JPS6118935Y2 - - Google Patents
Info
- Publication number
- JPS6118935Y2 JPS6118935Y2 JP1981116759U JP11675981U JPS6118935Y2 JP S6118935 Y2 JPS6118935 Y2 JP S6118935Y2 JP 1981116759 U JP1981116759 U JP 1981116759U JP 11675981 U JP11675981 U JP 11675981U JP S6118935 Y2 JPS6118935 Y2 JP S6118935Y2
- Authority
- JP
- Japan
- Prior art keywords
- solid
- cube
- sides
- faces
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007787 solid Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 description 3
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Toys (AREA)
Description
【考案の詳細な説明】
本考案は小ブロツクを適宜反転させることで、
形状や色の変化を楽しむ玩具に関するものであ
る。[Detailed explanation of the invention] This invention is achieved by appropriately reversing the small blocks.
It is about toys that allow you to enjoy changing shapes and colors.
本考案の基本的な原理を第1図〜第15図に従
つて説明すると、まず第1図及び第2図に示すご
とく、1辺の長さが同じ小立方体1a〜1hを8
個組み合わせることにより、1個の大立方体1が
形成されることはよく知られている。これは言い
換えると1個の大立方体を分割すると8個の小立
方体が得られることを意味する。 The basic principle of the present invention will be explained with reference to Figs. 1 to 15. First, as shown in Figs. 1 and 2, small cubes 1a to 1h with the same side length are
It is well known that one large cube 1 is formed by combining the pieces. In other words, if one large cube is divided, eight small cubes will be obtained.
そこで、大立方体1と小立方体1a〜1hの各
面の関係をみてみると、8個の小立方体の正6面
体はいずれも6つの面のうち半分の3面が外側か
ら見え、残る3面が内側にはいつて外側からは見
えないようになつている。このことは大立方体1
の6面を形成している8個のそれぞれの正6面体
の3面、合計24面と同数の面が内側にかくれてい
るということである。 Therefore, if we look at the relationship between the faces of large cube 1 and small cubes 1a to 1h, we can see that in each of the eight small cubes, which are regular hexahedrons, three half of the six faces are visible from the outside, and the remaining three faces are visible from the outside. is inside and cannot be seen from the outside. This means that the large cube 1
This means that the same number of faces as the 3 faces of each of the 8 regular hexahedrons that form the 6 faces of 24 faces are hidden inside.
次に、この8個の小立方体1a〜1hを第3図
に示す既知の連結方法(特公昭45−2546号、実開
昭53−3696号)で連結する。即ち、各小立方体1
a〜1hの12辺のうち、隣り合わないで直交する
2辺だけを他の立方体の辺と折曲げ可能に連結す
る。これにより、第4図〜第8図に示すような手
順で、各小立方体1a〜1hを反転させると、上
記した内側にかくれていた面が外側にあらわれる
ことになる。 Next, these eight small cubes 1a to 1h are connected by the known connection method shown in FIG. 3 (Japanese Patent Publication No. 45-2546, Utility Model Application No. 53-3696). That is, each small cube 1
Of the 12 sides a to 1h, only two sides that are not adjacent but orthogonal are bendably connected to the other sides of the cube. As a result, when each of the small cubes 1a to 1h is inverted in accordance with the procedure shown in FIGS. 4 to 8, the surfaces hidden on the inside will be exposed on the outside.
ところで、このような小立方体1a〜1hの動
きを、今度は各立方体の辺(稜)だけに着目して
検討してみる。そうすると、各小立方体1a〜1
hは必ずしも正6面体である必要はなく、第9図
に示すような辺の関係をもつ立方体であればよい
ことがわかる(図中斜線部)。第10図はその最
も極端な立体の一例を示したもので、この立体を
第3図に示したのと同様の関係で8個連結し、第
11図〜第15図に示すように作動させると、表
と裏が全くいれかわることが理解できる。 By the way, let us examine the movement of such small cubes 1a to 1h by focusing only on the edges (edges) of each cube. Then, each small cube 1a~1
It can be seen that h does not necessarily have to be a regular hexahedron, but may be a cube having the relationship of sides as shown in FIG. 9 (hatched area in the figure). Figure 10 shows an example of the most extreme three-dimensional structure. Eight of these three-dimensional bodies are connected in the same relationship as shown in Figure 3, and operated as shown in Figures 11 to 15. You can understand that the front and back sides are completely interchangeable.
本考案は、上記した方法で連結される8個の立
方体の表裏反転原理を利用し、その時辺の動きだ
けに着目して抽出される各立方体の必要最低構造
(第9図の斜線部で示された辺)を基に特定の構
造の立体、即ち連結後反転した時に星状菱形12面
体となり得る立体を創案すると共に、この立体を
8個上述のように連結し、色、模様、形態の変化
が楽しめるような玩具を工夫したものである。 The present invention utilizes the principle of flipping the eight cubes connected in the above-described manner, and extracts the minimum required structure of each cube by focusing only on the movement of the sides (indicated by the shaded area in Figure 9). In addition to creating a solid with a specific structure, that is, a solid that can become a star-like rhombic dodecahedron when inverted after connection, eight of these solids were connected as described above, and colors, patterns, and shapes were created based on the This is a toy designed to allow you to enjoy changes.
第16図は、本考案の一実施例で、上記第9図
に示す辺の関係をもつ立体の一例を示したもので
ある。即ち、この立体10は、ムク状の軟質プラ
スチツクでできており、立方体の6つの頂点から
中点11を通る3本の対角線12a,12b,1
2cに沿つて分割するようにしたものである。こ
れによつて得られる立体は互いに直交する正方形
面14a,14b,14cと、凸凹状となつた6
つの三角形面13a,13b,13c,13d,
13e,13fとをもつことになる。 FIG. 16 is an embodiment of the present invention, and shows an example of a solid having the side relationship shown in FIG. 9 above. That is, this solid 10 is made of solid soft plastic, and has three diagonal lines 12a, 12b, 1 passing from the six vertices of the cube to the midpoint 11.
2c. The solid obtained by this has square surfaces 14a, 14b, 14c that are orthogonal to each other, and 6 that has an uneven shape.
three triangular surfaces 13a, 13b, 13c, 13d,
13e and 13f.
本考案ではこのような立体10を8個準備し第
3図に示す要領で各立体10の隣り合わないで直
交する2つの辺を他の立体と順次連結するもので
ある。この連結に際しては、例えば粘着テープ等
を用いるとよい。 In the present invention, eight such solid bodies 10 are prepared, and two non-adjacent but orthogonal sides of each solid body 10 are sequentially connected to other solid bodies in the manner shown in FIG. For this connection, for example, adhesive tape or the like may be used.
第17図〜第20図は上記した立体10によつ
て構成された1つのブロツクの形状の変容を示し
たものである。即ち前記各立体10は直交する正
方形面14a,14b,14cを外側に向けるこ
とで第17図のように大立方体となる。この状態
から各立体を第18図、第19図の矢視方向に反
転させると同図に示すような形状の変化が得ら
れ、最終的に大立方体のとき内側にかくれていた
面を外側にすると第20図のような星状菱形12面
体となる。この場合、各三角形面13a…13d
を秩序だてて色分けしておくと色彩模様の変化も
楽しむことができる。 17 to 20 show changes in the shape of one block constituted by the solid body 10 described above. That is, each solid body 10 becomes a large cube as shown in FIG. 17 by orthogonal square surfaces 14a, 14b, and 14c facing outward. From this state, if each solid is reversed in the direction of the arrows in Figures 18 and 19, the shape changes as shown in the figures, and in the end, the faces that were hidden inside when it was a large cube are turned outside. This results in a star-shaped rhombic dodecahedron as shown in Figure 20. In this case, each triangular surface 13a...13d
By color-coding them in an orderly manner, you can enjoy the changes in color patterns.
一方、本考案の他の実施例としては、上記立体
10によつて構成されたブロツクを2組準備する
ことで、さらに多種多様の変化が得られる。即
ち、2つのブロツクは互いに相似形となつてお
り、1組の立体10をとりあげて嵌め合せると、
立方体となる関係にある。したがつて、2つのブ
ロツクの各立体10をそれぞれ嵌め合わせると、
第3図に示した8個の小立方体となる。そこで各
立体10の直交する正方形面14a,14b,1
4cを着色し、例えば一方のブロツクを構成する
各立体の正方形面14a,14b,14cは白、
他方のブロツクを構成する各立体の正方形面14
a,14b,14cを赤としておく。そして第4
図〜第8図に示す手順に従い1組の立体10で構
成された小立方体を反転させると大立方体の外面
にあらわれる色を赤から白又はその逆に変えるこ
とが可能となる。 On the other hand, as another embodiment of the present invention, by preparing two sets of blocks constituted by the solid body 10, even more various changes can be obtained. That is, the two blocks have similar shapes to each other, and when one set of solids 10 is taken and fitted together,
They are in a cubic relationship. Therefore, when the solid bodies 10 of the two blocks are fitted together,
This results in eight small cubes as shown in Figure 3. Therefore, the orthogonal square surfaces 14a, 14b, 1 of each solid body 10
4c, for example, the square faces 14a, 14b, 14c of each solid that constitute one block are white,
Square surface 14 of each solid that constitutes the other block
Let a, 14b, and 14c be red. and the fourth
By inverting a small cube made up of a set of solids 10 according to the procedure shown in FIGS. 8 to 8, it is possible to change the color appearing on the outer surface of the large cube from red to white or vice versa.
なお、本考案において各面を色分けするために
は、例えばカラー粘着テープ等を使用すればよ
い。 In addition, in the present invention, in order to color code each side, for example, color adhesive tape or the like may be used.
以上説明した本考案によれば、ブロツクを構成
する立体を反転させることで、形状、色、模様の
変化を楽しむことができ、また軟質プラスチツク
で作られているため、コーナ部を鋭利に形成して
もケガの心配はない。さらにまた本考案は同形の
立体を多数製作するだけであるから容易にかつ安
価に量産できる等の利点が得られることになる。 According to the present invention explained above, by inverting the three-dimensional objects that make up the block, you can enjoy changes in shape, color, and pattern, and since it is made of soft plastic, the corners are not sharp. However, there is no need to worry about injury. Furthermore, the present invention has the advantage that it can be mass-produced easily and at low cost because it only involves manufacturing a large number of solid bodies of the same shape.
第1図〜第15図はいずれも本考案の基本的原
理を説明するための斜視図、第16図は本考案を
構成する立体の一実施例を示す斜視図、第17図
〜第20図は本考案の変化態様を示した斜視図で
ある。
図中、1は大立方体、1a〜1hは小立方体、
10は立体、11は中点、12a〜12cは対角
線、14a〜14cは正方形面、13a〜13f
は三角形面である。
Figures 1 to 15 are perspective views for explaining the basic principle of the present invention, Figure 16 is a perspective view showing an embodiment of the solid body constituting the present invention, and Figures 17 to 20. FIG. 2 is a perspective view showing a variation of the present invention. In the figure, 1 is a large cube, 1a to 1h are small cubes,
10 is a solid, 11 is a midpoint, 12a to 12c are diagonals, 14a to 14c are square surfaces, 13a to 13f
is a triangular surface.
Claims (1)
する2辺を他の立体の辺と折り曲げ可能に連結し
てなる立方体玩具において、該立体は立方体を6
つの頂点から中心を通る3つの対角線に沿つて分
割した軟質プラスチツク製のものとすることを特
徴とする立方体玩具。 In a cube toy formed by bendably connecting the two non-adjacent or perpendicular sides of each of eight identically shaped solids to the sides of another solid, the solid has six cubes.
A cube toy characterized by being made of soft plastic and divided along three diagonal lines passing through the center from one vertex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11675981U JPS5822185U (en) | 1981-08-07 | 1981-08-07 | cube toy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11675981U JPS5822185U (en) | 1981-08-07 | 1981-08-07 | cube toy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5822185U JPS5822185U (en) | 1983-02-10 |
JPS6118935Y2 true JPS6118935Y2 (en) | 1986-06-07 |
Family
ID=29910967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11675981U Granted JPS5822185U (en) | 1981-08-07 | 1981-08-07 | cube toy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5822185U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6410955B1 (en) * | 2017-05-29 | 2018-10-24 | 株式会社エイチ・ディー・エス | Polyhedral toy |
WO2020105149A1 (en) * | 2018-11-21 | 2020-05-28 | 株式会社エイチ・ディー・エス | Polyhedral toy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895885U (en) * | 1981-12-24 | 1983-06-29 | 吉本 直貴 | cube flip toy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS533696B2 (en) * | 1974-12-06 | 1978-02-09 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4930097U (en) * | 1972-06-16 | 1974-03-15 | ||
JPS4931494U (en) * | 1972-06-16 | 1974-03-18 | ||
JPS533696U (en) * | 1976-06-24 | 1978-01-13 |
-
1981
- 1981-08-07 JP JP11675981U patent/JPS5822185U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS533696B2 (en) * | 1974-12-06 | 1978-02-09 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6410955B1 (en) * | 2017-05-29 | 2018-10-24 | 株式会社エイチ・ディー・エス | Polyhedral toy |
WO2018220680A1 (en) * | 2017-05-29 | 2018-12-06 | 株式会社エイチ・ディー・エス | Polyhedral toy |
WO2020105149A1 (en) * | 2018-11-21 | 2020-05-28 | 株式会社エイチ・ディー・エス | Polyhedral toy |
Also Published As
Publication number | Publication date |
---|---|
JPS5822185U (en) | 1983-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4836787A (en) | Construction kit educational aid and toy | |
US5069647A (en) | Solid rectangular building block for a toy building set | |
US4522404A (en) | Subdivided block components reassemblable into three dimensional figures | |
JPH03155891A (en) | Pyramid puzzle | |
JP2004041735A (en) | Element set for assembling structure | |
US4121831A (en) | Geometrical constructions | |
JPS6118935Y2 (en) | ||
KR102519226B1 (en) | Toy Block Elements | |
KR100360080B1 (en) | Block toy | |
US3605324A (en) | Polyhedrons having depressible vertices and internal means for restoring shape | |
JPH0433917Y2 (en) | ||
CN211798803U (en) | Magnetic building toy | |
JP3085655U (en) | 3D combination puzzle | |
JP7019164B2 (en) | Assembly structure | |
GB1603060A (en) | Educational building elements | |
JP2002346243A (en) | Geometric board type building block | |
JPH0429676Y2 (en) | ||
KR200159832Y1 (en) | Construction toy | |
JPH0438869Y2 (en) | ||
JPS6136315Y2 (en) | ||
JPS6334719Y2 (en) | ||
JPH0347679Y2 (en) | ||
JPH0737668Y2 (en) | Cubic toy | |
JPH02249576A (en) | Stereo puzzle block | |
JP3039283U (en) | Mosaic pieces and combinations |