FIG. 21 shows a shape model of a carbon-bonding portion of a benzene ring by a variant of six hollow tetrahedrons having a regular hexagonal projected shape in FIG. 20.

【符合の説明】[Description of sign]

1A、1B、1C、10、20 炭素原子模型 5A、5C、50 水素原子模型 3B、3C、4B、4C 連結棒 31 正三角形板状片 32、33 四角形板状片 40 正八面体 41 4角錐の5面体 42 6角形面 43 4角形面 70 トーラス状突起 71 眼鏡フレーム状接続片 72 連結穴 81 カヌークリップ 82 グロメット 91、92、93、94、95 接続辺 130、140 共有結合面 131、141 連結部 161 1価結合面 162 2重結合面 163 1.5重結合面 1A, 1B, 1C, 10, 20 Carbon atom model 5A, 5C, 50 Hydrogen atom model 3B, 3C, 4B, 4C Connecting rod 31 Regular triangle plate piece 32, 33 Square plate piece 40 Regular octahedron 41 4 Four-sided pyramid 5 Face piece 42 Hexagonal surface 43 Quadrilateral surface 70 Torus-shaped protrusion 71 Eyeglass frame-shaped connection piece 72 Connection hole 81 Canoe clip 82 Grommet 91, 92, 93, 94, 95 Connection side 130, 140 Covalent bonding surface 131, 141 Connection part 161 Monovalent bond surface 162 Double bond surface 163 1.5 Double bond surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正三角形または正三角形の3つの角を所定
量切断して得られる六角形にして中央に穴を持つプラス
チック板状片(A)複数枚と、前記正三角形または前記
六角形の同一寸法の3辺と対向2辺の長さが等しく中央
に穴を持つ四角形のプラスチック板状片(B)複数枚と
よりなり、前記(A)の同一寸法の3辺を、前記(B)
の等しい長さの2辺と、前記(A)(B)自身の持つ、
折り曲げ機能を併せ持つ相互の接続手段により接続し、
(A)(B)が交互に、互いの辺を接して平面上に展開
する1体の板状片とした後、接続部を順次接続線に沿っ
て折り曲げて稜とし、最後に展開形状端面に残されてい
た所定の接続辺を合わせ、接続と曲げ作業により稜とし
て組み立てて得られ、前記(A)(B)の平面部及び多
角形の開口部とにより形成される、中空の14面体また
は26面体を原子模型とし、その複数個の平面部を互い
に向かい合わせ、前記板状片の穴を介し連結して構成す
る事を特徴とする、分子の三次元構造模型。
1. A plurality of plastic plate-like pieces (A) each having a hexagonal shape obtained by cutting a regular triangle or three corners of the regular triangle by a predetermined amount, and the regular triangle or the hexagonal shape. It is composed of a plurality of quadrangular plastic plate-like pieces (B) having three holes having the same size and two opposite sides having the same length and having a hole in the center.
Of two sides of equal length, and (A) and (B) themselves have,
Connect by mutual connection means that also has a folding function,
(A) and (B) are alternately formed into a single plate-like piece that is in contact with each other and develops on a plane, and then the connecting portion is sequentially bent along the connecting line to form a ridge, and finally the developed shape end surface. Hollow 14-sided body obtained by assembling the predetermined connection sides left in the above, assembling as a ridge by connecting and bending work, and formed by the flat portion of (A) and (B) and the polygonal opening. Alternatively, a three-dimensional structural model of a molecule is characterized in that a 26-sided body is used as an atomic model, and a plurality of plane portions thereof are opposed to each other and are connected through the holes of the plate-like piece.
【請求項2】正三角形または正三角形の3つの角を所定
量切断して得られる六角形にして中央に穴を持つ板状片
(A)複数枚と、前記正三角形または前記六角形の同一
寸法3辺と長さの等しい対向2辺を持つ四角形にして中
央に穴を持つ板状片(B)複数枚が、前記(A)(B)
よりも薄く折り曲げ可能の狭い帯状部を介して、(A)
(B)交互にその等しい長さの辺で接続して平面上に展
開する形状のプラスチック板状片を、前記帯状部を折り
目として順次折り曲げて稜とし、最後に展開形状の所定
の端面辺の、接続手段と帯状折り目を持つ接続部の接続
と折り曲げ作業により、組み立てて得られる中空の14
面体または26面体を原子模型とし、その複数個の平面
部を互いに向かい合わせ、互いの前記板状片中央の穴に
より連結して構成する事を特徴とする、分子の三次元構
造模型。
2. A plurality of plate-like pieces (A) each having a hole in the center and a hexagon obtained by cutting three corners of the equilateral triangle or the equilateral triangle by a predetermined amount, and the equilateral triangle or the hexagon. A plurality of plate-like pieces (B) each having a hole in the center are formed into a quadrangle having two opposite sides having the same size as three sides and the same length as the above (A) and (B).
Through a narrow strip that can be bent thinner than (A)
(B) Plastic plate-like pieces having a shape which is alternately connected by the sides of the same length and expands on a plane are sequentially bent with the band-shaped portion as a fold to form a ridge, and finally a predetermined end surface side of the expanded shape. , A hollow portion obtained by assembling by connecting and bending a connecting means and a connecting portion having a band-shaped fold line.
A three-dimensional structure model of a molecule, characterized in that a tetrahedron or a 26-hedron is used as an atomic model, and a plurality of plane portions thereof are opposed to each other and are connected by a hole at the center of the plate-shaped pieces.
【請求項3】正三角形又は正三角形の3つの角を対辺と
平行に所定量切断して得られる平行六角形にして、中央
に穴を持つプラスチック板状片(C)4枚と、前記正三
角形又は前記平行六角形の同一寸法3辺と、対向2辺の
長さが等しくかつ中央に穴を持つ正方形または矩形のプ
ラスチック板状片(D)6枚とよりなり、前記(C)の
同一寸法3辺を、前記(D)の等しい長さの2辺と、前
記(C)(D)自身の持つ、折り曲げ機能を併せ持つ相
互の接続手段により接続し、前記(C)と前記(D)が
交互に辺を接して平面上に展開する1体の板状片とした
後、その全ての接続部を順次接続線に沿って折り曲げて
稜とし、最後に展開形状端面に残されていた所定の接続
辺を合わせ、接続と曲げ作業により稜として組み立てて
得られ、前記(C)の平面部4面と、前記(D)の平面
部6面と、前記(D)または前記(C)(D)の辺に囲
まれる開口面4面とにより形作られる、軸対称形状の中
空14面体を原子模型とし、その複数個を、前記板状片
中央の穴により互いに連結させて構成する事を特徴とす
る、分子の三次元構造模型。
3. A regular hexagon or three parallel hexagons obtained by cutting three corners of a regular triangle in parallel with opposite sides, and four plastic plate pieces (C) having a hole in the center, and the regular triangle. It is made up of three triangular or parallel hexagons having the same size and six square or rectangular plastic plate-like pieces (D) having the opposite two sides of the same length and having a hole in the center. The three sides of the dimension are connected to each other by the two sides having the same length of (D) and the mutual connection means having both the bending function of (C) and (D) itself, and (C) and (D). Is a plate-like piece that alternately develops on a plane by contacting the sides, and then bends all the connecting parts along the connecting lines in order to form ridges, and finally the predetermined shape left on the developed shape end face. It is obtained by combining the connecting edges of the above and assembling as a ridge by connecting and bending work. An axisymmetric hollow 14 formed by 4 planes of the flat plane, 6 planes of the (D) plane, and 4 planes of the opening plane surrounded by the sides of (D) or (C) (D). A three-dimensional molecular model of a molecule, characterized in that a surface body is an atomic model, and a plurality of them are connected to each other by a hole at the center of the plate-like piece.
【請求項4】正三角形又は正三角形の3つの角を対辺と
平行に所定量切断して得られる平行六角形にして、中央
に穴を持つプラスチック板状片(C)8枚と、前記正三
角形又は前記平行六角形の同一寸法3辺と、対向2辺の
長さが等しくかつ中央に穴を持つ正方形または矩形のプ
ラスチック板状片(D)12枚とよりなり、前記(C)
の同一寸法3辺を、前記(D)の等しい長さの2辺と、
前記(C)(D)自身の持つ、折り曲げ機能を併せ持つ
相互の接続手段により接続し、前記(C)と前記(D)
が交互に辺を接して平面上に展開する1体の板状片とし
た後、その全ての接続部を順次接続線に沿って折り曲げ
て稜とし、最後に展開形状端面に残されていた所定の接
続辺を合わせ、接続と曲げ作業により稜として組み立て
て得られ、前記(C)の平面部8面と、前記(D)の平
面部12面と、前記(D)または前記(C)(D)の辺
に囲まれる開口面6面とにより形作られる、、軸対称形
状の中空26面体を原子模型とし、その複数個を、前記
板状片中央の穴により互いに連結させて構成する事を特
徴とする、分子の三次元構造模型。
4. An equilateral triangle or three triangles of an equilateral triangle are cut into parallel hexagons parallel to opposite sides by a predetermined amount to form a parallel hexagon, and eight plastic plate-like pieces (C) having a hole in the center, and the equilateral triangle. It is composed of three sides of a triangle or the parallel hexagon having the same size, and twelve pieces of square or rectangular plastic plate-like pieces (D) having the opposite two sides of the same length and having a hole in the center.
And three sides having the same size of the above, and two sides of the same length in (D) above,
(C) and (D) themselves are connected to each other by a mutual connecting means that also has a bending function.
Is a plate-like piece that alternately develops on a plane by contacting the sides, and then bends all the connecting parts along the connecting lines in order to form ridges, and finally the predetermined shape left on the developed shape end face. Are obtained by assembling ridges by connecting and connecting and connecting them to each other to form a ridge, and the flat surface 8 surface of (C), the flat surface 12 surface of (D), (D) or (C) ( An axisymmetric hollow 26-faced body formed by 6 open faces surrounded by the side of D) is used as an atomic model, and a plurality of them are connected to each other through a hole at the center of the plate-like piece. The characteristic three-dimensional structural model of the molecule.
【請求項5】中空の14面体または26面体を原子模型
とし、その複数個を、板状片中央の穴により互いに連結
して組み立てるものにして、以下に挙げる、(A)
(B)(C)の各部材の組み合わせにより構成される事
を特徴とする分子の三次元構造模型。 (A)正三角形又は正三角形の3つの角を所定量切断し
て得られる六角形の中央部に穴を有する板状片であっ
て、前記正三角形または前記六角形の同一寸法3辺に、
折り曲げ自在に設けられた第一の接続手段を有する第一
原子模型用板状部材 (B)前記第一の板状部材の接続手段を有する1辺と同
一寸法の対向2辺を持ち、かつ中央部に穴を有する四角
形板状片にして、前記第一の接続手段と結合する第二の
接続手段を前記四角形板状片の一平面に有する、第二原
子模型用板状部材 (C)前記第一原子模型用板状部材と第二原子模型用板
状部材に設けられた、前記中央部の穴に勘合し各部材を
連結する連結部材
5. A hollow tetrahedron or a 26-sided polyhedron is used as an atomic model, and a plurality of the polyhedrons are connected to each other through a hole at the center of the plate-like piece to be assembled.
(B) A three-dimensional structural model of a molecule, which is constituted by a combination of the respective members of (C). (A) A plate-like piece having a hole in the center of a hexagon obtained by cutting a regular triangle or three corners of the regular triangle by a predetermined amount, and the regular triangle or the hexagon having the same three sides,
Plate-shaped member for first atomic model having first connecting means provided so as to be bendable (B) Having one side having connecting means of the first plate-shaped member, two opposite sides having the same size, and a center A plate-shaped member for a second atom model (C), which has a square plate-shaped piece having a hole in its part, and has second connecting means for coupling with the first connecting means on one plane of the square plate-shaped piece (C) A connecting member that is provided in the first atomic model plate-shaped member and the second atomic model plate-shaped member and that fits into the central hole and connects the respective members.
JP14099195A 1994-05-02 1995-05-01 Three-dimensional structure model of molecule Pending JPH0822244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14099195A JPH0822244A (en) 1994-05-02 1995-05-01 Three-dimensional structure model of molecule

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16168194 1994-05-02
JP6-161681 1994-05-02
JP14099195A JPH0822244A (en) 1994-05-02 1995-05-01 Three-dimensional structure model of molecule

Publications (1)

Publication Number Publication Date
JPH0822244A true JPH0822244A (en) 1996-01-23

Family

ID=26473340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14099195A Pending JPH0822244A (en) 1994-05-02 1995-05-01 Three-dimensional structure model of molecule

Country Status (1)

Country Link
JP (1) JPH0822244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233900A (en) * 2003-01-31 2004-08-19 Hinomoto Gosei Jushi Seisakusho:Kk Molecule model
US6884079B2 (en) 2002-02-08 2005-04-26 Talou Co., Ltd. Molecular model representing molecular structure
KR20160076667A (en) 2014-12-23 2016-07-01 주식회사 두산 Chassis Frame Structure of 3 Wheel Electric Powered Forklift

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884079B2 (en) 2002-02-08 2005-04-26 Talou Co., Ltd. Molecular model representing molecular structure
JP2004233900A (en) * 2003-01-31 2004-08-19 Hinomoto Gosei Jushi Seisakusho:Kk Molecule model
KR20160076667A (en) 2014-12-23 2016-07-01 주식회사 두산 Chassis Frame Structure of 3 Wheel Electric Powered Forklift

Similar Documents

Publication Publication Date Title
US6379212B1 (en) System and set of intercleaving dichotomized polyhedral elements and extensions
US3600825A (en) Synthesized natural geometric structures
Popko et al. Divided spheres
US6921314B2 (en) Intercleaving spatially dichotomized polyhedral building blocks and extensions
US8157608B1 (en) One-piece polyhedral construction modules
US4537001A (en) Building elements
WO2003022384A1 (en) A system and set of intercleaving dichotomized polyhedral elements and extensions
EP0520984B1 (en) A system of structural form bodies
EP0337344A2 (en) Set or game for the composition of figures, shapes and patterns
JPH0822244A (en) Three-dimensional structure model of molecule
JP6025807B2 (en) Assembly structure
US3950888A (en) Homohedral module
JP3167890U (en) 3D inset puzzle tool
JP5267902B2 (en) Polyhedral crystal structure model
GB1603060A (en) Educational building elements
JPS6118935Y2 (en)
HUT71823A (en) Spatial elements for forming butterfly shapes and spatial mechanisms comprising interlocked chains of butterfly shapes which are open or closed by themselves
Russell et al. Mathematics and Art: Unifying Perspectives
KR200366110Y1 (en) Fold-up block for study
JPH0438869Y2 (en)
JP2002515314A (en) Spherical top
JP3999809B1 (en) 3D puzzle
US3466759A (en) Molecular model assembly
Lalvani HYPERSURFACES, MILGO EXPERIMENT 4 (2006-2012)
JP3046068U (en) 3D combination building toys