JPH08211035A - Analysis of solder flux - Google Patents

Analysis of solder flux

Info

Publication number
JPH08211035A
JPH08211035A JP7018883A JP1888395A JPH08211035A JP H08211035 A JPH08211035 A JP H08211035A JP 7018883 A JP7018883 A JP 7018883A JP 1888395 A JP1888395 A JP 1888395A JP H08211035 A JPH08211035 A JP H08211035A
Authority
JP
Japan
Prior art keywords
acid
organic acid
flux
solder flux
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7018883A
Other languages
Japanese (ja)
Inventor
Naohiko Sado
直彦 佐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7018883A priority Critical patent/JPH08211035A/en
Publication of JPH08211035A publication Critical patent/JPH08211035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To rapidly analyze solder flux with high accuracy by extracting the org. acid of the flux bonded to a soldered processed product with pure water using ultrasonic waves and separating the org. acid component of an aq. soln. CONSTITUTION: The terminal part of an electronic part is immersed in org. acid (formic acid) flux in a state fitted with a case and taken out of the flux to be dried under heating to be immersed in an eutectic solder tank and a very small amt. of formic acid is bonded to the electronic part in a mist form. This electronic part is extracted with ultrapure water using ultrasonic waves and the formic acid bonded to the part is recovered to obtain an analytical sample as an aq. soln. Namely, because the org. acid of the solder flux bonded to the electronic part can be extracted with ultrapure water and the extract can be used as it is, the regulation of the analytical sample is rapid. Next, the org. acid component is separated by the separation column 14 using carbonate in an eluate 12 and using an anion exchange resin of ion chromatography and electric conductivity is measured to determine ions. By this constitution, solder flux can be rapidly analyzed with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品のはんだ付け
におけるフラックスの成分分析法に係わり、特にはんだ
フラックスとしての低分子量カルボン酸の部品への付着
残留量を評価するための有機酸の分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux component analysis method for soldering electronic components, and more particularly to analysis of organic acids for evaluating the residual residue of low molecular weight carboxylic acid as a solder flux on components. Regarding the method.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化、高密度化が
急速な勢いで進んでいる。これまでに電子部品の実装方
法の中心であった挿入実装に代わって表面実装が広く普
及してきている。それに伴いはんだ付け接合もフロー工
法から、はんだペーストを用いたリフロー工法へと変わ
ってきている。
2. Description of the Related Art Electronic devices have been rapidly reduced in size, weight and density. Surface mounting has become widespread instead of insertion mounting, which has been the main method of mounting electronic components. Along with this, the soldering joint is also changing from a flow method to a reflow method using a solder paste.

【0003】電子部品のはんだ付けは、従来は例えば、
はんだフラックスとしてロジン系材料に活性剤としてハ
ロゲン系成分が添加されたものが多く用いられた。一般
にはんだ付け用フラックスは、はんだ付けする金属の表
面を清浄にするために必要であるが、はんだフラックス
の残渣等の汚れが表面絶縁抵抗低下の原因となるため、
洗浄工程が不可欠である。
Conventionally, soldering of electronic parts is performed by, for example,
A solder flux containing a rosin-based material and a halogen-based component added as an activator was often used. Generally, the soldering flux is necessary to clean the surface of the metal to be soldered, but dirt such as solder flux residue causes a decrease in surface insulation resistance.
A cleaning process is essential.

【0004】従来この洗浄には、洗浄性,乾燥性や毒性
が低いなどの特徴を有したフロンが用いられることが一
般的であった。しかし、地球環境のオゾン層破壊の問題
からフロン規制が実施され、これに替わる洗浄剤の検討
が行われている。また、この対策として、電子部品の組
み立て工程等で無洗浄化の検討も進められている。現在
は、はんだフラックスに例えば、カルボン酸である蟻酸
などの有機酸が適用されるようになってきている。これ
は、フラックス残渣が少なく無洗浄化が可能になるため
とコストダウンを図るためである。
Conventionally, for this cleaning, it has been general to use CFC having characteristics such as cleaning property, drying property and low toxicity. However, due to the problem of ozone depletion of the global environment, CFC regulations have been implemented, and alternative cleaning agents are being investigated. In addition, as a countermeasure against this, consideration is being given to eliminating cleaning in the assembly process of electronic components. At present, for example, organic acids such as formic acid, which is a carboxylic acid, are applied to the solder flux. This is because there is little flux residue and it is possible to eliminate the need for cleaning and to reduce costs.

【0005】この有機酸系はんだフラックスは、電子部
品にわずかに付着残存することがあり、この有機酸によ
る他の材料や腐食性への影響を評価する必要がある。特
に、はんだ付け後の電子部品に付着しているはんだフラ
ックスの有機酸量を評価するため、迅速に精度よく定量
する方法が求められている。一般に混合物中の有機酸の
標準的な分析方法は、日本分析化学会編「分析化学便
覧」改訂四版(1991)に述べられている。その方法
は、有機酸を有機溶媒に抽出し、分離後に不溶性のカル
シウム塩とし、さらに処理を加えて分別定量する方法で
ある。また、はんだフラックスに用いられる例えば有機
酸の蟻酸は、分離精製後に赤外吸収分析(IR法)によ
る定性分析やガスクロマトグラフ(GC法)により分析
できることが示唆されている。
The organic acid-based solder flux may slightly adhere and remain on electronic parts, and it is necessary to evaluate the influence of the organic acid on other materials and corrosiveness. In particular, in order to evaluate the amount of organic acid in the solder flux adhering to the electronic component after soldering, there is a demand for a method for quantifying it quickly and accurately. Generally, a standard method for analyzing organic acids in a mixture is described in "Analytical Chemistry Handbook", 4th edition (1991), edited by The Japan Society for Analytical Chemistry. The method is a method in which an organic acid is extracted into an organic solvent, an insoluble calcium salt is obtained after the separation, and a treatment is further applied to carry out a fractional quantification. Further, it has been suggested that, for example, formic acid, which is an organic acid used in the solder flux, can be analyzed by qualitative analysis by infrared absorption analysis (IR method) or gas chromatograph (GC method) after separation and purification.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
標準的な分析方法は、特に植物からの酸分別法であり、
そのまま適用することができない。はんだフラックスの
有機酸は、低分子量のカルボン酸であり、その微量のミ
ストが電子部品に付着残留していると考えられるから、
その回収後の状態は水溶液である。また,有機酸の蟻酸
等は、赤外吸収分析で定性分析は可能であるが、試料調
製法を含めて確立された定量分析方法がない。いずれに
しても、これらの方法では分析操作に時間を要し、迅速
性に欠ける。
However, the standard analytical method described above is an acid fractionation method especially from plants,
It cannot be applied as it is. The organic acid of the solder flux is a low molecular weight carboxylic acid, and it is considered that a trace amount of mist remains attached to electronic parts.
The state after the recovery is an aqueous solution. Formic acid, which is an organic acid, can be qualitatively analyzed by infrared absorption analysis, but there is no established quantitative analysis method including a sample preparation method. In any case, these methods require a long time for the analytical operation and are not quick.

【0007】この発明は上述の点に鑑みてなされ、その
目的は電子部品に付着した複数の低分子量カルボン酸を
抽出して分析試料を調製し得られた抽出液中のカルボン
酸を分別定量して電子部品に付着した低分子量のカルボ
ン酸を迅速かつ高精度に分析する方法を提供することに
ある。
The present invention has been made in view of the above points, and an object thereof is to extract a plurality of low molecular weight carboxylic acids adhering to an electronic component to prepare an analytical sample and fractionate and quantify the carboxylic acid in the obtained extract. Another object of the present invention is to provide a method for rapidly and highly accurately analyzing a low molecular weight carboxylic acid attached to an electronic component.

【0008】[0008]

【課題を解決するための手段】上述の目的はこの発明に
よれば分析試料調製工程と、定量工程を有し、分析試料
調製工程は、はんだ付け加工品に付着しているはんだフ
ラックスの有機酸を純水で超音波抽出して有機酸の水溶
液を調製する工程であり、定量工程は、水溶液を所定の
陰イオン交換樹脂カラムに吸着させ炭酸塩を溶離液とし
て用いるイオンクロマトグラフィーによって有機酸成分
を分離し電気伝導度を測定して各有機酸量するものであ
るとすることにより達成される。
According to the present invention, the above-mentioned object has an analytical sample preparing step and a quantitative measuring step, and the analytical sample preparing step comprises the organic acid of the solder flux attached to the soldered product. Is a step of ultrasonically extracting the organic acid with pure water to prepare an aqueous solution of an organic acid. The quantitative step is to adsorb the aqueous solution on a predetermined anion exchange resin column and use carbonate as an eluent to analyze the organic acid component by ion chromatography. Is separated and the electrical conductivity is measured to determine the amount of each organic acid.

【0009】上述の発明において、有機酸は低分子量の
カルボン酸であるとすること、または溶離液は炭酸ナト
リウムと炭酸水素ナトリウムの混合液であるとすること
が有効である。低分子量のカルボン酸としてイオン種
〔蟻酸イオンHCOO- , 酢酸イオンCH3 COO-
シュウ酸イオン(C00)2-〕が生成する蟻酸,酢酸,
シュウ酸があげらる。
In the above invention, it is effective that the organic acid is a low molecular weight carboxylic acid, or that the eluent is a mixed solution of sodium carbonate and sodium hydrogen carbonate. As a low molecular weight carboxylic acid, an ionic species [formate ion HCOO , acetate ion CH 3 COO ,
Formic acid, acetic acid, produced by oxalate ion (C00) 2- ],
Oxalic acid.

【0010】はんだフラックスの部品への付着量は、有
機酸イオン量から有機酸の絶対量に換算し、部品1個ま
たは単位面積あたりの量として評価される。
The amount of solder flux attached to a component is evaluated as the amount of one component or unit area by converting the amount of organic acid ions into the absolute amount of organic acid.

【0011】[0011]

【作用】電子部品に付着しているはんだフラックスの有
機酸は、純水で抽出され、分析試料の調製が迅速であ
る。特に抽出液をそのまま用いて定量工程に入るので、
従来の各種有機酸分析用の溶剤抽出や分離精製および分
析成分ごとの処理等の煩雑な前処理が不要になる。
The organic acid of the solder flux adhering to the electronic component is extracted with pure water, and the analytical sample can be prepared quickly. In particular, since the extract is used as it is for the quantification step,
It eliminates the need for complicated pretreatment such as conventional solvent extraction for organic acid analysis, separation and purification, and treatment for each analytical component.

【0012】低分子量のカルボン酸は、はんだフラック
ス中の成分であり、有機酸の影響を評価できる。炭酸ナ
トリウムと炭酸水素ナトリウムの混合水溶液は低分子量
のカルボン酸と無機酸共存系に適用できて有機酸の分析
精度を高める。
The low molecular weight carboxylic acid is a component in the solder flux, and the effect of organic acid can be evaluated. A mixed aqueous solution of sodium carbonate and sodium hydrogen carbonate can be applied to a low molecular weight carboxylic acid / inorganic acid coexisting system and enhances the analysis accuracy of organic acids.

【0013】[0013]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。図1は、本発明の実施例に係わる分析試料調製手順
を示す流れ図である。電子部品は端子付けのケースで、
はんだ付けは例えば、有機酸の蟻酸をフラックスとし、
蟻酸濃度87%のものがフラックス槽に準備される。前
記部品の端子部はケースについたままでフラックスに数
秒間浸漬し、その後に約200℃で加熱・乾燥し、次い
で約250℃に加熱されたSn63%−Pb37%共晶
はんだの槽に数秒間浸漬されて部品の予備はんだ付けが
完了する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a flow chart showing an analytical sample preparation procedure according to an example of the present invention. Electronic parts are cases with terminals,
For soldering, for example, organic acid formic acid is used as a flux,
Formic acid having a concentration of 87% is prepared in the flux tank. The terminals of the parts are immersed in the flux for a few seconds while still attached to the case, then heated and dried at about 200 ° C, and then immersed in a bath of Sn63% -Pb37% eutectic solder heated to about 250 ° C for a few seconds. Then, the pre-soldering of components is completed.

【0014】この工程で、蟻酸はミストとして部品に微
量付着する。この電子部品を超純水で超音波抽出して部
品に付着した蟻酸を回収し、分析試料は水溶液の状態で
得られる。抽出操作は、抽出容器(容量500mIビー
カー)と超純水計量と抽出液回収のための容器(容量1
00mIメスフラスコ)を用い、試料の電子部品を前記
抽出容器に入れ、超純水100mIを注入してついで超
音波抽出(10分間)を行う。超音波抽出法は、電子部
品の細部からの付着物を回収するのに効果的である。
In this process, a small amount of formic acid adheres to the parts as mist. This electronic component is ultrasonically extracted with ultrapure water to recover the formic acid adhering to the component, and the analytical sample is obtained in the state of an aqueous solution. The extraction operation consists of an extraction container (volume 500 ml beaker) and a container for measuring ultrapure water and extracting liquid (volume 1).
(00 ml volumetric flask), the electronic components of the sample are placed in the extraction container, 100 ml of ultrapure water is injected, and then ultrasonic extraction (10 minutes) is performed. The ultrasonic extraction method is effective in collecting deposits from the details of electronic components.

【0015】さらに、抽出後の液に分析成分の有機酸と
は異なる浮遊物などが存在しているときは、その後のイ
オンクロマトグラフィーによる測定時の配管(テフロン
ループ)の詰まりとなって障害になるため、ろ過操作を
行う。ろ過操作は、カートリッジ式フィルター(Pore S
ize 0.45μm)で試料注入用シリンジと共に使用
し、このろ液が分析試料となる。
Furthermore, when the liquid after extraction contains a suspended matter different from the organic acid as the analytical component, the piping (Teflon loop) is clogged during the subsequent measurement by ion chromatography, which may cause an obstacle. Therefore, filtration operation is performed. The filtration operation is a cartridge type filter (Pore S
ize 0.45 μm) with a syringe for sample injection, and the filtrate becomes an analytical sample.

【0016】このようにして電子部品に付着しているは
んだフラックスの有機酸は、水に可溶な性質を有するの
で純水抽出で回収でき、特に抽出液をそのまま用いるこ
とができるので分析試料の調製が迅速である。イオンの
定量は、イオンクロマトグラフィによる。図2はイオン
クロマトグラフの構成を示す配置図である。イオンクロ
マトグラフは、陰・陽イオン種ごとに所定の測定系によ
ってイオン交換樹脂カラム内でその親和性,水和イオン
半径の大小,van der WaaIs の相互作用によってイオン
種の相互分離を行う。
The organic acid of the solder flux adhered to the electronic component in this manner can be recovered by pure water extraction because it has the property of being soluble in water, and in particular, since the extract can be used as it is, The preparation is quick. Ion quantification is by ion chromatography. FIG. 2 is a layout showing the structure of the ion chromatograph. The ion chromatograph separates ionic species from each other according to their affinity, the size of the hydrated ionic radius, and the interaction of van der WaaIs in the ion-exchange resin column by a predetermined measurement system for each anion and cation species.

【0017】無機の陰イオン定量の場合は、図2の分離
カラム14に陰イオン交換樹脂が用いられ、溶離液12
には弱電解質の炭酸塩溶液が用いられる。除去システム
15は、分離カラム14内でイオン種が分離されたあと
の目的とするイオン種以外のイオン、つまり、溶離液に
用いられた電解質成分を除去するためのもので、電気伝
導度のバックグランドを小さくして検出感度を向上させ
る。13はポンプ、16は電導度セル、17は電導度
計、18は記録計、19は廃水である。
In the case of quantifying inorganic anions, an anion exchange resin is used in the separation column 14 of FIG.
A weak electrolyte carbonate solution is used for. The removal system 15 is for removing ions other than the target ionic species after the ionic species have been separated in the separation column 14, that is, for removing the electrolyte component used in the eluent, and has a low electric conductivity. Reduce the ground to improve detection sensitivity. 13 is a pump, 16 is a conductivity cell, 17 is a conductivity meter, 18 is a recorder, and 19 is waste water.

【0018】例えば、無機の陰イオン分析の場合は、溶
離液に炭酸塩〔炭酸ナトリウム(Na 2CO3)〕が用いられ
ることが多い。分離カラムと除去システム内では次式に
示すような反応でイオンの分離が行われる。 分離カラム内:Resin- N+ HCO3 - +Na+ X- →Resin- N
+ X- +Na+ HCO3 - 除去カラム内:Resin- SO3 - H+ +Na+ HCO3 - → Resin
- SO3 - Na+ +H2CO3 Resin- SO3 - H+ +Na+ X- → Resin- SO3 - Na+ + H
+ X- 溶離液に炭酸塩系を用いる陰イオンの分離・測定は、無
機陰イオンの分析〔例: F- , CI- ,NO2 - ,PO4 3- , Br
- ,NO3 - ,SO4 2-〕に適用される。
For example, in the case of inorganic anion analysis, the
Carbonate (sodium carbonate (Na 2CO3)] Is used
Often. In the separation column and removal system,
Ions are separated by the reaction shown. In separation column: Resin- N+HCO3 -+ Na+ X-→ Resin- N
+ X-+ Na+HCO3 - In the removal column: Resin- SO3 - H++ Na+HCO3 -→ Resin
-SO3 -Na++ H2CO3 Resin- SO3 - H++ Na+ X-→ Resin-SO3 -Na++ H
+ X- There is no separation and measurement of anions using a carbonate system as the eluent.
Analysis of machine anions [Example: F-, CI-, NO2 -, POFour 3- , Br
-, NO3 -, SOFour 2-] Is applied.

【0019】図4は通常の無陰イオンのクロマトグラム
を示す線図である。図3は、本発明の実施例に係る、有
機酸イオンのクロマトグラムを示す線図である。前記と
同様の方法で、イオンクロマトグラフィによる水溶液中
の蟻酸イオン,酢酸イオン,シュウ酸イオンを測定し
た。低分子量カルボン酸イオン種の分離ができ、イオン
の種類がわかる。また、測定は約18分程度の短時間で
できることがわかる。
FIG. 4 is a diagram showing a chromatogram of a normal anion. FIG. 3 is a diagram showing a chromatogram of organic acid ions according to an example of the present invention. In the same manner as described above, formate ion, acetate ion, and oxalate ion in the aqueous solution were measured by ion chromatography. The low molecular weight carboxylate ion species can be separated, and the type of ion is known. Further, it can be seen that the measurement can be performed in a short time of about 18 minutes.

【0020】低分子量カルボン酸の有機酸イオンの分離
・測定は、適用する分離カラムとの組み合わせで決ま
り、溶離液にホウ酸塩系を用いる例が多かった。しか
し、有機酸イオンと無機陰イオンの両者につき同時に分
離定量分析を可能にすれば分析評価上は極めて有効であ
る。今回、イオンクロマトグラフィ法での有機イオンと
無機陰イオンの分離・測定条件を種々検討し、溶離液に
炭酸塩系を用いる方法で、有機酸イオンの分離・測定条
件を見出した。
Separation and measurement of organic acid ions of low-molecular-weight carboxylic acid are determined by the combination with the applicable separation column, and in many cases, a borate system is used as the eluent. However, if both organic acid ions and inorganic anions can be separated and quantitatively analyzed at the same time, it will be extremely effective for analytical evaluation. This time, we examined various conditions for separation and measurement of organic ions and inorganic anions by ion chromatography, and found the conditions for separation and measurement of organic acid ions by using a carbonate system as an eluent.

【0021】この時の有機酸イオンの分離定量条件は次
の通りである。 <測定条件> 装置 : イオンクロマトグラフ 分離カラム : 陰イオン交換樹脂充填カラム 溶離液 : 0.0024M Na2 CO3 +0.003M NaHCO
3 溶離液流量 : 2ml/min 除去システム: 陽イオン除去システム〔使用再生
液(0.025N H2 SO4)〕 分析試料量 : 5μl 電導度フルスケール: 30μS/cm イオンクロマトグラフィ法の検量線は、予め定量しよう
とするイオン種を含む標準液の測定によって、そのピー
ク強度とイオン濃度の関係から最小二乗法によって作成
される。
The conditions for separating and quantifying the organic acid ions at this time are as follows. <Measurement conditions> Device: Ion chromatograph Separation column: Anion exchange resin packed column Eluent: 0.0024M Na 2 CO 3 + 0.003M NaHCO
3 Eluent flow rate: 2 ml / min Removal system: Cation removal system [Regeneration solution used (0.025NH 2 SO 4 )] Analytical sample amount: 5 μl Conductivity full scale: 30 μS / cm The calibration curve for the ion chromatography method is determined in advance. The standard solution containing the ionic species to be measured is prepared by the least square method from the relationship between the peak intensity and the ion concentration.

【0022】図5は有機酸の検量関係を示す線図であ
る。特性線21に蟻酸イオン(HCOO- ) ,22に酢酸イ
オン( CH3 COO- ),23にシュウ酸イオン (COO)2-
示した。いずれも直線性の良好な検量線が得られてい
る。この実験式が〜に示される。 HCC- (mg/l) = 0.1085χ−0.0577 ………… 、相間係数 0.999 CH3 COO- (mg/l) = 0.6348χ−0.0976 ………… 、相間係数 0.999 (COO)2-(mg/l) = 0.9091χ−0.9091 ………… 、相間係数 0.999 ここでχはクロマトグラムのピークの高さ(mm)であ
る。ピーク高さと液中のイオン濃度の相間係数は0.999
で良好であり、高精度に定量できることが分かる。
FIG. 5 is a diagram showing the calibration relationship of organic acids. Characteristic curve 21 shows formate ion (HCOO ), 22 shows acetate ion (CH 3 COO ), and 23 shows oxalate ion (COO) 2 − . In all cases, a calibration curve with good linearity was obtained. This empirical formula is shown in. HCC - (mg / l) = 0.1085χ-0.0577 ............, phase coefficient 0.999 CH 3 COO - (mg / l) = 0.6348χ-0.0976 ............, phase coefficient 0.999 (COO) 2- (mg / l) = 0.9091 χ -0.9091 ............, phase coefficient 0.999 where χ is the peak height (mm) of the chromatogram. The correlation coefficient between peak height and ion concentration in liquid is 0.999.
It can be seen that the result is good and the amount can be quantified with high accuracy.

【0023】はんだフラックスの有機酸は例えば、低分
子量のカルボン酸であり、超純水抽出で得た水溶液状態
であるから、分析精度を評価するためには、同様の水溶
液からなる標準液での有機酸イオンの分析精度が重要に
なる。図5の検量線を用いて、標準液の繰り返し分析精
度の検討を行った結果を表1に示す。繰り返し分析精度
は変動係数で約2%以下で良好であることが分かる。
The organic acid of the solder flux is, for example, a low molecular weight carboxylic acid and is in an aqueous solution state obtained by extraction with ultrapure water. Therefore, in order to evaluate the analysis accuracy, a standard solution of the same aqueous solution is used. The accuracy of analysis of organic acid ions is important. Table 1 shows the results of examining the accuracy of repeated analysis of the standard solution using the calibration curve of FIG. It can be seen that the repeated analysis accuracy is good when the coefficient of variation is about 2% or less.

【0024】[0024]

【表1】 実試料の蟻酸フラックス使用はんだ付け電子部品の分析
を図1の試料調製法で得た抽出液について、イオンクロ
マトグラフィ法により蟻酸イオンを測定し、図5の検量
線を適用した結果を表2に示す。
[Table 1] Table 2 shows the results obtained by measuring the formate ion by the ion chromatography method and applying the calibration curve of FIG. 5 to the extract obtained by the analysis of the soldering electronic parts using formic acid flux of the actual sample by the sample preparation method of FIG. .

【0025】[0025]

【表2】 表2の分析結果について抽出液は、図1の方法により行
った全量100mlである。電子部品1個あたりの蟻酸
量で定量下限が0.01mg、実試料では約1mg付着
していることが分かり、蟻酸量の分析評価ができる。
[Table 2] Regarding the analysis results in Table 2, the extraction liquid is 100 ml in total amount obtained by the method shown in FIG. The lower limit of quantification was 0.01 mg in the amount of formic acid per electronic component, and it was found that about 1 mg was attached in the actual sample, and the amount of formic acid can be analyzed and evaluated.

【0026】本発明によれば、分析所要時間は試料調製
を含めても1試料1時間以内で分析が完了することか
ら、迅速化されている。このようにしてこの発明は、は
んだフラックスの有機酸分析の精度の高い方法で、かつ
迅速に測定できるので、はんだフラックスの部品への有
機酸付着量評価に適用できる。
According to the present invention, the time required for analysis is accelerated because the analysis is completed within 1 hour per sample including the sample preparation. As described above, the present invention can be applied to the evaluation of the amount of the organic acid attached to the component of the solder flux, because the solder flux can be measured quickly and accurately by the method of analyzing the organic acid.

【0027】[0027]

【発明の効果】この発明によれば、分析試料調製工程
と、定量工程を有し、分析試料調製工程は、はんだ付け
加工品に付着しているはんだフラックスの有機酸を純水
で超音波抽出して水溶液にするので迅速にイオンクロマ
トグラフィーに適用可能な分析試料が調製できる。ま
た、定量工程は、水溶液を所定の陰イオン交換樹脂カラ
ムに溶離液として炭酸塩を用いるイオンクロマトグラフ
ィーによって有機酸成分を分離して電気伝導度を測定す
るので迅速且つ高精度の分析が可能である。
According to the present invention, it has an analytical sample preparation step and a quantitative determination step, and the analytical sample preparation step ultrasonically extracts the organic acid of the solder flux adhering to the soldered product with pure water. Since it is made into an aqueous solution, an analytical sample applicable to ion chromatography can be rapidly prepared. In the quantification step, since the organic acid component is separated and the electric conductivity is measured by ion chromatography using carbonate as an eluent in a predetermined anion exchange resin column, rapid and highly accurate analysis is possible. is there.

【0028】このようにして、電子部品の有機酸からな
るフラックスを用いたはんだ付け後の部品への付着量評
価が迅速かつ高精度でできる分析方法が得られる。ま
た、有機酸は低分子量のカルボン酸であるので、これら
は水溶液中でイオン解離しており、有機酸の電子部品に
対する影響を直接的に検討することを可能にする。溶離
剤として炭酸ナトリウムと変炭酸ナトリウムの混合系を
用いるときは無機系イオンの干渉もなく分析精度が一層
高まる。
In this way, an analysis method can be obtained which enables quick and highly accurate evaluation of the amount of adhesion to the component after soldering using the flux of the organic acid of the electronic component. In addition, since organic acids are low molecular weight carboxylic acids, they are ion-dissociated in an aqueous solution, which makes it possible to directly study the influence of organic acids on electronic components. When a mixed system of sodium carbonate and modified sodium carbonate is used as an eluent, there is no interference of inorganic ions, and the analytical accuracy is further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る分析試料の調製手順を
示す流れ図
FIG. 1 is a flow chart showing a procedure for preparing an analytical sample according to an embodiment of the present invention.

【図2】この発明の実施例にかかるイオンクロマトグラ
フの構成を示す配置図
FIG. 2 is a layout diagram showing a configuration of an ion chromatograph according to an embodiment of the present invention.

【図3】この発明の実施例にかかる有機酸イオンのクロ
マトグラムを示す線図
FIG. 3 is a diagram showing a chromatogram of organic acid ions according to an example of the present invention.

【図4】無機陰イオンのクロマトグラムを示す線図FIG. 4 is a diagram showing a chromatogram of inorganic anions.

【図5】無機酸の検量関係を示す線図FIG. 5 is a diagram showing the calibration relationship of inorganic acids.

【符号の説明】[Explanation of symbols]

11 分析試料液注入口 12 溶離液 13 ポンプ 14 分離カラム 15 除去システム 16 電導度セル 17 電導計 18 記録計 19 廃水 11 Analytical Sample Liquid Injection Port 12 Eluent 13 Pump 14 Separation Column 15 Removal System 16 Conductivity Cell 17 Conductivity Meter 18 Recorder 19 Waste Water

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】分析試料調製工程と、定量工程を有し、 試料調製工程は、はんだ付け加工品に付着しているはん
だフラックスの有機酸を純水で超音波抽出して有機酸の
水溶液を調製する工程であり、 定量工程は、水溶液を所定の陰イオン交換樹脂カラムに
吸着させ炭酸塩系の溶離液を用いるイオンクロマトグラ
フィーによって有機酸成分を分離し電気伝導度を測定し
て各有機酸量を定量するものであることを特徴とするは
んだフラックスの分析方法。
1. An analytical sample preparing step and a quantifying step, wherein the sample preparing step ultrasonically extracts the organic acid of the solder flux adhering to the soldered product with pure water to obtain an aqueous solution of the organic acid. The quantification step is the step of preparation, in which the aqueous solution is adsorbed on a specified anion exchange resin column and the organic acid component is separated by ion chromatography using a carbonate-based eluent and the electrical conductivity is measured to determine the organic acid. A method for analyzing a solder flux, which is characterized by quantifying the amount.
【請求項2】請求項1記載の分析方法において、有機酸
は低分子量のカルボン酸であることを特徴とするはんだ
フラックスの分析方法。
2. The analysis method according to claim 1, wherein the organic acid is a low molecular weight carboxylic acid.
【請求項3】請求項1記載の分析方法において、炭酸塩
系の溶離液は炭酸ナトリウムと炭酸水素ナリウトムの混
合液であることを特徴とするはんだフラックスの分析方
法。
3. The analysis method according to claim 1, wherein the carbonate-based eluent is a mixed solution of sodium carbonate and sodium hydrogen carbonate.
JP7018883A 1995-02-07 1995-02-07 Analysis of solder flux Pending JPH08211035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7018883A JPH08211035A (en) 1995-02-07 1995-02-07 Analysis of solder flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7018883A JPH08211035A (en) 1995-02-07 1995-02-07 Analysis of solder flux

Publications (1)

Publication Number Publication Date
JPH08211035A true JPH08211035A (en) 1996-08-20

Family

ID=11983965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7018883A Pending JPH08211035A (en) 1995-02-07 1995-02-07 Analysis of solder flux

Country Status (1)

Country Link
JP (1) JPH08211035A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014513A (en) * 2008-07-03 2010-01-21 Fuji Electric Holdings Co Ltd Metal component analysis method in solder flux
JP2011027563A (en) * 2009-07-27 2011-02-10 Fuji Electric Systems Co Ltd Analysis method of pollutant adhering to printed board, and cleaning method of the printed board
CN117805278A (en) * 2023-12-30 2024-04-02 上海新泊地化工技术服务有限公司 Method for analyzing short-chain organic acid in soldering flux by liquid chromatography

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014513A (en) * 2008-07-03 2010-01-21 Fuji Electric Holdings Co Ltd Metal component analysis method in solder flux
JP2011027563A (en) * 2009-07-27 2011-02-10 Fuji Electric Systems Co Ltd Analysis method of pollutant adhering to printed board, and cleaning method of the printed board
CN117805278A (en) * 2023-12-30 2024-04-02 上海新泊地化工技术服务有限公司 Method for analyzing short-chain organic acid in soldering flux by liquid chromatography
CN117805278B (en) * 2023-12-30 2024-05-17 上海新泊地化工技术服务有限公司 Method for analyzing short-chain organic acid in soldering flux by liquid chromatography

Similar Documents

Publication Publication Date Title
Bi et al. Analytical methodologies for aluminium speciation in environmental and biological samples–a review
Sturgeon et al. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry
Ichinoki et al. Simultaneous determination of nickel, lead, zinc, and copper in citrus leaves and rice flour by liquid chromatography with hexamethylenedithiocarbamate extraction
EP2650680A1 (en) Method for rapidly determining 16 species of inorganic anions and organic acids in tobacco simultaneously
CN106770886A (en) Insulator contamination water-soluble cationic composition detection analyzes the chromatography of ions
Michalski Recent development and applications of ion chromatography
Bakircioglu et al. Concentration of cadmium, copper and zinc using water soluble polyacrylic acid polymer
Tokman et al. Preconcentration and separation of copper (II), cadmium (II) and chromium (III) in a syringe filled with 3-aminopropyltriethoxysilane supported on silica gel
Yilmaz et al. Sorbent extraction of Pb (II), Cu (II), Ni (II), and Fe (III) Ions as 2-(5-Bromo-2-Pyridylazo)-5-diethylamino-phenol chelates on single-walled carbon nanotube disks prior to their flame atomic absorption spectrometric determinations in animal feeds and natural water samples
JPH08211035A (en) Analysis of solder flux
Svahn et al. Simple, fast and inexpensive large “whole water” volume sample SPE-loading using compressed air and finely ground sand
CN111122715B (en) Method for simultaneously determining contents of various trace anions in sodium carboxymethylcellulose by using ion chromatography
Savory et al. Gas chromatographic determination of chromium in serum
JP2011027563A (en) Analysis method of pollutant adhering to printed board, and cleaning method of the printed board
JP2001116736A (en) Method for analyzing estrogen
Laganà et al. Soil column extraction followed by liquid chromatography and electrospray ionization mass spectrometry for the efficient determination of aryloxyphenoxypropionic herbicides in soil samples at ng g− 1 levels
RU2679667C1 (en) Method for determining the composition of aqueous solutions
JPH03261861A (en) Apparatus for measuring ionic residue
Utermahlen Jr et al. Solid-phase extraction procedure for the clean-up of urine and gastric juice specimens for nitrite and nitrate analysis by ion chromatography
JPH06194357A (en) Method and equipment for liquid chromatography analysis
JP3239194B2 (en) Method for analyzing anions by ion chromatography and method for washing anion separation column
JP2012063250A (en) Analysis/evaluation method for degree of staining
JPH03277965A (en) Method and apparatus for measuring ionic residue
Artigas et al. Determination of tryptamine in brain tissue by capillary gas chromatography mass spectrometry (selected ion monitoring)
AU2021102452A4 (en) Detection Method of Inorganic Lead Ions in Marine Shellfish by HPLC-ICP-MS Technique