JPH08210720A - Air conditioner with refrigeratnt heater - Google Patents

Air conditioner with refrigeratnt heater

Info

Publication number
JPH08210720A
JPH08210720A JP7017404A JP1740495A JPH08210720A JP H08210720 A JPH08210720 A JP H08210720A JP 7017404 A JP7017404 A JP 7017404A JP 1740495 A JP1740495 A JP 1740495A JP H08210720 A JPH08210720 A JP H08210720A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
superheat degree
heating device
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017404A
Other languages
Japanese (ja)
Inventor
Toshihiko Nishimoto
敏彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7017404A priority Critical patent/JPH08210720A/en
Publication of JPH08210720A publication Critical patent/JPH08210720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the deterioration of refrigerant or the lubricating failure of the mechanism of a compressor in any heating state by providing a discharge pressure detecting sensor and a discharging refrigerant temperature detecting thermistor at the discharge side of a compressor. CONSTITUTION: A discharge pressure detecting sensor 12 and a discharge refrigerant detecting thermistor 13 are provided at the discharge side of a compressor 1. The refrigerant circulating amount of an air conditioner having a refrigerant heater 8, the refrigerant heating amount of the heater 8 or the flow rate of a pressure reducing unit 4 is so controlled that the superheat degree of the suction refrigerant of the compressor 1 is stabilized within a predetermined range. Thus, even in any state of heating, the superheat degree of the discharge refrigerant of the compressor 1 and the superheat degree of the suction refrigerant of the compressor 1 are held at the suitable degree even in any of the heating to prevent the decrease or the deterioration of the efficiency of the heater 8 and the lubricating failure of the mechanism of the compressor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷媒加熱装置を具備した
空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with a refrigerant heating device.

【0002】[0002]

【従来の技術】従来の冷媒加熱装置を具備した空気調和
機は、たとえば特開平1−163563号公報に示すよ
うなものであった。以下、その構成について図5〜図8
を参照しながら説明する。図5に示すように圧縮機1、
4方弁2、室内熱交換器3、減圧器4、第1の逆止弁
5、室外熱交換器6、第2の逆止弁9、を環状に連結
し、減圧器4と第1の逆止弁5の間から圧縮機1の吸入
側へ2方弁7を介して熱交換器8aとバーナ8bからな
る冷媒加熱装置8を接続して冷凍サイクルを構成し、暖
房運転時は、圧縮機1、室内熱交換器3、冷媒加熱装置
8の順に冷媒が循環し、室内熱交換器3で放熱、冷媒加
熱装置8で吸熱が行われる。なお、10は室内気温検出
用サーミスタ、11は出口冷媒温度検出用サーミスタで
ある。
2. Description of the Related Art An air conditioner equipped with a conventional refrigerant heating device has been disclosed, for example, in Japanese Unexamined Patent Publication No. 1-163563. The configuration will be described below with reference to FIGS.
Will be described with reference to. As shown in FIG. 5, the compressor 1,
The four-way valve 2, the indoor heat exchanger 3, the pressure reducer 4, the first check valve 5, the outdoor heat exchanger 6, and the second check valve 9 are connected in an annular shape, and the pressure reducer 4 and the first A refrigerant heating device 8 including a heat exchanger 8a and a burner 8b is connected to the suction side of the compressor 1 from between the check valve 5 and a two-way valve 7 to form a refrigeration cycle. The refrigerant circulates in the order of the machine 1, the indoor heat exchanger 3, and the refrigerant heating device 8. The indoor heat exchanger 3 radiates heat and the refrigerant heating device 8 absorbs heat. In addition, 10 is an indoor air temperature detecting thermistor, and 11 is an outlet refrigerant temperature detecting thermistor.

【0003】冷媒循環量Gは圧縮機1を運転周波数Ga
を可変できる容量可変圧縮機として、暖房運転では、運
転周波数を5gから15gまでgごとに11段階に設定
できるようにし、図6に示すように室内設定温度Ta
と、室内気温検出用サーミスタ10で検出した室内温度
Tsとの差Tdによって、圧縮機1の運転周波数Gaが
決められている。また、冷媒加熱装置8は冷媒加熱量Q
をqごとに5qから15qまで11段階に変化させるこ
とができ、図7に示すように圧縮機1の運転周波数Ga
によって冷媒加熱量Qが決められている。また、減圧器
4の流量Nは、減圧器4を流量Nをnごとにnから5n
まで5段階に可変できる電動膨張弁として、図8に示す
ように圧縮機1の運転周波数Gaによって流量Nが決め
られている。さらに、冷媒加熱装置8の熱交換器8aの
出口冷媒温度Tlを出口冷媒温度検出用サーミスタ11
によって検出し、Tlが設定温度THより高くなれば加
熱を停止し、設定温度TL(TL<TH)より低くなれ
ば加熱を再開するように制御するものであった。
The refrigerant circulation amount G is the operating frequency Ga of the compressor 1.
As a variable capacity compressor capable of varying the temperature, in the heating operation, the operating frequency can be set in 11 steps from 5 g to 15 g for each g, and as shown in FIG.
And the operating temperature Ga of the compressor 1 is determined by the difference Td between the room temperature Ts detected by the room temperature detecting thermistor 10. Further, the refrigerant heating device 8 has a refrigerant heating amount Q.
Can be changed in 11 steps from 5q to 15q for each q, and as shown in FIG. 7, the operating frequency Ga of the compressor 1 can be changed.
The refrigerant heating amount Q is determined by. Further, the flow rate N of the pressure reducer 4 is set such that the flow rate N is 5 to 5n for every n.
As an electric expansion valve that can be varied in five steps up to, the flow rate N is determined by the operating frequency Ga of the compressor 1 as shown in FIG. Furthermore, the outlet refrigerant temperature Tl of the heat exchanger 8a of the refrigerant heating device 8 is set to the outlet refrigerant temperature detecting thermistor 11.
The temperature is controlled to stop heating when Tl becomes higher than the set temperature TH, and restarts when Tl becomes lower than the set temperature TL (TL <TH).

【0004】[0004]

【発明が解決しようとする課題】従来例のような冷媒加
熱装置を具備した空気調和機においては、暖房運転時の
圧縮機1は冷媒を循環させるためのポンプとして使用さ
れる。ここで、冷媒循環量Gを充分確保し、かつ、圧縮
機1の入力をできるだけ小さくするためには、圧縮機1
の吸入圧力を高くして吸入冷媒量を多くし、圧縮機1の
吐出圧力は低くして圧縮仕事を小さくする必要がある。
そこで、減圧器4の流量Nは増大、または最大に近く設
定して圧縮機1の圧縮比が小さくなるようにしなければ
ならない。圧縮機1の圧縮比が小さいと吸入冷媒と吐出
冷媒の状態量の変化は少なくなり、吐出冷媒の過熱度S
Hdも吸入冷媒の過熱度SHsに較べあまり大きくなら
ない。ここで、圧縮機1の機構部分を潤滑する冷凍機油
の油溜は吐出側にあるのが一般的であるが、冷媒の過熱
度が小さくなると冷媒と冷凍機油の相溶性は急激に良く
なるので、吐出冷媒の過熱度SHdが小さすぎると油溜
の冷凍機油に冷媒が多量に溶け込んで冷凍機油の潤滑性
能が低下し、圧縮機1の機構部分の潤滑不良を起こして
しまう。
In an air conditioner equipped with a refrigerant heating device as in the prior art, the compressor 1 during heating operation is used as a pump for circulating the refrigerant. Here, in order to secure a sufficient refrigerant circulation amount G and to make the input of the compressor 1 as small as possible, the compressor 1
It is necessary to increase the suction pressure to increase the suction refrigerant amount and reduce the discharge pressure of the compressor 1 to reduce the compression work.
Therefore, the flow rate N of the decompressor 4 must be increased or set close to the maximum so that the compression ratio of the compressor 1 becomes small. When the compression ratio of the compressor 1 is small, the change in the state amounts of the suction refrigerant and the discharge refrigerant is small, and the superheat degree S of the discharge refrigerant is S.
Hd also does not become much higher than the superheat degree SHs of the suction refrigerant. Here, the oil reservoir of the refrigerating machine oil that lubricates the mechanical portion of the compressor 1 is generally on the discharge side. However, when the degree of superheat of the refrigerant decreases, the compatibility of the refrigerant and the refrigerating machine oil sharply improves. When the superheat degree SHd of the discharged refrigerant is too small, a large amount of the refrigerant is dissolved in the refrigerating machine oil in the oil reservoir, the lubricating performance of the refrigerating machine oil is deteriorated, and poor lubrication occurs in the mechanical portion of the compressor 1.

【0005】従って、圧縮機1の吐出冷媒の過熱度SH
dは一定以上に大きくする必要があるので必然的に吸入
冷媒の過熱度SHsも大きくしなければならなくなる。
Therefore, the superheat degree SH of the refrigerant discharged from the compressor 1
Since it is necessary to make d larger than a certain value, the superheat degree SHs of the suction refrigerant must be made large.

【0006】圧縮機1の吸入と冷媒加熱装置8の出口
は、冷凍サイクル上は同位置とみなすことができ、圧縮
機1の吸入冷媒の過熱度SHsを大きくすることは、す
なわち、冷媒加熱装置8の出口冷媒の過熱度SHhを大
きくすることになるが、冷媒加熱装置8の出口冷媒の過
熱度SHhが大きくなりすぎると、冷媒加熱装置8の熱
交換器8aの効率低下や、局部的過熱による冷媒の劣化
等の問題が発生してしまう。
The suction of the compressor 1 and the outlet of the refrigerant heating device 8 can be regarded as the same position on the refrigeration cycle, and increasing the superheat degree SHs of the refrigerant sucked into the compressor 1 means that the refrigerant heating device is 8, the superheat degree SHh of the outlet refrigerant of the refrigerant heating device 8 is increased, but if the superheat degree SHh of the outlet refrigerant of the refrigerant heating device 8 is too large, the efficiency of the heat exchanger 8a of the refrigerant heating device 8 is reduced, and the local superheat This causes problems such as deterioration of the refrigerant due to.

【0007】そこで、冷媒循環量G、冷媒加熱装置8の
冷媒加熱量Q、減圧器4の流量Nは、圧縮機1の吐出冷
媒の過熱度SHdが、冷凍機油に冷媒が多量に溶け込ん
で冷凍機油の潤滑性能が低下してしまう程小さくなく、
圧縮機1の吸入冷媒の過熱度SHsが、冷媒加熱装置8
の熱交換器8aの効率低下や、局部的過熱による冷媒の
劣化が起きてしまう程大きくないように設定する必要が
ある。
Therefore, the refrigerant circulation amount G, the refrigerant heating amount Q of the refrigerant heating device 8 and the flow rate N of the decompressor 4 are determined by the superheat degree SHd of the refrigerant discharged from the compressor 1 and refrigeration by melting a large amount of the refrigerant in the refrigerating machine oil. It is not so small that the lubrication performance of machine oil deteriorates,
The superheat degree SHs of the refrigerant sucked into the compressor 1 is determined by the refrigerant heating device 8
It is necessary to set the heat exchanger 8a so as not to be so large that the efficiency of the heat exchanger 8a is deteriorated and the refrigerant is deteriorated due to local overheating.

【0008】ところが上記のような従来の冷媒加熱装置
を具備した空気調和機では、圧縮機1の運転周波数G
a、言い換えれば冷媒循環量Gと冷媒加熱装置8の冷媒
加熱量Q、さらに減圧器4の流量Nは、室内温度が常温
でサイクルが安定している場合に、圧縮機1の吐出冷媒
の過熱度SHdが適正な大きさになるように設定され、
また、過渡期に圧縮機1の吸入冷媒の過熱度SHsすな
わち冷媒加熱装置8の出口冷媒の過熱度SHhが大きく
なりすぎないように冷媒加熱装置8を制御している。
However, in the air conditioner equipped with the conventional refrigerant heating device as described above, the operating frequency G of the compressor 1 is
a, in other words, the refrigerant circulation amount G, the refrigerant heating amount Q of the refrigerant heating device 8, and the flow rate N of the decompressor 4 are such that the refrigerant discharged from the compressor 1 is overheated when the indoor temperature is normal and the cycle is stable. The SHd is set to an appropriate size,
Further, the refrigerant heating device 8 is controlled so that the superheat degree SHs of the refrigerant sucked into the compressor 1, that is, the superheat degree SHh of the outlet refrigerant of the refrigerant heating device 8 does not become too large in the transition period.

【0009】従って、室温が常温でサイクルが安定して
いる場合と、室温が高いときや室内風量を弱にしたとき
など室内熱交換器3の放熱量が減少して冷媒加熱量Qが
過多となる場合や、暖房運転の冷時始動など、冷媒循環
量Gが不足する場合など、圧縮機1の吸入冷媒の過熱度
SHsが大きくなりすぎる場合、すなわち冷媒加熱装置
8の出口冷媒の過熱度SHhが大きくなりすぎる場合に
対しては、圧縮機1の吸入冷媒の過熱度SHsを適正な
大きさに保ち、冷媒加熱装置8の熱交換器8aの効率低
下や、局部的過熱による冷媒の劣化などの問題を防ぐこ
とができる。
Therefore, when the cycle is stable at room temperature and when the room temperature is high or when the indoor air volume is weakened, the heat radiation amount of the indoor heat exchanger 3 decreases and the refrigerant heating amount Q becomes excessive. When the superheat degree SHs of the refrigerant sucked into the compressor 1 becomes too large, that is, when the refrigerant circulation amount G is insufficient such as during cold start of heating operation, that is, when the superheat degree SHh of the refrigerant exiting the refrigerant heating device SHh. In the case where the value becomes too large, the superheat degree SHs of the refrigerant sucked into the compressor 1 is maintained at an appropriate level, the efficiency of the heat exchanger 8a of the refrigerant heating device 8 is reduced, and the refrigerant is deteriorated due to local overheating. The problem of can be prevented.

【0010】しかし、室内温度が低いときや室内風量を
強にしたときなど室内熱交換器3の放熱量が増加して冷
媒加熱量Qが過少となる場合や、暖房の熱時再始動な
ど、冷媒循環量Gが過多になる場合など、圧縮機1の吐
出冷媒の過熱度SHdが小さくなりすぎる場合には、圧
縮機1の吐出冷媒の過熱度SHdを適正な大きさに保つ
ことができなくなり、冷凍機油の潤滑性能が低下して圧
縮機1の機構部分の潤滑不良を起こしてしまう場合があ
った。
However, when the indoor heat exchanger 3 increases the heat radiation amount such as when the indoor temperature is low or when the indoor air volume is increased, and the refrigerant heating amount Q becomes too small, or when the heating is restarted when hot. When the superheat degree SHd of the refrigerant discharged from the compressor 1 becomes too small, such as when the refrigerant circulation amount G becomes excessive, the superheat degree SHd of the refrigerant discharged from the compressor 1 cannot be maintained at an appropriate level. In some cases, the lubrication performance of the refrigerating machine oil deteriorates, resulting in poor lubrication of the mechanical portion of the compressor 1.

【0011】本発明は、上記従来の問題点を解決するも
ので、いかなる暖房運転状況においても、冷媒の劣化や
圧縮機の機構部分の潤滑不良を防ぐことを目的とするも
のである。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to prevent the deterioration of the refrigerant and the poor lubrication of the mechanical portion of the compressor under any heating operation condition.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明は、圧縮機の吐出側に吐出圧力検出用センサ
と、吐出冷媒温度検出用サーミスタを設けたものであ
る。
To achieve the above object, the present invention provides a discharge pressure detecting sensor and a discharge refrigerant temperature detecting thermistor on the discharge side of a compressor.

【0013】また、冷媒加熱装置の熱交換器に飽和温度
を検出する熱交換器飽和温度検出用サーミスタと、冷媒
加熱装置の出口に出口冷媒温度検出用サーミスタを設け
たものである。
Further, a heat exchanger saturation temperature detecting thermistor for detecting the saturation temperature is provided in the heat exchanger of the refrigerant heating device, and an outlet refrigerant temperature detecting thermistor is provided at the outlet of the refrigerant heating device.

【0014】[0014]

【作用】本発明は上記した構成において、冷媒加熱装置
を具備した空気調和機の冷媒循環量G、冷媒加熱装置の
冷媒加熱量Qまたは減圧器の流量Nを、圧縮機の吸入冷
媒の過熱度が一定の範囲内に安定するように制御するこ
とで、暖房運転のいかなる場合においても、圧縮機の吐
出冷媒の過熱度SHdと圧縮機の吸入冷媒の過熱度SH
sをともに適正な大きさに保ち、冷媒加熱装置の効率低
下や冷媒の劣化、また、圧縮機の機構部分の潤滑不良を
防ぐことができる。
According to the present invention, the refrigerant circulation amount G of the air conditioner equipped with the refrigerant heating device, the refrigerant heating amount Q of the refrigerant heating device or the flow rate N of the pressure reducer is set to the superheat degree of the refrigerant sucked into the compressor. Is controlled so as to stabilize within a certain range, so that the superheat degree SHd of the refrigerant discharged from the compressor and the superheat degree SH of the refrigerant sucked into the compressor are controlled in any heating operation.
It is possible to keep both s at an appropriate size and prevent the efficiency of the refrigerant heating device from deteriorating, the deterioration of the refrigerant, and the poor lubrication of the mechanical portion of the compressor.

【0015】[0015]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について図1
および図2を参照しながら説明する。なお、従来例で説
明したものと同一構成部材には同一番号を付し説明を省
略する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
The description will be made with reference to FIG. In addition, the same components as those described in the conventional example are denoted by the same reference numerals and the description thereof will be omitted.

【0016】図1は本発明の第1の実施例の空気調和機
の冷凍サイクル図である。図1に示すように、従来例の
冷凍サイクルから出口冷媒温度検出用サーミスタ11を
削除し、圧縮機1の吐出側に吐出圧力検出用センサ12
と吐出冷媒温度検出用サーミスタ13を設けたものであ
る。
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention. As shown in FIG. 1, the outlet refrigerant temperature detecting thermistor 11 is removed from the conventional refrigeration cycle, and a discharge pressure detecting sensor 12 is provided on the discharge side of the compressor 1.
And a thermistor 13 for detecting the discharged refrigerant temperature.

【0017】暖房運転が開始されると、従来例と同様に
して、室内設定温度Taと室内温度Tsとの差Tdか
ら、冷媒循環量Gすなわち圧縮機1の運転周波数Gaを
決め、圧縮機1の運転周波数Gaから減圧器4の流量N
と冷媒加熱装置8の冷媒加熱量Qを決めて、これを初期
値とし運転する。次に、吐出冷媒温度検出用サーミスタ
13によって検出した圧縮機1の吐出冷媒温度から、吐
出圧力検出用センサ12によって検出した圧縮機1の吐
出冷媒圧力より得た飽和温度を引いて、吐出冷媒の過熱
度SHdを導き出す。
When the heating operation is started, the refrigerant circulation amount G, that is, the operating frequency Ga of the compressor 1 is determined from the difference Td between the indoor set temperature Ta and the indoor temperature Ts in the same manner as in the conventional example. Flow rate N of the decompressor 4 from the operating frequency Ga of
And the refrigerant heating amount Q of the refrigerant heating device 8 is determined, and this is used as an initial value for operation. Next, from the discharge refrigerant temperature of the compressor 1 detected by the discharge refrigerant temperature detecting thermistor 13, the saturation temperature obtained from the discharge refrigerant pressure of the compressor 1 detected by the discharge pressure detecting sensor 12 is subtracted to obtain the discharge refrigerant Derives the superheat degree SHd.

【0018】図2は同、圧縮機吐出冷媒の過熱度ゾーン
区分けを示す図である。図2に示すように運転開始後、
圧縮機1の吐出冷媒の過熱度SHdがCの範囲から設定
時間tの間連続してはずれ、A、B、D、Eの範囲にあ
った場合は、表1に示すように、圧縮機1の運転周波数
Ga、冷媒加熱装置8の冷媒加熱量Q、減圧器4の流量
Nの設定を変更する。
FIG. 2 is a diagram showing the superheat degree zone division of the refrigerant discharged from the compressor. After the start of operation, as shown in Figure 2,
When the superheat degree SHd of the refrigerant discharged from the compressor 1 is continuously deviated from the range of C for the set time t and is in the range of A, B, D, and E, as shown in Table 1, the compressor 1 The operating frequency Ga, the refrigerant heating amount Q of the refrigerant heating device 8, and the flow rate N of the pressure reducer 4 are changed.

【0019】[0019]

【表1】 [Table 1]

【0020】すなわち、圧縮機1の吐出冷媒の過熱度S
Hdが大きくなりすぎてD、Eの範囲になった場合は、
圧縮機1の吐出冷媒の過熱度SHdが小さくなるよう
に、逆に圧縮機1の吐出冷媒の過熱度SHdが小さくな
りすぎてA、Bの範囲になった場合は、圧縮機1の吐出
冷媒の過熱度SHdが大きくなるように、圧縮機1の運
転周波数Ga、冷媒加熱装置8の冷媒加熱量Q、減圧器
4の流量Nの設定を変更している。
That is, the superheat degree S of the refrigerant discharged from the compressor 1
When Hd becomes too large and falls within the range of D and E,
On the contrary, when the superheat degree SHd of the discharge refrigerant of the compressor 1 becomes too small and falls within the range of A and B so that the superheat degree SHd of the discharge refrigerant of the compressor 1 becomes small, the discharge refrigerant of the compressor 1 The settings of the operating frequency Ga of the compressor 1, the refrigerant heating amount Q of the refrigerant heating device 8 and the flow rate N of the pressure reducer 4 are changed so that the superheat degree SHd becomes large.

【0021】設定変更後、再び設定時間tが経過しても
圧縮機1の吐出冷媒の過熱度SHdがCの範囲に戻らず
A、B、D、Eの範囲にあった場合は、表1に従ってさ
らに、圧縮機1の運転周波数Ga、冷媒加熱装置8の冷
媒加熱量Q、減圧器4の流量Nの設定を変更する。これ
を圧縮機1の吐出冷媒の過熱度SHdがCの範囲に戻る
まで繰り返し、圧縮機1の吐出冷媒の過熱度SHdがC
の範囲に戻ったら、その時点の設定を維持する。
When the superheat degree SHd of the refrigerant discharged from the compressor 1 does not return to the range of C even if the set time t elapses after the setting is changed and the ranges of A, B, D, and E are still present, Table 1 Accordingly, the operating frequency Ga of the compressor 1, the refrigerant heating amount Q of the refrigerant heating device 8, and the flow rate N of the pressure reducer 4 are changed. This is repeated until the superheat degree SHd of the refrigerant discharged from the compressor 1 returns to the range of C, and the superheat degree SHd of the refrigerant discharged from the compressor 1 becomes C.
When returning to the range, keep the setting at that time.

【0022】設定変更後、次の設定変更を行うまで設定
時間tを設けるのは、設定変更後、冷媒の状態量が変化
し安定するまでにはある程度の時間がかかるので、設定
変更した結果が冷媒の状態量に反映される前に次の変更
を行ってしまうと、冷媒の状態量がハンチングをしてし
まうためである。
After the setting is changed, the setting time t is provided until the next setting is changed. It takes some time for the state quantity of the refrigerant to change and stabilize after the setting is changed. This is because if the following changes are made before being reflected in the refrigerant state quantity, the refrigerant state quantity will hunt.

【0023】このようにして圧縮機1の吐出冷媒の過熱
度SHdを一定の範囲内に安定させることが可能となる
が、減圧器4の流量Nを最大に近い設定として圧縮機1
の圧縮比を小さくし、圧縮機1をポンプとして使用して
いる場合は、圧縮機1の吸入冷媒と吐出冷媒の状態量の
変化は少ないので、圧縮機1の吐出冷媒の過熱度SHd
を一定の範囲内に安定させることが可能であるというこ
とは、とりもなおさず、圧縮機1の吸入冷媒の過熱度S
Hsを一定の範囲内に安定させることが可能であるとい
うことになる。
In this way, the superheat degree SHd of the refrigerant discharged from the compressor 1 can be stabilized within a certain range, but the compressor 1 is set by setting the flow rate N of the pressure reducer 4 to a maximum value.
When the compression ratio is reduced and the compressor 1 is used as a pump, the superheat degree SHd of the refrigerant discharged from the compressor 1 is small because the state quantities of the refrigerant sucked into the compressor 1 and the refrigerant discharged therefrom are small.
The fact that it is possible to stabilize the temperature within a certain range means that the degree of superheat S of the refrigerant sucked into the compressor 1 is inevitable.
This means that Hs can be stabilized within a certain range.

【0024】以上のようにして第1の実施例では、圧縮
機1の吐出冷媒の過熱度SHdが、冷凍機油に冷媒が多
量に溶け込んで冷凍機油の潤滑性能が低下してしまう程
小さくない適正な大きさに保たれ、圧縮機1の機構部分
の潤滑不良を防ぐことができる。また、圧縮機1の吸入
冷媒の過熱度SHsすなわち冷媒加熱装置8の出口冷媒
の過熱度SHhが、冷媒加熱装置8の熱交換器8aの効
率低下や、局部的過熱による冷媒の劣化が起きてしまう
程大きくない適正な大きさに保たれ、冷媒の劣化を防ぐ
ことができる。
As described above, in the first embodiment, the superheat degree SHd of the refrigerant discharged from the compressor 1 is not so small that the refrigerant melts into the refrigerating machine oil in a large amount and the lubricating performance of the refrigerating machine oil deteriorates. Therefore, it is possible to prevent the lubrication failure of the mechanical portion of the compressor 1 from being maintained. In addition, the superheat degree SHs of the refrigerant sucked into the compressor 1, that is, the superheat degree SHh of the outlet refrigerant of the refrigerant heating device 8 may cause deterioration of the efficiency of the heat exchanger 8a of the refrigerant heating device 8 or deterioration of the refrigerant due to local overheating. It is maintained at an appropriate size that is not so large that it is prevented from deteriorating the refrigerant.

【0025】(実施例2)次に、本発明の第2の実施例
について図3および図4を参照しながら説明する。な
お、従来例で説明したものと同一構成部材には同一番号
を付し説明を省略する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, the same components as those described in the conventional example are denoted by the same reference numerals and the description thereof will be omitted.

【0026】図3は本発明の第2の実施例の空気調和機
の冷凍サイクル図である。図3に示すように、従来例の
冷凍サイクルに、冷媒加熱装置の熱交換器8aの飽和温
度を検出する熱交換器飽和温度検出用サーミスタ14を
追加したものである。
FIG. 3 is a refrigeration cycle diagram of the air conditioner of the second embodiment of the present invention. As shown in FIG. 3, a heat exchanger saturation temperature detecting thermistor 14 for detecting the saturation temperature of the heat exchanger 8a of the refrigerant heating device is added to the conventional refrigeration cycle.

【0027】暖房運転が開始されると、従来例と同様に
して、室内設定温度Taと室内温度Tsとの差Tdか
ら、冷媒循環量Gすなわち圧縮機1の運転周波数Gaを
決め、圧縮機1の運転周波数Gaから減圧器4の流量N
と冷媒加熱装置8の冷媒加熱量Qを決めて、これを初期
値とし運転する。次に、出口冷媒温度検出用サーミスタ
11によって検出した出口冷媒温度から、熱交換器飽和
温度検出用サーミスタ14によって検出した冷媒加熱装
置の熱交換器の飽和温度を引いて、冷媒加熱装置8の出
口冷媒の過熱度SHdを導き出す。
When the heating operation is started, the refrigerant circulation amount G, that is, the operating frequency Ga of the compressor 1 is determined from the difference Td between the indoor set temperature Ta and the indoor temperature Ts in the same manner as in the conventional example. Flow rate N of the decompressor 4 from the operating frequency Ga of
And the refrigerant heating amount Q of the refrigerant heating device 8 is determined, and this is used as an initial value for operation. Next, from the outlet refrigerant temperature detected by the outlet refrigerant temperature detecting thermistor 11, the saturation temperature of the heat exchanger of the refrigerant heating device detected by the heat exchanger saturation temperature detecting thermistor 14 is subtracted to obtain the outlet of the refrigerant heating device 8. The superheat degree SHd of the refrigerant is derived.

【0028】ここで、冷凍サイクル上は冷媒加熱装置8
の出口は圧縮機1の入口と同位置とみなすことができ、
冷媒加熱装置8の出口冷媒の過熱度SHdは圧縮機1の
吸入冷媒の過熱度SHsと同義である。
Here, in the refrigeration cycle, the refrigerant heating device 8
The outlet of can be regarded as the same position as the inlet of the compressor 1,
The superheat degree SHd of the outlet refrigerant of the refrigerant heating device 8 has the same meaning as the superheat degree SHs of the suction refrigerant of the compressor 1.

【0029】図4は同、圧縮機吸入冷媒の過熱度ゾーン
区分けを示す図である。図4に示すように、運転開始
後、圧縮機1の吸入冷媒の過熱度SHsがMの範囲から
設定時間tの間連続してはずれてK、L、N、Oの範囲
にあった場合は、表2に示すように、圧縮機1の運転周
波数Ga、冷媒加熱装置8の冷媒加熱量Q、減圧器4の
流量Nの設定を変更する。
FIG. 4 is a diagram showing the superheat degree zone division of the compressor suction refrigerant. As shown in FIG. 4, when the superheat degree SHs of the suction refrigerant of the compressor 1 is continuously deviated from the range of M from the range of M for a set time t after the start of operation As shown in Table 2, the operating frequency Ga of the compressor 1, the refrigerant heating amount Q of the refrigerant heating device 8, and the flow rate N of the pressure reducer 4 are changed.

【0030】[0030]

【表2】 [Table 2]

【0031】すなわち、圧縮機1の吸入冷媒の過熱度S
Hsが大きくなりすぎてN、Oの範囲になった場合は、
圧縮機1の吸入冷媒の過熱度SHsが小さくなるよう
に、逆に圧縮機1の吸入冷媒の過熱度SHsが小さくな
りすぎてK、Lの範囲になった場合は、圧縮機1の吸入
冷媒の過熱度SHsが大きくなるように、圧縮機1の運
転周波数Ga、冷媒加熱装置8の冷媒加熱量Q、減圧器
4の流量Nの設定を変更している。
That is, the superheat degree S of the refrigerant sucked into the compressor 1
When Hs becomes too large and falls within the range of N and O,
On the contrary, when the superheat degree SHs of the suction refrigerant of the compressor 1 becomes too small and falls in the range of K and L so that the superheat degree SHs of the suction refrigerant of the compressor 1 becomes small, the suction refrigerant of the compressor 1 The operating frequency Ga of the compressor 1, the refrigerant heating amount Q of the refrigerant heating device 8, and the flow rate N of the pressure reducer 4 are changed so that the superheating degree SHs of the compressor 1 becomes large.

【0032】設定変更後、再び設定時間tが経過して
も、圧縮機1の吸入冷媒の過熱度SHsがMの範囲に戻
らずK、L、N、Oの範囲にあった場合は、表2に従っ
てさらに、圧縮機1の運転周波数Ga、冷媒加熱装置8
の冷媒加熱量Q、減圧器4の流量Nの設定を変更する。
これを、圧縮機1の吸入冷媒の過熱度SHsがMの範囲
に戻るまで繰り返し、圧縮機1の吸入冷媒の過熱度SH
sがMの範囲に戻ったら、その時点の設定を維持する。
When the superheat degree SHs of the refrigerant sucked into the compressor 1 does not return to the M range but remains within the K, L, N, and O ranges even after the set time t elapses after the setting change, 2, the operating frequency Ga of the compressor 1 and the refrigerant heating device 8
The settings of the refrigerant heating amount Q and the flow rate N of the pressure reducer 4 are changed.
This is repeated until the superheat degree SHs of the suction refrigerant of the compressor 1 returns to the range of M, and the superheat degree SH of the suction refrigerant of the compressor 1 is returned.
When s returns to the range of M, the current setting is maintained.

【0033】設定変更後、次の設定変更まで設定時間t
を設けるのは、第1の実施例と同じ理由による。
After the setting is changed, the set time t remains until the next setting is changed.
Is provided for the same reason as in the first embodiment.

【0034】このようにして圧縮機1の吸入冷媒の過熱
度SHsを一定の範囲内に安定させることが可能となる
が、減圧器4の流量Nを最大に近い設定として、圧縮機
1の圧縮比を小さくし、圧縮機1をポンプとして使用し
ている場合は、圧縮機1の吸入冷媒と吐出冷媒の状態量
の変化は少ないので、圧縮機1の吸入冷媒の過熱度SH
sを一定の範囲内に安定させることが可能であるという
ことは、とりもなおさず、圧縮機1の吐出冷媒の過熱度
SHdを一定の範囲内に安定させることが可能であると
いうことになる。
In this way, the superheat degree SHs of the refrigerant sucked into the compressor 1 can be stabilized within a certain range, but the compressor 1 is compressed by setting the flow rate N of the pressure reducer 4 to a maximum value. When the ratio is reduced and the compressor 1 is used as a pump, the change in the state quantity of the suction refrigerant and the discharge refrigerant of the compressor 1 is small, so the superheat degree SH of the suction refrigerant of the compressor 1 is small.
The fact that s can be stabilized within a certain range means that the superheat degree SHd of the refrigerant discharged from the compressor 1 can be stabilized within a certain range. .

【0035】以上のようにして第2の実施例では、圧縮
機1の吸入冷媒の過熱度SHsすなわち冷媒加熱装置8
の出口冷媒の過熱度SHhが、冷媒加熱装置8の熱交換
器8aの効率低下や、局部的過熱による冷媒の劣化が起
きてしまう程大きくない適正な大きさに保たれ、冷媒の
劣化を防ぐことができる。また、圧縮機1の吐出冷媒の
過熱度SHdが、冷凍機油に冷媒が多量に溶け込んで冷
凍機油の潤滑性能が低下してしまう程小さくない適正な
大きさに保たれ、圧縮機1の機構部分の潤滑不良を防ぐ
ことができる。
As described above, in the second embodiment, the superheat degree SHs of the refrigerant sucked into the compressor 1, that is, the refrigerant heating device 8
The superheat degree SHh of the outlet refrigerant is maintained at an appropriate size that is not large enough to cause deterioration of the efficiency of the heat exchanger 8a of the refrigerant heating device 8 and deterioration of the refrigerant due to local overheating, and prevents deterioration of the refrigerant. be able to. In addition, the superheat degree SHd of the refrigerant discharged from the compressor 1 is maintained at an appropriate size that is not so small that the refrigerant melts in a large amount in the refrigerating machine oil and the lubricating performance of the refrigerating machine oil deteriorates. It is possible to prevent poor lubrication.

【0036】[0036]

【発明の効果】以上の説明から明らかなように本発明
は、圧縮機の吐出側に吐出圧力検出用センサと吐出冷媒
温度検出用サーミスタを設けたことにより、空気調和機
の冷媒循環量G、冷媒加熱装置の冷媒加熱量Qまたは減
圧器の流量Nを、圧縮機の吸入冷媒の過熱度が一定の範
囲内に安定するように制御することで、暖房運転のいか
なる場合においても、圧縮機の吐出冷媒の過熱度SHd
と圧縮機の吸入冷媒の過熱度SHsをともに適正な大き
さに保つことが可能となる。従って、吐出冷媒の過熱度
SHdが小さくなりすぎて、圧縮機の油溜めの冷凍機油
に冷媒が多量に溶け込んで冷凍機油の潤滑性能が低下
し、圧縮機の機構部分の潤滑不良を起こしてしまうこと
や、圧縮機の吸入冷媒の過熱度SHsが大きくなりすぎ
て、冷媒加熱装置の熱交換器の効率低下や、局部的過熱
による冷媒が劣化してしまうことを防ぐことができる。
As is apparent from the above description, the present invention provides the refrigerant circulation amount G of the air conditioner by providing the discharge pressure detecting sensor and the discharge refrigerant temperature detecting thermistor on the discharge side of the compressor. By controlling the refrigerant heating amount Q of the refrigerant heating device or the flow rate N of the pressure reducer so that the degree of superheat of the refrigerant sucked into the compressor is stabilized within a certain range, the compressor can be operated in any heating operation. Superheat degree of discharge refrigerant SHd
It is possible to maintain both the superheat degree SHs of the refrigerant sucked into the compressor and the appropriate degree. Therefore, the superheat degree SHd of the discharged refrigerant becomes too small, and a large amount of the refrigerant dissolves in the refrigerating machine oil in the oil sump of the compressor to lower the lubrication performance of the refrigerating machine oil, resulting in poor lubrication of the mechanical portion of the compressor. In other words, it is possible to prevent the superheat degree SHs of the refrigerant sucked into the compressor from becoming too large and the efficiency of the heat exchanger of the refrigerant heating device from being lowered, and the refrigerant from being deteriorated due to local overheating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の空気調和機の冷凍サイ
クル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention.

【図2】同、圧縮機吐出冷媒の過熱度ゾーン区分けを示
す図
FIG. 2 is a diagram showing the superheat degree zone division of the refrigerant discharged from the compressor.

【図3】本発明の第2の実施例の空気調和機の冷凍サイ
クル図
FIG. 3 is a refrigeration cycle diagram of an air conditioner according to a second embodiment of the present invention.

【図4】同、圧縮機吸入冷媒の過熱度ゾーン区分けを示
す図
FIG. 4 is a diagram showing the superheat zone zones of the refrigerant sucked into the compressor.

【図5】従来例の空気調和機の冷凍サイクル図FIG. 5 is a refrigeration cycle diagram of a conventional air conditioner.

【図6】同、室内温度と設定温度の差と圧縮機運転周波
数の関係を示す図
FIG. 6 is a diagram showing the relationship between the difference between the indoor temperature and the set temperature and the compressor operating frequency.

【図7】同、圧縮機運転周波数と冷媒加熱装置の冷媒加
熱量の関係を示す図
FIG. 7 is a diagram showing the relationship between the compressor operating frequency and the refrigerant heating amount of the refrigerant heating device.

【図8】同、圧縮機運転周波数と減圧器流量の関係を示
す図
FIG. 8 is a diagram showing a relationship between a compressor operating frequency and a pressure reducer flow rate.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室内熱交換器 4 減圧器 6 室外熱交換器 8 冷媒加熱装置 8a 熱交換器 11 出口冷媒温度検出用サーミスタ 12 吐出圧力検出用センサ 13 吐出冷媒温度検出用サーミスタ 14 熱交換器飽和温度検出用サーミスタ 1 Compressor 3 Indoor Heat Exchanger 4 Decompressor 6 Outdoor Heat Exchanger 8 Refrigerant Heating Device 8a Heat Exchanger 11 Outlet Refrigerant Temperature Detection Thermistor 12 Discharge Pressure Detection Sensor 13 Discharged Refrigerant Temperature Detection Thermistor 14 Heat Exchanger Saturation Temperature Thermistor for detection

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室内熱交換器、減圧器、室外熱
交換器、冷媒加熱装置を環状に連結して構成した空気調
和装置において、前記圧縮機の吐出側に吐出圧力検出用
センサと、吐出冷媒温度検出用サーミスタを設けた冷媒
加熱装置を具備した空気調和機。
1. An air conditioner comprising a compressor, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, and a refrigerant heating device connected in an annular shape, and a discharge pressure detecting sensor on a discharge side of the compressor. An air conditioner provided with a refrigerant heating device provided with a thermistor for detecting a discharged refrigerant temperature.
【請求項2】 圧縮機、室内熱交換器、減圧器、室外熱
交換器、冷媒加熱装置を環状に連結して構成した空気調
和装置において、前記冷媒加熱装置の熱交換器に飽和温
度を検出する熱交換器飽和温度検出用サーミスタと、冷
媒加熱装置の出口に出口冷媒温度検出用サーミスタを設
けた冷媒加熱装置を具備した空気調和機。
2. An air conditioner comprising a compressor, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, and a refrigerant heating device connected in a ring shape, and a saturation temperature is detected in the heat exchanger of the refrigerant heating device. An air conditioner comprising a heat exchanger saturation temperature detecting thermistor and a refrigerant heating device provided with an outlet refrigerant temperature detecting thermistor at the outlet of the refrigerant heating device.
JP7017404A 1995-02-06 1995-02-06 Air conditioner with refrigeratnt heater Pending JPH08210720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017404A JPH08210720A (en) 1995-02-06 1995-02-06 Air conditioner with refrigeratnt heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017404A JPH08210720A (en) 1995-02-06 1995-02-06 Air conditioner with refrigeratnt heater

Publications (1)

Publication Number Publication Date
JPH08210720A true JPH08210720A (en) 1996-08-20

Family

ID=11943062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017404A Pending JPH08210720A (en) 1995-02-06 1995-02-06 Air conditioner with refrigeratnt heater

Country Status (1)

Country Link
JP (1) JPH08210720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028767B2 (en) * 2001-11-12 2006-04-18 Denso Corporation Vehicle air conditioner with hot-gas heater cycle
WO2007091553A1 (en) * 2006-02-08 2007-08-16 Daikin Industries, Ltd. Refrigerant heating device and method of controlling heating capacity of the device
JP2008002790A (en) * 2006-06-26 2008-01-10 Toshiba Kyaria Kk Air conditioner
WO2010032421A1 (en) 2008-09-17 2010-03-25 ダイキン工業株式会社 Electromagnetic induction heating unit and air-conditioning apparatus
WO2010079570A1 (en) 2009-01-07 2010-07-15 ダイキン工業株式会社 Electromagnetic induction heating unit and air conditioning device
JP2010236709A (en) * 2009-03-30 2010-10-21 Japan Climate Systems Corp Air conditioner for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028767B2 (en) * 2001-11-12 2006-04-18 Denso Corporation Vehicle air conditioner with hot-gas heater cycle
WO2007091553A1 (en) * 2006-02-08 2007-08-16 Daikin Industries, Ltd. Refrigerant heating device and method of controlling heating capacity of the device
JP2008002790A (en) * 2006-06-26 2008-01-10 Toshiba Kyaria Kk Air conditioner
WO2010032421A1 (en) 2008-09-17 2010-03-25 ダイキン工業株式会社 Electromagnetic induction heating unit and air-conditioning apparatus
WO2010079570A1 (en) 2009-01-07 2010-07-15 ダイキン工業株式会社 Electromagnetic induction heating unit and air conditioning device
JP2010236709A (en) * 2009-03-30 2010-10-21 Japan Climate Systems Corp Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
US5284026A (en) Control system for an air conditioning/refrigeration system
US7770406B2 (en) Refrigerator
KR20010093329A (en) Scroll compressor and air conditioner
EP3199889B1 (en) Air conditioner
JPH08210720A (en) Air conditioner with refrigeratnt heater
WO2009096968A1 (en) Rapid compressor cycling
JPH0534582B2 (en)
JP2006194526A (en) Air conditioner
EP2479516A2 (en) Heat pump
CN112682929A (en) Air conditioner
JPH04356664A (en) Refrigerating cycle device
JP4513441B2 (en) Vending machine with cooling and heating system
CN112050381A (en) Air conditioner
JPH01155153A (en) Air conditioner
JPH01139965A (en) Operation controller for refrigerator
JPH09178273A (en) Air conditioner
JPH01305267A (en) Refrigerator
JPH0763184A (en) Lubrication control method for heat pump driving compressor and its device
JP2504424B2 (en) Refrigeration cycle
JP2878727B2 (en) Air conditioner
KR100347900B1 (en) Air conditioner driving method
JPH04273948A (en) Air conditioner
JP2875037B2 (en) Air conditioner
JP2874382B2 (en) Method of controlling refrigerant heating amount of air conditioner equipped with refrigerant heating device
JPH01312345A (en) Air conditioner