JPH08213615A - Vertical mos field effect transistor - Google Patents

Vertical mos field effect transistor

Info

Publication number
JPH08213615A
JPH08213615A JP21030395A JP21030395A JPH08213615A JP H08213615 A JPH08213615 A JP H08213615A JP 21030395 A JP21030395 A JP 21030395A JP 21030395 A JP21030395 A JP 21030395A JP H08213615 A JPH08213615 A JP H08213615A
Authority
JP
Japan
Prior art keywords
layer
drain region
region
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21030395A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kitamura
一芳 北村
Hideo Kawasaki
英夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP21030395A priority Critical patent/JPH08213615A/en
Publication of JPH08213615A publication Critical patent/JPH08213615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To make the current flow in a drain region disperse for lowering the ON resistance by providing the second layer of one conductivity type formed directly on the first whole layer having a higher impurity concentration than that of the first layer. CONSTITUTION: The vertical MOSFET is provided with the first layer 1 having a specific impurity concentration forming a drain region and an N-type source regions 3 selectively formed of two parts in P-type diffused regions 2 forming a channel region having the deepest part not exceeding the thickness of the second layer as well as a gate electrode 5 on a gate oxide film between the source regions 3 oppositely holding a high concentration drain region 9, source electrodes 6 formed striding over the source regions 3 and the P-type diffused regions 2 as well as high concentration drain region 7 an a drain electrode 8. Accordingly, the voltage between drain and source is lowered by about 10% but the current flow in the drain region 9 is dispersed thereby enabling the ON resistance to be lowered by 1.5-2 times than the conventional one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング機器等に
使用される縦型MOS電界効果トランジスタ(以下縦型
MOSFETと記す)に関するもので、特に30〜20
0V程度の耐圧で耐圧特性よりもオン抵抗のさらなる低
減が望まれるものに有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical MOS field effect transistor (hereinafter referred to as vertical MOSFET) used in switching equipment and the like, and particularly 30 to 20.
This is effective for a device having a withstand voltage of about 0 V and a further reduction in on-resistance rather than withstand voltage characteristics.

【0002】[0002]

【従来の技術】縦型MOSFETは、高速性の面で優れ
ているばかりでなく、広いASO(安全動作領域)を持
ち、理想的なパワースイッチングデバイスとして、スイ
ッチング電源を始めとして、幅広い分野で利用されてい
る。
2. Description of the Related Art Vertical MOSFETs are not only excellent in high-speed performance, but also have a wide ASO (safe operating area) and are used as ideal power switching devices in a wide range of fields including switching power supplies. Has been done.

【0003】従来の縦型MOSFETは、図3に示すよ
うな構造断面図である。図示する縦型MOSFETがn
チャンネル形であるものとして以下に詳しく説明する。
A conventional vertical MOSFET has a structural sectional view as shown in FIG. The vertical MOSFET shown is n
The channel type will be described in detail below.

【0004】この縦型MOSFETは、ドレイン領域1
を形成する低濃度n型シリコン半導体基板中に、分離さ
れてチャンネル領域形成用のP型拡散領域2が形成さ
れ、このP型拡散領域の中に二部分のn型ソース領域3
が形成されるとともに、ドレイン領域1を挟んで相対す
るソース領域3間のシリコン半導体基板表面上にゲート
酸化膜4が形成され、さらにゲート酸化膜4上にゲート
電極5が形成され、ソース領域3およびP型拡散領域2
にまたがってソース電極6が形成され、シリコン半導体
基板の裏面ドレイン側に高濃度のn型層7を設け、ドレ
イン電極8が形成された構造である。
This vertical MOSFET has a drain region 1
A P-type diffusion region 2 for forming a channel region is formed separately in a low-concentration n-type silicon semiconductor substrate that forms the n-type source region 3 of two parts.
And the gate oxide film 4 is formed on the surface of the silicon semiconductor substrate between the source regions 3 facing each other with the drain region 1 interposed therebetween, and the gate electrode 5 is further formed on the gate oxide film 4. And P-type diffusion region 2
In this structure, the source electrode 6 is formed over the surface, the high-concentration n-type layer 7 is provided on the back surface drain side of the silicon semiconductor substrate, and the drain electrode 8 is formed.

【0005】この構造の縦型MOSFETでは、P型拡
散領域2とゲート酸化膜4との界面にチャンネルがで
き、電子はソース領域3からこのチャンネルを通ってド
レイン領域1の表面部分に達し、ここから裏面側に設け
たドレイン電極8に向かって流れる。なお、ドレイン領
域1が低濃度なのはドレイン耐圧を高く保つためであ
る。
In the vertical MOSFET having this structure, a channel is formed at the interface between the P-type diffusion region 2 and the gate oxide film 4, and electrons reach the surface of the drain region 1 from the source region 3 through this channel. Flow toward the drain electrode 8 provided on the back surface side. The low concentration of the drain region 1 is to keep the drain breakdown voltage high.

【0006】[0006]

【発明が解決しようとする課題】この構造では、ドレイ
ン領域を流れる電子が、P型拡散領域間のドレイン位置
の表面部分に集中して流れ、電流が集中的に流れる領域
の電圧降下が大きくなり、縦型MOSFETの導通時の
抵抗(オン抵抗)が極めて大きくなるという不都合があ
った。
In this structure, the electrons flowing in the drain region concentrate on the surface of the drain position between the P-type diffusion regions, and the voltage drop in the region where the current concentrates becomes large. However, there is an inconvenience that the resistance (ON resistance) during conduction of the vertical MOSFET becomes extremely large.

【0007】[0007]

【課題を解決するための手段】本発明の縦型MOSFE
Tは、上記の不都合を排除するものであって、ドレイン
領域の電流の流れを分散させてオン抵抗の低減をはかる
ことを目的とするもので、一導電型の第一層と同第一層
より高い不純物濃度で同第一層全面と接続形成された一
導電型の第二層とを備えた半導体基板と、前記第二層内
に選択的に作り込まれた最深部が前記第二層の厚みを越
えない深さの逆導電型のチャンネル領域と、前記チャン
ネル領域内に選択的に作り込まれた一導電型のソース領
域と、前記ソース領域と前記第二層間の前記チャンネル
領域上に形成されたゲートとを備えた構造のものであ
る。
[Means for Solving the Problems] Vertical MOSFE of the present invention
T is intended to eliminate the above-mentioned inconvenience and to disperse the current flow in the drain region to reduce the on-resistance. The one-conductivity-type first layer and the first layer are the same. A semiconductor substrate having a second layer of one conductivity type connected to the entire surface of the first layer with a higher impurity concentration, and the deepest portion selectively formed in the second layer is the second layer. On the channel region between the source region and the second layer, and a reverse conductivity type channel region having a depth not exceeding the thickness of the source region, a source region of one conductivity type selectively formed in the channel region, And a formed gate.

【0008】また、第二層をエピタキシャル層で形成し
た構造のものである。
Further, it has a structure in which the second layer is formed of an epitaxial layer.

【0009】[0009]

【作用】第一層より高い不純物濃度で同第一層全面と接
続形成された一導電型の第二層を有しているので、基板
の周辺部も含めて、縦型MOSFETが導通状態のと
き、ドレイン領域を流れる電流は高濃度の第二層である
ドレイン領域に沿って流れ、かつこの高濃度ドレイン領
域がチャンネル領域の最深部で分離されていないため全
面に均一に流れるところとなり、チャンネル領域形成用
の拡散領域間への集中が緩和される。
Since the second layer of one conductivity type is formed so as to be connected to the entire surface of the first layer with an impurity concentration higher than that of the first layer, the vertical MOSFET including the peripheral portion of the substrate is in a conductive state. At this time, the current flowing through the drain region flows along the high-concentration second-layer drain region, and since the high-concentration drain region is not separated at the deepest part of the channel region, the current flows uniformly over the entire surface. Concentration between diffusion regions for forming regions is reduced.

【0010】ただし、ドレイン−ソース間の耐圧は若干
低下するので、ソース領域間の間隔10等について小さ
くするなどの最適化を行なう必要があるが、第二層を拡
散層でなくエピタキシャル層とすることで、拡散層が表
面で不純物濃度が高く、深くなるに従って不純物濃度が
低くなり、表面で電界が集中して耐圧を下げるのに対し
て、表面から深さ方向に不純物濃度が均一に分布される
ため耐圧が改善できる。特に、第二層がエピタキシャル
層で形成される場合には、層全体にわたる不純物濃度の
制御が容易となるため、抵抗値と耐圧との関係が制御し
やすくなり、目的に沿った設計ができる。
However, since the breakdown voltage between the drain and the source is slightly lowered, it is necessary to optimize the interval 10 between the source regions and the like, but the second layer is an epitaxial layer instead of a diffusion layer. As a result, the impurity concentration is high on the surface of the diffusion layer and decreases as the depth increases, and the electric field concentrates on the surface to lower the breakdown voltage, while the impurity concentration is uniformly distributed in the depth direction from the surface. Therefore, the breakdown voltage can be improved. In particular, when the second layer is formed of an epitaxial layer, it is easy to control the impurity concentration over the entire layer, so that the relationship between the resistance value and the breakdown voltage is easily controlled, and the design can be performed according to the purpose.

【0011】[0011]

【実施例】本発明の縦型MOSFETの実施例につい
て、図1に示したnチャンネル縦型MOSFETの構造
断面を参照して説明する。
EXAMPLE An example of the vertical MOSFET of the present invention will be described with reference to the cross section of the structure of the n-channel vertical MOSFET shown in FIG.

【0012】本発明の縦型MOSFETでは、ドレイン
領域を形成する所定不純物濃度の第一層1と、同第一層
より高い不純物濃度で同第一層全面と接続形成された第
二層9とを備えたn型シリコン半導体基板であり、第二
層内に選択的に作り込まれ、最深部が第二層の厚みの深
さを越えないチャンネル領域形成用のP型拡散領域、こ
のチャンネル領域内に作り込まれた二部分のn型ソース
領域3、高濃度のドレイン領域9を挟んで相対するソー
ス領域3間の半導体基板表面上のゲート酸化膜4、ゲー
ト酸化膜4上のゲート電極5、ソース領域3とP型拡散
領域2にまたがって形成されたソース電極6、シリコン
半導体基板の裏面に濃度の高いドレイン領域7とドレイ
ン電極8を持つ構造をしている。なお、ゲート電極5お
よびソース電極6は一箇所に接続され、複数の縦型MO
SFETが並列接続された構造である。
In the vertical MOSFET of the present invention, the first layer 1 having a predetermined impurity concentration forming the drain region and the second layer 9 connected to the entire surface of the first layer with an impurity concentration higher than that of the first layer 1 are formed. And a P-type diffusion region for forming a channel region in which the deepest part does not exceed the depth of the thickness of the second layer, which is selectively formed in the second layer. The gate oxide film 4 on the surface of the semiconductor substrate between the two n-type source regions 3 and the source regions 3 facing each other with the high-concentration drain region 9 sandwiched therebetween, and the gate electrode 5 on the gate oxide film 4. , A source electrode 6 formed over the source region 3 and the P-type diffusion region 2, and a drain region 7 and a drain electrode 8 having a high concentration on the back surface of the silicon semiconductor substrate. In addition, the gate electrode 5 and the source electrode 6 are connected at one place, and a plurality of vertical MO
This is a structure in which SFETs are connected in parallel.

【0013】この構造によれば高濃度のドレイン領域9
の抵抗値が小さいため、ドレイン領域を流れる電子は、
矢印が示すようにP型拡散領域2間に集中せず、抵抗値
の小さい高濃度ドレイン領域9に沿っても流れて高濃度
ドレイン領域9全域に分散し、ここから均一に下方に向
かってドレイン電極8に流れ込む。
According to this structure, the high-concentration drain region 9 is formed.
Since the resistance value of is small, the electrons flowing in the drain region are
As shown by the arrow, it does not concentrate between the P-type diffusion regions 2, flows along the high-concentration drain region 9 having a small resistance value, and is dispersed in the entire high-concentration drain region 9, and from here, the drain is uniformly downward. It flows into the electrode 8.

【0014】また、基板の周辺までも高濃度のドレイン
領域9が形成されているのでオン抵抗の低減は、基板と
周辺部との面積比に応じて数十%程度の低減がプラスさ
れる。
Further, since the high-concentration drain region 9 is formed even up to the periphery of the substrate, the reduction of the on-resistance is added by about several tens of% depending on the area ratio between the substrate and the peripheral portion.

【0015】さらに、高濃度のドレイン領域9をエピタ
キシャル層にすることで、耐圧の改善もできた。
Further, by forming the high-concentration drain region 9 as an epitaxial layer, the breakdown voltage could be improved.

【0016】なお、実施例ではnチャンネルについて説
明したが、すべての導電型を逆にしてPチャンネルにし
てもよい。
Although the n-channel has been described in the embodiment, all conductivity types may be reversed to form a P-channel.

【0017】[0017]

【発明の効果】本発明の縦型MOSFETでは、図2に
示すようにドレイン−ソース間電圧は、10%程度低下
するが、ドレイン領域における電流の流れが分散され、
ドレイン電流が流れる部分の有効断面積を増大させるた
め、オン抵抗を従来のものより、1.5〜2倍低減する
効果が奏される。
In the vertical MOSFET of the present invention, as shown in FIG. 2, the drain-source voltage decreases by about 10%, but the current flow in the drain region is dispersed,
Since the effective cross-sectional area of the portion through which the drain current flows is increased, the effect of reducing the on-resistance by 1.5 to 2 times that of the conventional one is achieved.

【0018】また、基板の周辺までも高濃度のドレイン
領域9が形成されているので、オン抵抗の低減は、基板
と周辺部との面積比に応じて数十%程度の低減効果が追
加される。
Further, since the high-concentration drain region 9 is formed even up to the periphery of the substrate, the on-resistance can be reduced by a reduction effect of about several tens of% depending on the area ratio between the substrate and the peripheral portion. It

【0019】特に、第二層がエピタキシャル層の場合に
は、層全体にわたる不純物濃度の制御が容易となるた
め、抵抗値と耐圧との関係が制御しやすくなり、目的に
沿った設計ができた。
In particular, when the second layer is an epitaxial layer, it is easy to control the impurity concentration over the entire layer, so that the relationship between the resistance value and the breakdown voltage is easily controlled, and the design according to the purpose can be performed. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の縦型MOSFETの実施例を示す構造
断面図
FIG. 1 is a structural sectional view showing an embodiment of a vertical MOSFET of the present invention.

【図2】本発明の効果を示すオン抵抗とドレイン−ソー
ス間電圧を示すグラフ
FIG. 2 is a graph showing on-resistance and drain-source voltage showing effects of the present invention.

【図3】従来の縦型MOSFETを示す構造断面図FIG. 3 is a structural sectional view showing a conventional vertical MOSFET.

【符号の説明】[Explanation of symbols]

1 低濃度ドレイン領域 2 チャンネル形成用P型拡散領域 3 ソース領域 4 ゲート酸化膜 5 ゲート電極 6 ソース電極 7 裏面側の濃度の高いドレイン領域 8 ドレイン電極 9 高濃度ドレイン領域 10 P型拡散領域の間隔 11 絶縁膜 1 low-concentration drain region 2 P-type diffusion region for channel formation 3 source region 4 gate oxide film 5 gate electrode 6 source electrode 7 high-concentration drain region 8 on the back side drain electrode 9 high-concentration drain region 10 interval between P-type diffusion regions 11 Insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型の第一層と同第一層より高い不純
物濃度で同第一層全面と接続形成された一導電型の第二
層とを備えた半導体基板と、前記第二層内に選択的に作
り込まれた最深部が前記第二層の厚みを越えない深さの
逆導電型のチャンネル領域と、前記チャンネル領域内に
選択的に作り込まれた一導電型のソース領域と、前記ソ
ース領域と前記第二層間の前記チャンネル領域上に形成
されたゲートとを備えた縦型MOS電界効果トランジス
タ。
1. A semiconductor substrate comprising a first layer of one conductivity type and a second layer of one conductivity type connected to the entire surface of the first layer with an impurity concentration higher than that of the first layer; A channel region of opposite conductivity type whose deepest part selectively formed in the layer does not exceed the thickness of the second layer, and a source of one conductivity type selectively formed in the channel region. A vertical MOS field effect transistor having a region, a source region, and a gate formed on the channel region between the second layers.
【請求項2】前記第2層がエピタキシャル層であること
を特徴とする特許請求の範囲第1項記載の縦型MOS電
界効果トランジスタ。
2. The vertical MOS field effect transistor according to claim 1, wherein the second layer is an epitaxial layer.
JP21030395A 1995-08-18 1995-08-18 Vertical mos field effect transistor Pending JPH08213615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21030395A JPH08213615A (en) 1995-08-18 1995-08-18 Vertical mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21030395A JPH08213615A (en) 1995-08-18 1995-08-18 Vertical mos field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60256984A Division JPS62115873A (en) 1985-11-15 1985-11-15 Vertical mos field effect transistor

Publications (1)

Publication Number Publication Date
JPH08213615A true JPH08213615A (en) 1996-08-20

Family

ID=16587178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21030395A Pending JPH08213615A (en) 1995-08-18 1995-08-18 Vertical mos field effect transistor

Country Status (1)

Country Link
JP (1) JPH08213615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482285B2 (en) 1999-06-09 2009-01-27 International Rectifier Corporation Dual epitaxial layer for high voltage vertical conduction power MOSFET devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742164A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742164A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482285B2 (en) 1999-06-09 2009-01-27 International Rectifier Corporation Dual epitaxial layer for high voltage vertical conduction power MOSFET devices

Similar Documents

Publication Publication Date Title
US11233147B2 (en) Semiconductor device
US6713794B2 (en) Lateral semiconductor device
US5710455A (en) Lateral MOSFET with modified field plates and damage areas
US6977414B2 (en) Semiconductor device
US5319221A (en) Semiconductor device with MISFET-controlled thyristor
US20090014719A1 (en) Semiconductor device with large blocking voltage
JPH06120510A (en) High breakdown voltage misfet and semiconductor integrated circuit
JP2009164460A (en) Semiconductor device
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
SE513284C2 (en) Semiconductor component with linear current-to-voltage characteristics
JPWO2004038805A1 (en) Horizontal short-channel DMOS, method for manufacturing the same, and semiconductor device
JPH0334466A (en) Vertical-type double diffused mosfet
JP2002076020A (en) Semiconductor device
KR20220024093A (en) Bonded Polysilicon Guard Rings to Improve Breakdown Voltages in Power Semiconductor Devices
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
JPH1145998A (en) Insulated gate semiconductor device
JPS62115873A (en) Vertical mos field effect transistor
US6747315B1 (en) Semiconductor device having MOS field-effect transistor
JPH08213615A (en) Vertical mos field effect transistor
JPS6164165A (en) Mos type field-effect transistor
JP3376294B2 (en) Semiconductor device
JP2005332886A (en) Semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPS60262468A (en) Mos type field-effect transistor
JP3278534B2 (en) MOS gate type power semiconductor device and driving method thereof