WO2010079570A1 - Electromagnetic induction heating unit and air conditioning device - Google Patents

Electromagnetic induction heating unit and air conditioning device Download PDF

Info

Publication number
WO2010079570A1
WO2010079570A1 PCT/JP2009/007240 JP2009007240W WO2010079570A1 WO 2010079570 A1 WO2010079570 A1 WO 2010079570A1 JP 2009007240 W JP2009007240 W JP 2009007240W WO 2010079570 A1 WO2010079570 A1 WO 2010079570A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic induction
induction heating
heating unit
refrigerant
magnetic
Prior art date
Application number
PCT/JP2009/007240
Other languages
French (fr)
Japanese (ja)
Inventor
岡田敏江
石井英宏
若嶋真博
浅田聡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP09837460A priority Critical patent/EP2381740A1/en
Priority to JP2010545640A priority patent/JP5267572B2/en
Priority to CN2009801490965A priority patent/CN102227951A/en
Publication of WO2010079570A1 publication Critical patent/WO2010079570A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • the present invention relates to an electromagnetic induction heating unit and an air conditioner.
  • the refrigeration cycle includes a radiator that releases heat of the refrigerant, a heater that gives heat to the refrigerant, and the like.
  • the refrigerant circulating in the refrigeration cycle obtains heat by exchanging heat with indoor air in the cooling operation cycle, and exchanges heat with outdoor air in the heating operation cycle. Getting fever.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-210720
  • not only heat is obtained from indoor air or outdoor air as described above, but refrigerant heating is performed separately.
  • a system has been proposed in which a refrigerant obtains heat with an apparatus.
  • this refrigerant heating apparatus heat is applied to the refrigerant flowing through the heat exchanger by heating the heat exchanger through which the refrigerant flows with a burner.
  • this air conditioner employs a refrigerant heating device, when the refrigerant requires heat, it is possible to heat the refrigerant without being restricted by indoor or outdoor temperature. ing.
  • an electromagnetic induction heating method can be adopted as an electric method, instead of a heating method using a burner or the like.
  • an electromagnetic induction coil is wound around a refrigerant pipe containing a magnetic material, and the refrigerant pipe can be caused to generate heat due to a magnetic flux generated by passing an electric current through the electromagnetic induction heating coil.
  • coolant can be heated using the heat_generation
  • a magnetic field is generated when the refrigerant pipe is heated by electromagnetic induction, a magnetic field is generated not only in the refrigerant pipe but also in other portions.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to leak into a portion other than the refrigerant pipe even when electromagnetic induction heating is performed by generating a magnetic field by an electromagnetic induction heating unit.
  • An object of the present invention is to provide an electromagnetic induction heating unit and an air conditioner that can suppress a magnetic field to be small.
  • An electromagnetic induction heating unit is an electromagnetic induction heating unit that heats a refrigerant pipe and / or a member that is in thermal contact with a refrigerant flowing in the refrigerant pipe, and includes a coil, an external member, and a magnetic part. It has.
  • the coil is disposed in the vicinity of the refrigerant pipe.
  • the external member is disposed around the refrigerant pipe and includes a magnetic body.
  • the magnetic body portion is disposed on the outer side opposite to the inner side on the refrigerant piping side of the coil and on the inner side of the external member, and includes a magnetic material having a higher magnetic permeability than the external member.
  • both end portions of the external member are positioned inside the both end portions of the magnetic body portion.
  • heating by the electromagnetic induction heating unit for example, when electromagnetic induction heating is performed on a heat generating member that is in thermal contact with the refrigerant pipe, heat generation that is in thermal contact with the refrigerant flowing in the refrigerant pipe It includes at least a case where the member is heated by electromagnetic induction and a case where the heat generating member constituting at least a part of the refrigerant pipe is heated by electromagnetic induction.
  • a magnetic field may be generated not only for the purpose of generating heat but also for the surroundings.
  • the magnetic body part including the magnetic material having higher permeability than the external member is arranged outside the coil, the magnetic field generated in the part other than the refrigerant pipe is The magnetic material portion is preferentially passed over the external member.
  • the both end portions of the external member are positioned on the inner side of the both end portions of the magnetic body portion, so that the magnetic flux that leaks to the portion other than the refrigerant pipe is more than the external member. It can be captured more efficiently.
  • the magnetic field generated in a portion other than the refrigerant pipe can be efficiently passed through the magnetic body portion, it leaks to a portion other than the magnetic body portion outside the magnetic body portion. The degree can be kept small.
  • the electromagnetic induction heating unit of the second invention is the electromagnetic induction heating unit of the first invention, wherein the coil surrounds at least a part of the refrigerant pipe.
  • this electromagnetic induction heating unit a part of the magnetic flux generated by passing a current through the coil can be made to extend in the direction in which the refrigerant pipe extends. For this reason, the heating efficiency by electromagnetic induction can be improved when the longitudinal direction of the magnetic body contained in the refrigerant pipe and the axial direction of the refrigerant pipe are substantially the same.
  • the electromagnetic induction heating unit is the electromagnetic induction heating unit according to the first or second aspect, wherein at least a part of the magnetic body portion is relative to one side of the coil and the coil in the direction in which the refrigerant pipe extends. It extends to at least one of the other side opposite to the one side.
  • the magnetic body portion can take in the magnetic flux that is generated by supplying power to the coil and that leaks to the side opposite to the refrigerant pipe before being guided to the external member. For this reason, the magnetic body portion can suppress more magnetic field leakage than the external member. This not only reduces the magnetic field leakage outside the magnetic body part, but also captures the magnetic field that the external member leaks outside the magnetic body part, thereby more effectively preventing the magnetic field leakage outside the external member. Can be reduced.
  • the electromagnetic induction heating unit is the electromagnetic induction heating unit according to any one of the first to third aspects of the invention, wherein at least a part of the magnetic body portion is outside the refrigerant pipe as viewed in the axial direction of the refrigerant pipe. Extending to the inside of the coil. In this electromagnetic induction heating unit, it is possible to more efficiently pass the magnetic body part by suppressing the extent to which the magnetic field generated by the coil leaks to a part other than the magnetic body part.
  • the electromagnetic induction heating unit is the electromagnetic induction heating unit according to any one of the first to fourth aspects of the present invention, wherein the magnetic part has a plurality of magnetic parts arranged in contact with each other. .
  • the magnetic body portion is not formed as an integral member along the target shape, but a plurality of parts can be combined into the target shape. And since these magnetic body components are arrange
  • the electromagnetic induction heating unit is the electromagnetic induction heating unit according to any one of the first to fifth aspects of the present invention, wherein the magnetic part includes a good conductor material.
  • the magnetic body portion contains a good conductor material. Heat can be kept small.
  • An electromagnetic induction heating unit is the electromagnetic induction heating unit according to any one of the first to sixth aspects of the invention, wherein the magnetic body portion includes ferrite.
  • the magnetic flux can be allowed to actively pass through the magnetic body portion containing ferrite, and the magnetic field leaking outside the magnetic body portion can be kept small.
  • An air conditioner includes the electromagnetic induction heating unit according to any one of the first aspect to the seventh aspect, and a refrigeration cycle including a portion for flowing a refrigerant through a refrigerant pipe.
  • a refrigeration cycle including a portion for flowing a refrigerant through a refrigerant pipe.
  • the electromagnetic induction heating unit according to the first aspect of the invention it is possible to reduce the degree of leakage to a portion other than the magnetic body portion outside the magnetic body portion.
  • the heating efficiency by electromagnetic induction can be improved.
  • the electromagnetic induction heating unit according to the third aspect of the invention not only the magnetic field leakage outside the magnetic body portion is reduced, but also the external member captures the magnetic field leaking outside the magnetic body portion, thereby Magnetic field leakage can be reduced more effectively.
  • the electromagnetic induction heating unit of the fourth aspect of the invention the magnetic part can be passed more efficiently.
  • the Joule heat generated by the electrical resistance can be kept small.
  • the magnetic field that leaks outside the magnetic body portion can be kept small.
  • the air conditioner according to the eighth aspect of the invention even when electromagnetic induction heating is performed in the air conditioner, the influence on the surroundings of the electromagnetic induction heating unit can be reduced.
  • It is an external appearance perspective view including the front side of an outdoor unit.
  • It is an internal arrangement configuration perspective view of an outdoor unit.
  • It is an external appearance perspective view containing the back side of the internal arrangement structure of an outdoor unit.
  • It is a whole front perspective view which shows the internal structure of the machine room of an outdoor unit.
  • It is a perspective view which shows the internal structure of the machine room of an outdoor unit.
  • It is a top view about the arrangement
  • It is a schematic perspective view of the electromagnetic induction heating unit attached to the accumulation tube.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit 10 of the air conditioner 1.
  • the air conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe.
  • An electromagnetic induction heating unit 6 and the like are provided.
  • the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in.
  • the indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
  • the refrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, a hot gas bypass circuit H, and a branch pipe K. And a merging pipe J.
  • the indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant.
  • the indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
  • the discharge pipe A connects the compressor 21 and the four-way switching valve 22.
  • the discharge pipe A is provided with a discharge temperature sensor 29d for detecting the temperature of the refrigerant passing therethrough.
  • the power supply unit 21 e supplies power to the compressor 21.
  • the amount of power supplied from the power supply unit 21e is detected by the compressor power detection unit 29f.
  • the indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41.
  • a pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided.
  • the indoor side liquid pipe C connects the indoor heat exchanger 41 and the outdoor electric expansion valve 24.
  • the outdoor liquid pipe D connects the outdoor electric expansion valve 24 and the outdoor heat exchanger 23.
  • the outdoor gas pipe E connects the outdoor heat exchanger 23 and the four-way switching valve 22.
  • the accumulator pipe F connects the four-way switching valve 22 and the accumulator 25, and extends in the vertical direction when the outdoor unit 2 is installed.
  • An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F.
  • the magnetic tube F2 is made of SUS (Stainless Used Steel) 430.
  • the SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance.
  • Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of copper pipes.
  • surroundings of the said copper pipe is not limited to SUS430,
  • An alloy containing at least two selected metals can be used.
  • SUS include two types of ferrite and martensite and combinations of these types.
  • a material that is ferromagnetic and has a relatively high electrical resistance and a Curie temperature higher than the operating temperature range is preferable.
  • the accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing.
  • the magnetic material may constitute all of the accumulator tube F, or may be formed only on the inner surface of the accumulator tube F, and is contained in the material constituting the accumulator tube F. May exist.
  • the accumulator tube F can be heated by electromagnetic induction, and the refrigerant sucked into the compressor 21 via the accumulator 25 can be warmed.
  • the heating capability of the air conditioning apparatus 1 can be improved.
  • the lack of capacity at the time of starting can be compensated for by the rapid heating by the electromagnetic induction heating unit 6.
  • the electromagnetic induction heating unit 6 quickly opens the accumulator tube F.
  • the compressor 21 can compress the rapidly heated refrigerant as a target. For this reason, the temperature of the hot gas discharged from the compressor 21 can be raised rapidly. Thereby, the time required for defrosting by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
  • the suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
  • the hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D.
  • a hot gas bypass valve 27 capable of switching between a state allowing the passage of the refrigerant and a state not allowing the refrigerant is arranged in the middle.
  • a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough.
  • the capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
  • the branch pipe K constitutes a part of the outdoor heat exchanger 23, and a refrigerant pipe extending from the gas side inlet / outlet 23e of the outdoor heat exchanger 23 will be described later in order to increase the effective surface area for heat exchange. It is a pipe branched into a plurality of lines at a branching junction 23k.
  • the branch pipe K includes a first branch pipe K1, a second branch pipe K2, and a third branch pipe K3 that extend independently from the branch junction point 23k to the junction branch point 23j.
  • the pipes K1, K2, and K3 merge at the merge branch point 23j. Note that, when viewed from the merging pipe J side, the branch pipe K extends at a merging branch point 23j.
  • the junction pipe J constitutes a part of the outdoor heat exchanger 23 and extends from the junction branch point 23j to the liquid side inlet / outlet 23d of the outdoor heat exchanger 23.
  • the junction pipe J can unify the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 23 during the cooling operation, and can defrost frosted ice near the lower end of the outdoor heat exchanger 23 during the heating operation.
  • the junction pipe J has a cross-sectional area that is approximately three times the cross-sectional area of each of the branch pipes K1, K2, and K3, and the amount of refrigerant passing through is approximately three times that of each of the branch pipes K1, K2, and K3. .
  • the four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle.
  • the connection state when performing the heating operation is indicated by a solid line
  • the connection state when performing the cooling operation is indicated by a dotted line.
  • the indoor heat exchanger 41 functions as a refrigerant cooler
  • the outdoor heat exchanger 23 functions as a refrigerant heater
  • the indoor heat exchanger 41 functions as a refrigerant heater.
  • the outdoor heat exchanger 23 includes a gas side inlet / outlet 23e, a liquid side inlet / outlet 23d, a branch junction 23k, a junction branch point 23j, a branch pipe K, a junction pipe J, and a heat exchange fin 23z.
  • the gas side inlet / outlet 23 e is located at the end of the outdoor heat exchanger 23 on the outdoor gas pipe E side, and is connected to the outdoor gas pipe E.
  • the liquid side inlet / outlet 23 d is located at the end of the outdoor heat exchanger 23 on the outdoor liquid pipe D side, and is connected to the outdoor liquid pipe D.
  • the branch junction 23k branches a pipe extending from the gas side inlet / outlet port 23e, and can branch or join the refrigerant according to the direction of the flowing refrigerant.
  • a plurality of branch pipes K extend from each branch portion at the branch junction 23k.
  • the junction branch point 23j joins the branch pipe K and can join or branch the refrigerant according to the direction of the flowing refrigerant.
  • the junction pipe J extends from the junction branch point 23j to the liquid side inlet / outlet 23d.
  • the heat exchange fins 23z are configured by arranging a plurality of plate-like aluminum fins in the thickness direction and arranged at predetermined intervals.
  • the branch pipe K and the merge pipe J both have the heat exchange fins 23z as a common penetration target.
  • the branch pipe K and the junction pipe J are disposed so as to penetrate in the plate pressure direction at different portions of the common heat exchange fin 23z.
  • an outdoor air temperature sensor 29b for detecting the outdoor air temperature is provided on the leeward side of the outdoor fan 26 in the air flow direction.
  • the outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the branch pipe K.
  • an indoor temperature sensor 43 that detects the indoor temperature is provided.
  • the indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
  • the outdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted.
  • the control unit 11 performs various controls for the air conditioner 1.
  • the outdoor control unit 12 is provided with a timer 95 that counts elapsed time when performing various controls. Note that a controller 90 that accepts a setting input from the user is connected to the control unit 11.
  • Outdoor unit 2 In FIG. 2, the external appearance perspective view of the front side of the outdoor unit 2 is shown. In FIG. 3, the perspective view about the positional relationship with the outdoor heat exchanger 23 and the outdoor fan 26 is shown. In FIG. 4, the perspective view of the back side of the outdoor heat exchanger 23 is shown.
  • the outdoor unit 2 has an outer surface formed by a substantially rectangular parallelepiped outdoor unit casing that includes a top plate 2a, a bottom plate 2b, a front panel 2c, a left side panel 2d, a right side panel 2f, and a back panel 2e.
  • an outdoor heat exchanger 23, an outdoor fan 26, and the like are arranged, a blower room on the left side panel 2d side, a compressor 21 and an electromagnetic induction heating unit 6 are arranged, and the right side panel 2f side.
  • the machine room is separated by a partition plate 2h.
  • the outdoor unit 2 is fixed by being screwed to the bottom plate 2b, and has an outdoor unit support 2g that forms the lowermost end portion of the outdoor unit 2 on the right side and the left side.
  • the electromagnetic induction heating unit 6 is disposed at an upper position in the vicinity of the left side panel 2d and the top plate 2a in the machine room.
  • the heat exchange fins 23z of the outdoor heat exchanger 23 described above are arranged side by side in the plate thickness direction so that the plate thickness direction is substantially horizontal.
  • the joining pipe J is disposed in the lowermost portion of the heat exchange fins 23z of the outdoor heat exchanger 23 by penetrating the heat exchange fins 23z in the thickness direction.
  • the hot gas bypass circuit H is arranged along the lower side of the outdoor fan 26 and the outdoor heat exchanger 23.
  • FIG. 5 is an overall front perspective view showing the internal structure of the machine room of the outdoor unit 2.
  • FIG. 6 is a perspective view showing the internal structure of the machine room of the outdoor unit 2.
  • FIG. 7 the perspective view about the arrangement
  • FIG. 8 the top view about the arrangement
  • the partition plate 2h of the outdoor unit 2 includes a fan room in which the outdoor heat exchanger 23 and the outdoor fan 26 are arranged, a machine room in which the electromagnetic induction heating unit 6, the compressor 21, the accumulator 25, and the like are arranged, Is partitioned from the upper end to the lower end from the front to the rear.
  • the compressor 21 and the accumulator 25 are disposed in a space below the machine room of the outdoor unit 2.
  • the electromagnetic induction heating unit 6, the four-way switching valve 22, and the outdoor control unit 12 are disposed in a space above the machine room of the outdoor unit 2 and above the compressor 21, the accumulator 25, and the like. .
  • the tube 28 and the electromagnetic induction heating unit 6 include a discharge pipe A, an indoor side gas pipe B, an outdoor side liquid pipe D, an outdoor side gas pipe E, an accumulator so as to execute the refrigeration cycle by the refrigerant circuit 10 shown in FIG. They are connected via a tube F, a hot gas bypass circuit H, and the like.
  • the hot gas bypass circuit H is configured by connecting nine parts of the first bypass part H1 to the ninth bypass part H9, and when the refrigerant flows into the hot gas bypass circuit H, , Flows in the direction from the first bypass portion H1 toward the ninth bypass portion H9 in order.
  • FIG. 9 is a schematic perspective view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
  • FIG. 10 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed.
  • FIG. 11 is a cross-sectional view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
  • the electromagnetic induction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating.
  • the heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
  • the electromagnetic induction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite.
  • a case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, the thermistor 14 and a fuse 15 are provided.
  • the first hex nut 61 and the second hex nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator tube F using a C-shaped ring (not shown).
  • the first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively.
  • the first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing.
  • the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the thermistor 14 and attaching it to the outer surface of the magnetic tube F2.
  • the second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 shown in FIG. 13 and attaching it to the outer surface of the magnetic tube F2.
  • the thermistor 14 transmits the detected temperature as a signal to the control unit 11.
  • the fuse 15 transmits the detection result to the control unit 11 as a signal.
  • the bobbin main body 65 is made of resin, and the coil 68 is wound around it.
  • the coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction.
  • the coil 68 is connected to a control printed board 18 (not shown) and receives a high-frequency current.
  • the output of the control printed circuit board is controlled by the control unit 11.
  • the thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together.
  • the plate spring 16 is pushed inward in the radial direction of the magnetic tube F 2, thereby maintaining a good pressure contact state with the outer surface of the magnetic tube F 2.
  • the attachment state of the fuse 15 is also pressed by the leaf spring 17 inward in the radial direction of the magnetic tube F2, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained.
  • the thermistor 14 and the fuse 15 are kept in good contact with the outer surface of the accumulator tube F, the responsiveness is improved, and a sudden temperature change due to electromagnetic induction heating can be detected quickly. I have to.
  • the first ferrite case 71 is sandwiched between the first bobbin lid 63 and the second bobbin lid 64 from the direction in which the accumulator tube F extends, and is fixed by screwing with screws 69.
  • the first ferrite case 71 to the fourth ferrite case 74 contain the first ferrite 98 and the second ferrite 99 made of ferrite, which is a material having high magnetic permeability. As shown in the magnetic flux explanatory diagram of FIG. 13, the first ferrite 98 and the second ferrite 99 take in the magnetic field generated by the coil 68 to form a path for the magnetic flux, thereby preventing the magnetic field from leaking to the outside. .
  • the shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn only by the first ferrite 98 and the second ferrite 99. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
  • FIG. 14 is a schematic perspective view of the first ferrite case 71 in which the first ferrite 98 and the second ferrite 99 are accommodated and fixed.
  • FIG. 15 shows a structure in the vicinity of the screwed portion on the upper side of the first ferrite case 71.
  • FIG. 16 shows a structure in the vicinity of the screwed portion on the lower side of the first ferrite case 71. Note that the first to fourth ferrite cases 71 to 74 all have the same shape.
  • the first ferrite case 71 is made of resin, and has a function of sandwiching and fixing the first bobbin lid 63 and the second bobbin lid 64 from the direction in which the accumulator tube F extends, and the first ferrite 98 and the second ferrite. 99 has a function of accommodating and holding 99.
  • the first ferrite case 71 includes a bottom surface portion 71j, a side surface portion 71h, a first lid screwing portion 71a, a first lid screwing hole 71b, a second lid screwing portion 71f, a second lid screwing hole 71g, and a shielding cover screw. It has a wearing part 71c and a shielding cover screwing hole 71d.
  • the bottom surface portion 71 j constitutes the bottom surface of the first ferrite case 71. As will be described later, the first ferrite 98 and the second ferrite 99 are bonded to the bottom surface portion 71j.
  • the bottom surface portion 71j In a state where the bottom surface portion 71j is fixed to the electromagnetic induction heating unit 6, the bottom surface portion 71j is provided at a position where the surface faces the radial direction, and the longitudinal direction is provided along the direction in which the accumulator tube F extends.
  • the bottom surface portion 71j is attached to any one of four symmetrically provided substantially linear sides among the radial outer edges of the first bobbin lid 63 and the second bobbin lid 64.
  • the back surface side of the bottom surface portion 71j and the substantially linear sides of the first bobbin lid 63 and the second bobbin lid 64 are fixed in contact with each other.
  • the 1st ferrite case 71 has the structure where the movement to the circumferential direction was controlled.
  • the side surface portion 71h has a surface extending in a direction away from the bottom surface portion 71j from both ends in a direction orthogonal to the longitudinal direction of the bottom surface portion 71j.
  • the first lid screwing portion 71a is provided for screwing the first ferrite case 71 and the first bobbin lid 63, and is located away from the radially extending virtual space sandwiched between the two side surface portions 71h. Is provided.
  • the first ferrite 98 can be disposed up to the vicinity of the magnetic tube F2, and leakage of magnetic force can be reduced.
  • the second lid screwing portion 71f is provided for screwing the first ferrite case 71 and the second bobbin lid 64, and from the virtual space extending in the radial direction between the two side surfaces 71h, It is provided at a position shifted to the opposite side to the lid screwing portion 71a.
  • the first ferrite 98 can be disposed up to the vicinity of the magnetic tube F2, and leakage of magnetic force can be reduced.
  • the first lid screwing portion 71a and the second lid screwing portion 71f are arranged on one side and the other side with respect to a virtual space sandwiched between the two side surface portions 71h and extending in the radial direction. Therefore, not only the leakage of magnetic force is reduced, but also the first ferrite case 71 and the first bobbin lid 63 and the second bobbin lid 64 are more firmly fixed.
  • the second lid screwing hole 71g screws and fixes the first ferrite case 71 and the second bobbin lid 64 to each other.
  • the screw 69 made of metal is used for the second lid screwing hole 71g of the first ferrite case 71 and the screw 69 of the second bobbin lid 64. It fixes by screwing together with a screw hole (not shown).
  • the shielding cover screwing portion 71c is formed to bulge toward the outer side opposite to the inner side where the side surface portions 71h face each other, and is provided at two locations on the upper side and two locations on the lower side.
  • the shield cover screw holes 71d are openings provided in the shield cover screw portions 71c, and are screwed with screws in a state where the shield cover 75 is attached as shown in FIG. Thereby, the 1st ferrite case 71 and the shielding cover 75 are fixed.
  • the shield cover screw portion 71c and the shield cover screw hole 71d are also provided for the second to fourth ferrite cases 72 to 74, but the shield cover 75 is actually fixed.
  • the first ferrite case 71 and the third ferrite case 73 are provided.
  • the first ferrite 98 and the second ferrite 99 housed in each ferrite case are disposed so as to be in contact with each other at the surface portions.
  • the ferrites 98 and 99 guide the magnetic field by combining two types of shapes of the first ferrite 98 and the second ferrite 99. Costs can be kept low by using ferrites of the same shape in combination as described above, instead of using ferrite integrally molded in a U shape.
  • the first ferrite 98 and the second ferrite 99 housed in each ferrite case are disposed so as to be in contact with each other at the surface portions. (Shielding cover)
  • shielding cover 75 the details of the shielding cover 75 will be described.
  • the shielding cover 75 has an outer edge shape in plan view when the first to fourth ferrite cases 71 to 74 are attached to the first bobbin lid 63 and the second bobbin lid 64.
  • the sheet metal has a substantially octagonal shape and includes a magnetic material.
  • the shielding cover 75 has an overlapping portion 75d in which one end 75a and the other end 75b in the circumferential direction overlap in the plate thickness direction. In this overlapping portion 75d, the surface in the vicinity of the one end 75a and the surface in the vicinity of the other end 75b are welded in a state of being in surface contact with each other from the top to the bottom in the direction in which the accumulator tube F extends.
  • the shielding cover 75 provides access to the coil 68 such as a user's finger.
  • the periphery of the coil 68 is covered so as to refuse.
  • both ends of the coil 68 in the direction in which the accumulator tube F extends are arranged so as to be positioned between both ends of the shielding cover 75, the user can be effectively prevented from accessing the coil 68. is made of.
  • FIG. 19 is a cross-sectional view showing how the magnetic flux is guided with priority over the shielding cover 75 with respect to the ferrites 98 and 99.
  • the ferrites 98 and 99 have higher magnetic permeability than the shielding cover 75 made of sheet metal, and are arranged so as to extend in the radial direction at the upper and lower ends of the coil 68, when viewed from the direction in which the accumulator tube F extends.
  • the magnetic flux that is about to leak is more easily guided to the ferrites 98 and 99 than the shielding cover 75, and the magnetic flux generated by the coil 68 is collected by the ferrites 98 and 99 before being collected by the shielding cover 75. Most of the magnetic flux can be guided to the ferrites 98 and 99. Further, the burden of preventing leakage of the magnetic field applied to the shielding cover 75 can be reduced, and the magnetic field leaking from the electromagnetic induction heating unit 6 can be further reduced.
  • the first ferrite case 71 is made of resin, even if the shielding cover 75 is screwed to the first ferrite case 71 by metal screws 70a and 70b, the first ferrite 98 and The second ferrite 99 and the shielding cover 75 are not in direct contact. As described above, since an arrangement structure is employed in which the first ferrite 98 and the second ferrite 99 do not come into contact with the shielding cover 75, naturally, the first ferrite 98, the second ferrite 99 and the shielding cover 75 are locally disposed. There is no specific contact area.
  • the ferrites of the second to fourth ferrite cases 72 to 74 covered from the outside in the radial direction by the shielding cover 75 at positions other than the gap portion of the shielding cover 75 are the same as the shielding cover 75 containing the magnetic material and the second to fourth ferrite cases.
  • the shielding cover 75 has a portion located near the right side panel 2f of the outdoor unit 2 when viewed from above, while being parallel to the right side panel 2f. It arrange
  • the magnetic flux guided to the shielding cover 75 is further guided to the right side panel 2f, or an eddy current is generated at a local contact portion between the right side panel 2f and the shielding cover 75, resulting in local localization. This prevents the generation of excessive heat.
  • ⁇ Characteristics of the air conditioner 1 of the present embodiment> In the case of electromagnetic induction heating, a magnetic field may be generated not only for the purpose of generating heat but also for the surroundings.
  • the ferrites 98 and 99 containing a magnetic material having a higher magnetic permeability than the shielding cover 75 are disposed outside the coil 68.
  • the ferrites 98 and 99 are arranged so as to extend closer to the coil 68 than 75. For this reason, the magnetic field generated in the portion other than the accumulator tube F passes through the ferrites 98 and 99 preferentially over the shielding cover 75.
  • the magnetic flux which the ferrite 98 and 99 tends to leak to parts other than the accumulation tube F can be caught efficiently.
  • the magnetic field generated in the portion other than the accumulator tube F can be efficiently passed through the ferrites 98 and 99, and the magnetic flux not collected by the ferrites 98 and 99 is also shielded. Collected by 75. For this reason, the magnetic flux which leaks to parts other than the electromagnetic induction heating unit 6 can be suppressed small.
  • the member to be heated F2a and the two stoppers F1a may be arranged inside the accumulator pipe F or the refrigerant pipe to be heated.
  • the member to be heated F2a is a member that contains a magnetic material and generates heat by electromagnetic induction heating in the above embodiment.
  • the stopper F1a always allows passage of the refrigerant at two locations inside the copper tube F1, but does not allow passage of the heated member F2a. Thereby, the to-be-heated member F2a does not move even if the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated.
  • the heated member F2a described in the other embodiment (C) may be positioned with respect to the pipe without using the stopper F1a.
  • the copper pipe F1 may be provided with two bent portions FW, and the heated member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even if it does in this way, the movement of the to-be-heated member F2a can be suppressed, allowing a refrigerant to pass through.
  • the coil 68 is spirally wound around the accumulator tube F.
  • the present invention is not limited to this.
  • the coil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F.
  • the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F. Further, the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
  • the first bobbin lid 163 and the second bobbin lid 164 passing through the accumulator tube F are disposed in a state of being fitted to the bobbin main body 165.
  • the first bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172.
  • the shielding cover 75 may be provided so that the outermost periphery part of the electromagnetic induction heating unit 6 fixed in this way may be covered.
  • the present invention is used, even if the refrigerant pipe is heated by electromagnetic induction, it is possible to suppress leakage of the magnetic field to the surroundings while suppressing local heat generation, so that the refrigerant is heated using electromagnetic induction. It is particularly useful in an electromagnetic induction heating unit and an air conditioner.

Abstract

Provided are an electromagnetic induction heating unit and an air conditioning device, wherein even if electromagnetic induction heating is performed by generating a magnetic field using an electromagnetic induction heating unit, the magnetic field leaking to the outside of a refrigerant pipe can be reduced.  An electromagnetic induction heating unit (6) for electromagnetic induction-heating a refrigerant pipe (F) is comprised of a coil (68), a shielding cover (75), and ferrites (98, 99).  The coil (68) is disposed in the vicinity of the refrigerant pipe (F).  The shielding cover (75) is arranged around the refrigerant pipe (F), and contains a magnetic substance.  The ferrites (98, 99) are disposed on the outer side of the coil (68), which is opposite to the inner side of the coil (68) adjacent to the refrigerant pipe (F), and on the inner side of the shielding cover (75), and contain a magnetic substance having a magnetic permeability higher than that of the shielding cover (75).  In a direction in which the refrigerant pipe (F) extends, the opposed ends of the shielding cover (75) are disposed at a position further inside than the opposed ends of the ferrites (98, 99).

Description

電磁誘導加熱ユニットおよび空気調和装置Electromagnetic induction heating unit and air conditioner
 本発明は、電磁誘導加熱ユニットおよび空気調和装置に関する。 The present invention relates to an electromagnetic induction heating unit and an air conditioner.
 冷凍サイクルには、冷媒の熱を放出させる放熱器や、冷媒に対して熱を与える加熱器等が備えられている。冷凍サイクルを循環する冷媒は、例えば、冷房運転サイクルにおいては室内の空気との間で熱交換を行って熱を得ており、暖房運転サイクルにおいては屋外の空気との間で熱交換を行って熱を得ている。
 以下に示す特許文献1(特開平8-210720号公報)に記載の空気調和機の冷凍サイクルによると、上述のような室内の空気や屋外の空気から熱を得るだけでなく、別個に冷媒加熱装置によって冷媒が熱を得るシステムが提案されている。この冷媒加熱装置では、冷媒の流れる熱交換器をバーナで加熱させることにより、熱交換器内部を流れる冷媒に熱を与えている。このように、この空気調和機では冷媒加熱装置を採用しているため、冷媒が熱を必要とする場合において、室内や屋外の気温等の制約を受けることなく、冷媒を加熱することを可能にしている。
The refrigeration cycle includes a radiator that releases heat of the refrigerant, a heater that gives heat to the refrigerant, and the like. For example, the refrigerant circulating in the refrigeration cycle obtains heat by exchanging heat with indoor air in the cooling operation cycle, and exchanges heat with outdoor air in the heating operation cycle. Getting fever.
According to the refrigeration cycle of an air conditioner described in Patent Document 1 (Japanese Patent Application Laid-Open No. 8-210720) shown below, not only heat is obtained from indoor air or outdoor air as described above, but refrigerant heating is performed separately. A system has been proposed in which a refrigerant obtains heat with an apparatus. In this refrigerant heating apparatus, heat is applied to the refrigerant flowing through the heat exchanger by heating the heat exchanger through which the refrigerant flows with a burner. Thus, since this air conditioner employs a refrigerant heating device, when the refrigerant requires heat, it is possible to heat the refrigerant without being restricted by indoor or outdoor temperature. ing.
 上述のような冷媒加熱装置として、バーナ等の火を用いる方式の加熱ではなく、電気的な方式として電磁誘導加熱方式を採用することもできる。例えば、磁性体材料を含んでいる冷媒配管の周りに電磁誘導コイルを巻き、この電磁誘導加熱コイルに対して電流を流すことで生じた磁束に起因して冷媒配管を発熱させることができる。そして、この冷媒配管における発熱を用いて、冷媒を加熱することができる。
 しかし、冷媒配管を電磁誘導によって加熱させる場合に磁界を生じさせると、冷媒配管の内部だけでなく、それ以外の部分にも磁界が生じてしまう。
 これに対して、冷媒配管の周囲に、磁束を取りこみやすい材料を有する部材を配置することが考えられるが、それでもなお、磁界の漏れ出しを十分に抑えることが困難な場合がある。
As the refrigerant heating device as described above, an electromagnetic induction heating method can be adopted as an electric method, instead of a heating method using a burner or the like. For example, an electromagnetic induction coil is wound around a refrigerant pipe containing a magnetic material, and the refrigerant pipe can be caused to generate heat due to a magnetic flux generated by passing an electric current through the electromagnetic induction heating coil. And the refrigerant | coolant can be heated using the heat_generation | fever in this refrigerant | coolant piping.
However, when a magnetic field is generated when the refrigerant pipe is heated by electromagnetic induction, a magnetic field is generated not only in the refrigerant pipe but also in other portions.
On the other hand, it is conceivable to arrange a member having a material that easily takes in magnetic flux around the refrigerant pipe, but it is still difficult to sufficiently suppress leakage of the magnetic field.
 本発明は上述した点に鑑みてなされたものであり、本発明の課題は、電磁誘導加熱ユニットによって磁界を生じさせて電磁誘導加熱を行う場合であっても、冷媒配管以外の部分に漏れ出す磁界を小さく抑えることが可能な電磁誘導加熱ユニットおよび空気調和装置を提供することにある。 The present invention has been made in view of the above-described points, and an object of the present invention is to leak into a portion other than the refrigerant pipe even when electromagnetic induction heating is performed by generating a magnetic field by an electromagnetic induction heating unit. An object of the present invention is to provide an electromagnetic induction heating unit and an air conditioner that can suppress a magnetic field to be small.
 第1発明に係る電磁誘導加熱ユニットは、冷媒配管および/または冷媒配管中を流れる冷媒と熱的接触をする部材を加熱する電磁誘導加熱ユニットであって、コイルと、外部部材と、磁性体部を備えている。コイルは、冷媒配管の近傍に配置されている。外部部材は、冷媒配管の周囲に配置され、磁性体を含んでいる。磁性体部は、コイルの冷媒配管側である内側とは反対側の外側であってかつ外部部材の内側に配置され、外部部材よりも透磁率が高い磁性体材料を含んでいる。冷媒配管の延びる方向において、外部部材の両端部は、磁性体部の両端部よりも内側に位置している。なお、ここでの電磁誘導加熱ユニットによる加熱としては、例えば、冷媒配管と熱的接触をしている発熱部材を電磁誘導加熱する場合、冷媒配管中を流れる冷媒と熱的接触をしている発熱部材を電磁誘導加熱する場合、および、冷媒配管の少なくとも一部を構成する発熱部材を電磁誘導加熱する場合、が少なくとも含まれる。 An electromagnetic induction heating unit according to a first aspect of the present invention is an electromagnetic induction heating unit that heats a refrigerant pipe and / or a member that is in thermal contact with a refrigerant flowing in the refrigerant pipe, and includes a coil, an external member, and a magnetic part. It has. The coil is disposed in the vicinity of the refrigerant pipe. The external member is disposed around the refrigerant pipe and includes a magnetic body. The magnetic body portion is disposed on the outer side opposite to the inner side on the refrigerant piping side of the coil and on the inner side of the external member, and includes a magnetic material having a higher magnetic permeability than the external member. In the direction in which the refrigerant pipe extends, both end portions of the external member are positioned inside the both end portions of the magnetic body portion. In addition, as heating by the electromagnetic induction heating unit here, for example, when electromagnetic induction heating is performed on a heat generating member that is in thermal contact with the refrigerant pipe, heat generation that is in thermal contact with the refrigerant flowing in the refrigerant pipe It includes at least a case where the member is heated by electromagnetic induction and a case where the heat generating member constituting at least a part of the refrigerant pipe is heated by electromagnetic induction.
 電磁誘導加熱する場合には、発熱させる目的の磁性体だけでなく、その周囲にまで磁界が生じてしまうことがある。
 これに対して、この電磁誘導加熱ユニットでは、コイルの外側に外部部材よりも透磁率の高い磁性体材料を含んだ磁性体部が配置されているため、この冷媒配管以外の部分に生じる磁界は、外部部材よりも磁性体部を優先的に通過するようになる。さらに、冷媒配管の延びる方向において、外部部材の両端部が、磁性体部の両端部よりも内側に位置していることで、冷媒配管以外の部分に漏れ出そうとする磁束を外部部材よりもより効率的に捕らえることができる。これにより、電磁誘導加熱を行う場合において、冷媒配管以外の部分に生じる磁界を、効率的に磁性体部に通過させることができるため、磁性体部より外側において磁性体部以外の部分に漏れ出す程度を小さく抑えることができる。
In the case of electromagnetic induction heating, a magnetic field may be generated not only for the purpose of generating heat but also for the surroundings.
On the other hand, in this electromagnetic induction heating unit, since the magnetic body part including the magnetic material having higher permeability than the external member is arranged outside the coil, the magnetic field generated in the part other than the refrigerant pipe is The magnetic material portion is preferentially passed over the external member. Furthermore, in the direction in which the refrigerant pipe extends, the both end portions of the external member are positioned on the inner side of the both end portions of the magnetic body portion, so that the magnetic flux that leaks to the portion other than the refrigerant pipe is more than the external member. It can be captured more efficiently. Thereby, when performing electromagnetic induction heating, since the magnetic field generated in a portion other than the refrigerant pipe can be efficiently passed through the magnetic body portion, it leaks to a portion other than the magnetic body portion outside the magnetic body portion. The degree can be kept small.
 第2発明の電磁誘導加熱ユニットは、第1発明の電磁誘導加熱ユニットにおいて、コイルは、冷媒配管の少なくとも一部の周りを取り巻いている。
 この電磁誘導加熱ユニットでは、コイルに電流を流すことで生じる磁束の一部を、冷媒配管が伸びている方向に沿わせることができる。このため、冷媒配管に含まれている磁性体の長手方向と冷媒配管の軸方向とが略同一である場合に、電磁誘導による加熱効率を向上させることができる。
The electromagnetic induction heating unit of the second invention is the electromagnetic induction heating unit of the first invention, wherein the coil surrounds at least a part of the refrigerant pipe.
In this electromagnetic induction heating unit, a part of the magnetic flux generated by passing a current through the coil can be made to extend in the direction in which the refrigerant pipe extends. For this reason, the heating efficiency by electromagnetic induction can be improved when the longitudinal direction of the magnetic body contained in the refrigerant pipe and the axial direction of the refrigerant pipe are substantially the same.
 第3発明の電磁誘導加熱ユニットは、第1発明または第2発明の電磁誘導加熱ユニットにおいて、磁性体部の少なくとも一部は、冷媒配管が延びている方向におけるコイルの一方側とコイルに対して一方側とは反対側である他方側との少なくともいずれか一方まで延びている。
 この電磁誘導加熱ユニットでは、コイルに電力を供給することで生じ、冷媒配管とは反対側に漏れ出そうとする磁束を、外部部材に導かれる前に磁性体部が取りこむことができる。このため、外部部材よりも磁性体部の方が多くの磁界漏れを抑えることができるようになる。これにより、磁性体部の外側における磁界漏れが低減されるだけでなく、さらに外部部材がこの磁性体部の外側に漏れた磁界を捕らえることで、外部部材の外側における磁界漏れをより効果的に低減させることができる。
The electromagnetic induction heating unit according to a third aspect of the present invention is the electromagnetic induction heating unit according to the first or second aspect, wherein at least a part of the magnetic body portion is relative to one side of the coil and the coil in the direction in which the refrigerant pipe extends. It extends to at least one of the other side opposite to the one side.
In this electromagnetic induction heating unit, the magnetic body portion can take in the magnetic flux that is generated by supplying power to the coil and that leaks to the side opposite to the refrigerant pipe before being guided to the external member. For this reason, the magnetic body portion can suppress more magnetic field leakage than the external member. This not only reduces the magnetic field leakage outside the magnetic body part, but also captures the magnetic field that the external member leaks outside the magnetic body part, thereby more effectively preventing the magnetic field leakage outside the external member. Can be reduced.
 第4発明の電磁誘導加熱ユニットは、第1発明から第3発明のいずれかの電磁誘導加熱ユニットにおいて、磁性体部の少なくとも一部は、冷媒配管の軸方向視において、冷媒配管の外側であってコイルの内側まで延びている。
 この電磁誘導加熱ユニットでは、コイルが生じさせる磁界が磁性体部以外の部分に漏れ出す程度をより小さく抑えて、より効率的に磁性体部を通過させることができるようになる。
The electromagnetic induction heating unit according to a fourth aspect of the present invention is the electromagnetic induction heating unit according to any one of the first to third aspects of the invention, wherein at least a part of the magnetic body portion is outside the refrigerant pipe as viewed in the axial direction of the refrigerant pipe. Extending to the inside of the coil.
In this electromagnetic induction heating unit, it is possible to more efficiently pass the magnetic body part by suppressing the extent to which the magnetic field generated by the coil leaks to a part other than the magnetic body part.
 第5発明の電磁誘導加熱ユニットは、第1発明から第4発明のいずれかの電磁誘導加熱ユニットにおいて、磁性体部は、互いに接触して配置されている複数の磁性体部品を有している。
 この電磁誘導加熱ユニットでは、磁性体部を目的の形状に沿った一体部材とするのではなく、複数の部品を組み合わせて目的の形状にすることができる。そして、これらの磁性体部品は互いに接触した状態で配置されているため、磁性体部品の接続部分における透磁率の低下を小さく抑えることができるようになる。
The electromagnetic induction heating unit according to a fifth aspect of the present invention is the electromagnetic induction heating unit according to any one of the first to fourth aspects of the present invention, wherein the magnetic part has a plurality of magnetic parts arranged in contact with each other. .
In this electromagnetic induction heating unit, the magnetic body portion is not formed as an integral member along the target shape, but a plurality of parts can be combined into the target shape. And since these magnetic body components are arrange | positioned in the state which mutually contacted, the fall of the magnetic permeability in the connection part of a magnetic body component can be restrained small.
 第6発明の電磁誘導加熱ユニットは、第1発明から第5発明のいずれかの電磁誘導加熱ユニットにおいて、磁性体部は、良導体材料を含んでいる。
 この電磁誘導加熱ユニットでは、磁性体部より外側における磁力線を小さく抑えるために磁性体部に磁束を通過させる場合であっても、磁性体部が良導体材料を含んでいるため、電気抵抗によって生じるジュール熱を小さく抑えることができる。
The electromagnetic induction heating unit according to a sixth aspect of the present invention is the electromagnetic induction heating unit according to any one of the first to fifth aspects of the present invention, wherein the magnetic part includes a good conductor material.
In this electromagnetic induction heating unit, even when a magnetic flux is passed through the magnetic body portion in order to keep the magnetic field lines outside the magnetic body portion small, the magnetic body portion contains a good conductor material. Heat can be kept small.
 第7発明の電磁誘導加熱ユニットは、第1発明から第6発明のいずれかの電磁誘導加熱ユニットにおいて、磁性体部は、フェライトを含んでいる。
 この電磁誘導加熱ユニットでは、フェライトを含んでいる磁性体部に積極的に磁束を通過させることができ、磁性体部よりも外側に漏れ出す磁界を小さく抑えることができる。
An electromagnetic induction heating unit according to a seventh aspect of the present invention is the electromagnetic induction heating unit according to any one of the first to sixth aspects of the invention, wherein the magnetic body portion includes ferrite.
In this electromagnetic induction heating unit, the magnetic flux can be allowed to actively pass through the magnetic body portion containing ferrite, and the magnetic field leaking outside the magnetic body portion can be kept small.
 第8発明の空気調和装置は、第1発明から第7発明のいずれかの電磁誘導加熱ユニットと、冷媒配管に冷媒を流す部分を含む冷凍サイクルと、を備えている。
 この空気調和装置では、空気調和装置において電磁誘導加熱を行う場合であっても、電磁誘導加熱ユニットの周囲への影響を小さく抑えることが可能になる。
An air conditioner according to an eighth aspect includes the electromagnetic induction heating unit according to any one of the first aspect to the seventh aspect, and a refrigeration cycle including a portion for flowing a refrigerant through a refrigerant pipe.
In this air conditioner, even when electromagnetic induction heating is performed in the air conditioner, the influence on the surroundings of the electromagnetic induction heating unit can be reduced.
 第1発明の電磁誘導加熱ユニットでは、磁性体部より外側において磁性体部以外の部分に漏れ出す程度を小さく抑えることができる。
 第2発明の電磁誘導加熱ユニットでは、電磁誘導による加熱効率を向上させることができる。
 第3発明の電磁誘導加熱ユニットでは、磁性体部の外側における磁界漏れが低減されるだけでなく、さらに外部部材がこの磁性体部の外側に漏れた磁界を捕らえることで、外部部材の外側における磁界漏れをより効果的に低減させることができる。
 第4発明の電磁誘導加熱ユニットでは、より効率的に磁性体部を通過させることができるようになる。
 第5発明の電磁誘導加熱ユニットでは、磁性体部品の接続部分における透磁率の低下を小さく抑えることができるようになる。
In the electromagnetic induction heating unit according to the first aspect of the invention, it is possible to reduce the degree of leakage to a portion other than the magnetic body portion outside the magnetic body portion.
In the electromagnetic induction heating unit of the second invention, the heating efficiency by electromagnetic induction can be improved.
In the electromagnetic induction heating unit according to the third aspect of the invention, not only the magnetic field leakage outside the magnetic body portion is reduced, but also the external member captures the magnetic field leaking outside the magnetic body portion, thereby Magnetic field leakage can be reduced more effectively.
In the electromagnetic induction heating unit of the fourth aspect of the invention, the magnetic part can be passed more efficiently.
In the electromagnetic induction heating unit according to the fifth aspect of the present invention, it is possible to suppress a decrease in the magnetic permeability at the connection part of the magnetic parts.
 第6発明の電磁誘導加熱ユニットでは、電気抵抗によって生じるジュール熱を小さく抑えることができる。
 第7発明の電磁誘導加熱ユニットでは、磁性体部よりも外側に漏れ出す磁界を小さく抑えることができる。
 第8発明の空気調和装置では、空気調和装置において電磁誘導加熱を行う場合であっても、電磁誘導加熱ユニットの周囲への影響を小さく抑えることが可能になる。
In the electromagnetic induction heating unit according to the sixth aspect of the invention, the Joule heat generated by the electrical resistance can be kept small.
In the electromagnetic induction heating unit according to the seventh aspect of the invention, the magnetic field that leaks outside the magnetic body portion can be kept small.
In the air conditioner according to the eighth aspect of the invention, even when electromagnetic induction heating is performed in the air conditioner, the influence on the surroundings of the electromagnetic induction heating unit can be reduced.
本発明の一実施形態にかかる空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning one embodiment of the present invention. 室外機の正面側を含む外観斜視図である。It is an external appearance perspective view including the front side of an outdoor unit. 室外機の内部配置構成斜視図である。It is an internal arrangement configuration perspective view of an outdoor unit. 室外機の内部配置構成の背面側を含む外観斜視図である。It is an external appearance perspective view containing the back side of the internal arrangement structure of an outdoor unit. 室外機の機械室の内部構造を示す全体前方斜視図である。It is a whole front perspective view which shows the internal structure of the machine room of an outdoor unit. 室外機の機械室の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the machine room of an outdoor unit. 室外機の底板と室外熱交換器との斜視図である。It is a perspective view of a bottom plate of an outdoor unit and an outdoor heat exchanger. 電磁誘導加熱ユニットの配置関係についての上面図である。It is a top view about the arrangement | positioning relationship of an electromagnetic induction heating unit. アキューム管に取り付けられた電磁誘導加熱ユニットの概略斜視図である。It is a schematic perspective view of the electromagnetic induction heating unit attached to the accumulation tube. 電磁誘導加熱ユニットから遮蔽カバーを取り除いた状態の外観斜視図である。It is an external appearance perspective view of the state which removed the shielding cover from the electromagnetic induction heating unit. アキューム管に取り付けられた電磁誘導加熱ユニットの断面図である。It is sectional drawing of the electromagnetic induction heating unit attached to the accumulation pipe | tube. サーミスタおよびヒューズの取付状態を示す図である。It is a figure which shows the attachment state of a thermistor and a fuse. 電磁誘導加熱ユニットの周囲に磁束が生じている状態の説明図である。It is explanatory drawing of the state which the magnetic flux has arisen around the electromagnetic induction heating unit. 第1フェライトケースの概略斜視図である。It is a schematic perspective view of a 1st ferrite case. 第1フェライトケースの上方側の螺着部近傍の図である。It is a figure of the screwing part vicinity of the upper side of a 1st ferrite case. 第1フェライトケースの下方側の螺着部近傍の図である。It is a figure of the screwing part vicinity of the downward side of a 1st ferrite case. 遮蔽カバーの上面図である。It is a top view of a shielding cover. 遮蔽カバーの正面図である。It is a front view of a shielding cover. フェライトが遮蔽カバーよりも優先して磁束を導く様子を示す図である。It is a figure which shows a mode that a ferrite preferentially guides a magnetic flux over a shielding cover. 他の実施形態(C)の冷媒配管の説明図である。It is explanatory drawing of refrigerant | coolant piping of other embodiment (C). 他の実施形態(D)の冷媒配管の説明図である。It is explanatory drawing of refrigerant | coolant piping of other embodiment (D). 他の実施形態(E)のコイルと冷媒配管との配置例を示す図である。It is a figure which shows the example of arrangement | positioning with the coil and refrigerant | coolant piping of other embodiment (E). 他の実施形態(E)のボビン蓋の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the bobbin lid of other embodiment (E). 他の実施形態(E)のフェライトケースの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the ferrite case of other embodiment (E).
 以下、図面を参照しつつ、本発明の一実施形態における電磁誘導加熱ユニット6を備えた空気調和装置1を例に挙げて説明する。
 <1-1>空気調和装置1
 図1に、空気調和装置1の冷媒回路10を示す冷媒回路図を示す。
 空気調和装置1は、熱源側装置としての室外機2と、利用側装置としての室内機4とが冷媒配管によって接続されて、利用側装置が配置された空間の空気調和を行うものであって、圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、室内熱交換器41、室内ファン42、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6等を備えている。
 圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、室外機2内に収容されている。室内熱交換器41および室内ファン42は、室内機4内に収容されている。
Hereinafter, an air conditioner 1 including an electromagnetic induction heating unit 6 according to an embodiment of the present invention will be described as an example with reference to the drawings.
<1-1> Air conditioner 1
FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit 10 of the air conditioner 1.
The air conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe. , Compressor 21, four-way switching valve 22, outdoor heat exchanger 23, outdoor electric expansion valve 24, accumulator 25, outdoor fan 26, indoor heat exchanger 41, indoor fan 42, hot gas bypass valve 27, capillary tube 28 and An electromagnetic induction heating unit 6 and the like are provided.
The compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in. The indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
 冷媒回路10は、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管F、吸入管G、ホットガスバイパス回路H、分岐配管Kおよび合流配管Jを有している。室内側ガス管Bおよび室外側ガス管Eは、ガス状態の冷媒が多く通過するものではあるが、通過する冷媒をガス冷媒に限定しているものではない。室内側液管Cおよび室外側液管Dは、液状態の冷媒が多く通過するものではあるが、通過する冷媒を液冷媒に限定しているものではない。
 吐出管Aは、圧縮機21と四路切換弁22とを接続している。吐出管Aには、通過する冷媒温度を検知する吐出温度センサ29dが設けられている。なお、圧縮機21には、電力供給部21eが電力の供給を行う。この電力供給部21eの供給電力量は、圧縮機電力検知部29fが検知している。
The refrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, a hot gas bypass circuit H, and a branch pipe K. And a merging pipe J. The indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant. The indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
The discharge pipe A connects the compressor 21 and the four-way switching valve 22. The discharge pipe A is provided with a discharge temperature sensor 29d for detecting the temperature of the refrigerant passing therethrough. Note that the power supply unit 21 e supplies power to the compressor 21. The amount of power supplied from the power supply unit 21e is detected by the compressor power detection unit 29f.
 室内側ガス管Bは、四路切換弁22と室内熱交換器41とを接続している。この室内側ガス管Bの途中には、通過する冷媒の圧力を検知する圧力センサ29aが設けられている。
 室内側液管Cは、室内熱交換器41と室外電動膨張弁24とを接続している。
 室外側液管Dは、室外電動膨張弁24と室外熱交換器23とを接続している。
 室外側ガス管Eは、室外熱交換器23と四路切換弁22とを接続している。
 アキューム管Fは、四路切換弁22とアキュームレータ25とを接続しており、室外機2の設置状態で鉛直方向に伸びている。アキューム管Fの一部に対して、電磁誘導加熱ユニット6が取り付けられている。アキューム管Fのうち、少なくとも後述するコイル68によって周囲を覆われている発熱部分は、内側に冷媒を流している銅管F1の周囲を覆うように設けられた磁性体管F2によって構成されている(図11参照)。この磁性体管F2は、SUS(Stainless Used Steel:ステンレス鋼)430によって構成されている。このSUS430は、強磁性体材料であって、磁界に置かれると渦電流を生じつつ、自己の電気抵抗によって生ずるジュール熱により発熱する。冷媒回路10を構成する配管のうち磁性体管F2以外の部分は、銅管で構成されている。なお、上記銅管の周囲を覆う管の材質はSUS430に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、および、ニッケルからなる群より選ばれる一種の導体、および、この群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、SUSとしては、例えば、フェライト系、マルテンサイト系の2種およびこれらの種類を組み合わせたものが例として挙げられる。なお、強磁性体であって電気抵抗が比較的高いものであり使用温度範囲よりもキュリー温度が高い材料が好ましい。なお、ここでのアキューム管Fは、より多くの電力が必要とされるが、磁性体および磁性体を含有する材料を備えていなくてもよく、誘導加熱が行われる対象となる材質を含有するものであってもよい。なお、磁性体材料は、例えば、アキューム管Fのすべてを構成していてもよいし、アキューム管Fの内側表面のみに形成されていてもよく、アキューム管Fを構成する材料中に含有されることで存在していてもよい。このように電磁誘導加熱を行うことで、アキューム管Fを電磁誘導によって加熱させることができ、アキュームレータ25を介して圧縮機21に吸入される冷媒を暖めることができる。これにより、空気調和装置1の暖房能力を向上させることができる。また、例えば、暖房運転の起動時においては、圧縮機21が十分に暖まっていない場合であっても、電磁誘導加熱ユニット6による迅速な加熱によって起動時の能力不足を補うことができる。さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23等に付着した霜を除去するデフロスト運転を行う場合には、電磁誘導加熱ユニット6がアキューム管Fを迅速に加熱することで、圧縮機21は迅速に暖められた冷媒を対象として圧縮することができる。このため、圧縮機21から吐出するホットガスの温度を迅速に上げることができる。これにより、デフロスト運転による霜の解凍に要する時間を短縮化できる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。
The indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41. In the middle of the indoor side gas pipe B, a pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided.
The indoor side liquid pipe C connects the indoor heat exchanger 41 and the outdoor electric expansion valve 24.
The outdoor liquid pipe D connects the outdoor electric expansion valve 24 and the outdoor heat exchanger 23.
The outdoor gas pipe E connects the outdoor heat exchanger 23 and the four-way switching valve 22.
The accumulator pipe F connects the four-way switching valve 22 and the accumulator 25, and extends in the vertical direction when the outdoor unit 2 is installed. An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F. Of the accumulator tube F, at least a heat generating portion whose periphery is covered by a coil 68, which will be described later, is constituted by a magnetic body tube F2 provided so as to cover the periphery of the copper tube F1 in which the refrigerant is flowing inside. (See FIG. 11). The magnetic tube F2 is made of SUS (Stainless Used Steel) 430. The SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance. Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of copper pipes. In addition, the material of the pipe | tube covering the circumference | surroundings of the said copper pipe is not limited to SUS430, For example, a kind of conductor chosen from the group which consists of iron, copper, aluminum, chromium, and nickel, and from this group An alloy containing at least two selected metals can be used. Examples of SUS include two types of ferrite and martensite and combinations of these types. A material that is ferromagnetic and has a relatively high electrical resistance and a Curie temperature higher than the operating temperature range is preferable. The accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing. For example, the magnetic material may constitute all of the accumulator tube F, or may be formed only on the inner surface of the accumulator tube F, and is contained in the material constituting the accumulator tube F. May exist. By performing electromagnetic induction heating in this manner, the accumulator tube F can be heated by electromagnetic induction, and the refrigerant sucked into the compressor 21 via the accumulator 25 can be warmed. Thereby, the heating capability of the air conditioning apparatus 1 can be improved. Further, for example, even when the compressor 21 is not sufficiently warmed at the time of starting the heating operation, the lack of capacity at the time of starting can be compensated for by the rapid heating by the electromagnetic induction heating unit 6. Further, when the four-way switching valve 22 is switched to the cooling operation state and the defrost operation is performed to remove the frost attached to the outdoor heat exchanger 23 or the like, the electromagnetic induction heating unit 6 quickly opens the accumulator tube F. By heating, the compressor 21 can compress the rapidly heated refrigerant as a target. For this reason, the temperature of the hot gas discharged from the compressor 21 can be raised rapidly. Thereby, the time required for defrosting by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
 吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
 ホットガスバイパス回路Hは、吐出管Aの途中に設けられた分岐点A1と室外側液管Dの途中に設けられた分岐点D1とを接続している。ホットガスバイパス回路Hは、冷媒の通過を許容する状態と許容しない状態とを切換可能なホットガスバイバス弁27が、途中に配置されている。なお、ホットガスバイパス回路Hは、ホットガスバイバス弁27と分岐点D1との間に、通過する冷媒圧力を下げるキャピラリーチューブ28が設けられている。このキャピラリーチューブ28は、暖房運転時の室外電動膨張弁24による冷媒圧力の低下後の圧力に近づけることができるため、ホットガスバイパス回路Hを通じた室外側液管Dへのホットガスの供給による室外側液管Dの冷媒圧力上昇を抑えることができる。
 分岐配管Kは、室外熱交換器23の一部を構成しており、熱交換を行うための有効表面積を増大させるために、室外熱交換器23のガス側出入口23eから伸びる冷媒配管が後述する分岐合流点23kで複数本に分岐した配管である。この分岐配管Kは、分岐合流点23kから合流分岐点23jまでそれぞれ独立して延びている第1分岐配管K1、第2分岐配管K2および第3分岐配管K3を有しており、これらの各分岐配管K1、K2、K3は合流分岐点23jで合流している。なお、合流配管J側から見ると、合流分岐点23jで分岐して分岐配管Kが延びている。
The suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
The hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D. In the hot gas bypass circuit H, a hot gas bypass valve 27 capable of switching between a state allowing the passage of the refrigerant and a state not allowing the refrigerant is arranged in the middle. In the hot gas bypass circuit H, a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough. Since this capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
The branch pipe K constitutes a part of the outdoor heat exchanger 23, and a refrigerant pipe extending from the gas side inlet / outlet 23e of the outdoor heat exchanger 23 will be described later in order to increase the effective surface area for heat exchange. It is a pipe branched into a plurality of lines at a branching junction 23k. The branch pipe K includes a first branch pipe K1, a second branch pipe K2, and a third branch pipe K3 that extend independently from the branch junction point 23k to the junction branch point 23j. The pipes K1, K2, and K3 merge at the merge branch point 23j. Note that, when viewed from the merging pipe J side, the branch pipe K extends at a merging branch point 23j.
 合流配管Jは、室外熱交換器23の一部を構成しており、合流分岐点23jから室外熱交換器23の液側出入口23dまで伸びている配管である。合流配管Jは、冷房運転時に室外熱交換器23から流れ出る冷媒の過冷却度を統一させることができるとともに、暖房運転時に室外熱交換器23の下端近傍に着霜した氷を解凍させることができる。合流配管Jは、各分岐配管K1、K2、K3の断面積の略3倍の断面積を有しており、通過冷媒量が、各分岐配管K1、K2、K3の略3倍になっている。
 四路切換弁22は、冷房運転サイクルと暖房運転サイクルとを切換可能である。図1では、暖房運転を行う際の接続状態を実線で示し、冷房運転を行う際の接続状態を点線で示している。暖房運転時には、室内熱交換器41が冷媒の冷却器として、室外熱交換器23が冷媒の加熱器として機能する。冷房運転時には、室外熱交換器23が冷媒の冷却器として、室内熱交換器41が冷媒の加熱器として機能する。
The junction pipe J constitutes a part of the outdoor heat exchanger 23 and extends from the junction branch point 23j to the liquid side inlet / outlet 23d of the outdoor heat exchanger 23. The junction pipe J can unify the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 23 during the cooling operation, and can defrost frosted ice near the lower end of the outdoor heat exchanger 23 during the heating operation. . The junction pipe J has a cross-sectional area that is approximately three times the cross-sectional area of each of the branch pipes K1, K2, and K3, and the amount of refrigerant passing through is approximately three times that of each of the branch pipes K1, K2, and K3. .
The four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle. In FIG. 1, the connection state when performing the heating operation is indicated by a solid line, and the connection state when performing the cooling operation is indicated by a dotted line. During the heating operation, the indoor heat exchanger 41 functions as a refrigerant cooler, and the outdoor heat exchanger 23 functions as a refrigerant heater. During the cooling operation, the outdoor heat exchanger 23 functions as a refrigerant cooler, and the indoor heat exchanger 41 functions as a refrigerant heater.
 室外熱交換器23は、ガス側出入口23e、液側出入口23d、分岐合流点23k、合流分岐点23j、分岐配管K、合流配管Jおよび熱交フィン23zを有している。ガス側出入口23eは、室外熱交換器23の室外側ガス管E側の端部に位置しており、室外側ガス管Eと接続される。液側出入口23dは、室外熱交換器23の室外側液管D側の端部に位置しており、室外側液管Dと接続される。分岐合流点23kは、ガス側出入口23eから伸びる配管を分岐させており、流れる冷媒の方向に応じて冷媒を分岐もしくは合流させることができる。分岐配管Kは、分岐合流点23kにおける各分岐部分から複数本伸びている。合流分岐点23jは、分岐配管Kを合流させており、流れる冷媒の方向に応じて冷媒を合流もしくは分岐させることができる。合流配管Jは、合流分岐点23jから液側出入口23dまで伸びている。熱交フィン23zは、板状のアルミフィンが板厚方向に複数枚並んで、所定の間隔で配置されて構成されている。分岐配管Kおよび合流配管Jは、いずれも、熱交フィン23zを共通の貫通対象としている。具体的には、分岐配管Kおよび合流配管Jは、共通の熱交フィン23zの異なる部分で板圧方向に貫通して配置されている。この室外熱交換器23に対して、室外ファン26の空気流れ方向風下側には、室外の気温を検知する室外気温センサ29bが設けられている。また、室外熱交換器23には、分岐配管Kを流れる冷媒温度を検知する室外熱交温度センサ29cが設けられている。 The outdoor heat exchanger 23 includes a gas side inlet / outlet 23e, a liquid side inlet / outlet 23d, a branch junction 23k, a junction branch point 23j, a branch pipe K, a junction pipe J, and a heat exchange fin 23z. The gas side inlet / outlet 23 e is located at the end of the outdoor heat exchanger 23 on the outdoor gas pipe E side, and is connected to the outdoor gas pipe E. The liquid side inlet / outlet 23 d is located at the end of the outdoor heat exchanger 23 on the outdoor liquid pipe D side, and is connected to the outdoor liquid pipe D. The branch junction 23k branches a pipe extending from the gas side inlet / outlet port 23e, and can branch or join the refrigerant according to the direction of the flowing refrigerant. A plurality of branch pipes K extend from each branch portion at the branch junction 23k. The junction branch point 23j joins the branch pipe K and can join or branch the refrigerant according to the direction of the flowing refrigerant. The junction pipe J extends from the junction branch point 23j to the liquid side inlet / outlet 23d. The heat exchange fins 23z are configured by arranging a plurality of plate-like aluminum fins in the thickness direction and arranged at predetermined intervals. The branch pipe K and the merge pipe J both have the heat exchange fins 23z as a common penetration target. Specifically, the branch pipe K and the junction pipe J are disposed so as to penetrate in the plate pressure direction at different portions of the common heat exchange fin 23z. With respect to the outdoor heat exchanger 23, an outdoor air temperature sensor 29b for detecting the outdoor air temperature is provided on the leeward side of the outdoor fan 26 in the air flow direction. The outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the branch pipe K.
 室内機4内には、室内温度を検知する室内温度センサ43が設けられている。また、室内熱交換器41には、室外電動膨張弁24が接続されている室内側液管C側の冷媒温度を検知する室内熱交温度センサ44が設けられている。
 室外機2内に配置される機器を制御する室外制御部12と、室内機4内に配置されている機器を制御する室内制御部13とが、通信線11aによって接続されることで、制御部11を構成している。この制御部11は、空気調和装置1を対象とした種々の制御を行う。
 また、室外制御部12には、各種制御を行う際に経過時間をカウントするタイマ95が設けられている。
 なお、制御部11には、ユーザからの設定入力を受け付けるコントローラ90が接続されている。
In the indoor unit 4, an indoor temperature sensor 43 that detects the indoor temperature is provided. The indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
The outdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted. The control unit 11 performs various controls for the air conditioner 1.
Further, the outdoor control unit 12 is provided with a timer 95 that counts elapsed time when performing various controls.
Note that a controller 90 that accepts a setting input from the user is connected to the control unit 11.
 <1-2>室外機2
 図2に、室外機2の正面側の外観斜視図を示す。図3に、室外熱交換器23および室外ファン26との位置関係についての斜視図を示す。図4に、室外熱交換器23の背面側の斜視図を示す。
 室外機2は、天板2a、底板2b、フロントパネル2c、左側面パネル2d、右側面パネル2fおよび背面パネル2eによって構成される略直方体形状の室外機ケーシングによって外表面を構成している。
 室外機2は、室外熱交換器23および室外ファン26等が配置されており左側面パネル2d側である送風機室と、圧縮機21や電磁誘導加熱ユニット6が配置されており右側面パネル2f側である機械室と、に仕切り板2hを介して区切られている。また、室外機2は、底板2bに対して螺着されることで固定され、室外機2の最下端部を右側と左側において構成する室外機支持台2gを有している。なお、電磁誘導加熱ユニット6は、機械室のうちの左側面パネル2dおよび天板2aの近傍である上方の位置に配置されている。ここで、上述した室外熱交換器23の熱交フィン23zは、略水平方向に板厚方向が向くようにしつつ、板厚方向に複数並んで配置されている。合流配管Jは、室外熱交換器23の熱交フィン23zのうち最も下の部分において、熱交フィン23zを厚み方向に貫通することで配置されている。ホットガスバイパス回路Hは、室外ファン26および室外熱交換器23の下方を沿うように配置されている。
<1-2> Outdoor unit 2
In FIG. 2, the external appearance perspective view of the front side of the outdoor unit 2 is shown. In FIG. 3, the perspective view about the positional relationship with the outdoor heat exchanger 23 and the outdoor fan 26 is shown. In FIG. 4, the perspective view of the back side of the outdoor heat exchanger 23 is shown.
The outdoor unit 2 has an outer surface formed by a substantially rectangular parallelepiped outdoor unit casing that includes a top plate 2a, a bottom plate 2b, a front panel 2c, a left side panel 2d, a right side panel 2f, and a back panel 2e.
In the outdoor unit 2, an outdoor heat exchanger 23, an outdoor fan 26, and the like are arranged, a blower room on the left side panel 2d side, a compressor 21 and an electromagnetic induction heating unit 6 are arranged, and the right side panel 2f side. The machine room is separated by a partition plate 2h. The outdoor unit 2 is fixed by being screwed to the bottom plate 2b, and has an outdoor unit support 2g that forms the lowermost end portion of the outdoor unit 2 on the right side and the left side. The electromagnetic induction heating unit 6 is disposed at an upper position in the vicinity of the left side panel 2d and the top plate 2a in the machine room. Here, the heat exchange fins 23z of the outdoor heat exchanger 23 described above are arranged side by side in the plate thickness direction so that the plate thickness direction is substantially horizontal. The joining pipe J is disposed in the lowermost portion of the heat exchange fins 23z of the outdoor heat exchanger 23 by penetrating the heat exchange fins 23z in the thickness direction. The hot gas bypass circuit H is arranged along the lower side of the outdoor fan 26 and the outdoor heat exchanger 23.
 図5に、室外機2の機械室の内部構造を示す全体前方斜視図を示す。図6に、室外機2の機械室の内部構造を示す斜視図を示す。図7に、室外熱交換器23と底板2bとの配置関係についての斜視図を示す。図8に、電磁誘導加熱ユニット6の配置関係についての上面図を示す。
 室外機2の仕切り板2hは、室外熱交換器23および室外ファン26等が配置されている送風機室と、電磁誘導加熱ユニット6、圧縮機21およびアキュームレータ25等が配置されている機械室と、を区切るように前方から後方に向けて上端から下端に掛けて仕切っている。圧縮機21およびアキュームレータ25は、室外機2の機械室の下方の空間に配置されている。そして、電磁誘導加熱ユニット6、四路切換弁22および室外制御部12は、室外機2の機械室の上方の空間であって、圧縮機21やアキュームレータ25等の上の空間に配置されている。室外機2を構成する機能要素であって機械室に配置されている圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、図1において示した冷媒回路10による冷凍サイクルを実行するように、吐出管A、室内側ガス管B、室外側液管D、室外側ガス管E、アキューム管F、ホットガスバイパス回路H等を介して接続されている。ここで、ホットガスバイパス回路Hは、後述するように、第1バイパス部分H1~第9バイパス部分H9の、9つの部分が繋がって構成されており、ホットガスバイパス回路Hに冷媒が流れる際は、第1バイパス部分H1から順番に第9バイパス部分H9に向かう方向に流れる。
FIG. 5 is an overall front perspective view showing the internal structure of the machine room of the outdoor unit 2. FIG. 6 is a perspective view showing the internal structure of the machine room of the outdoor unit 2. In FIG. 7, the perspective view about the arrangement | positioning relationship between the outdoor heat exchanger 23 and the baseplate 2b is shown. In FIG. 8, the top view about the arrangement | positioning relationship of the electromagnetic induction heating unit 6 is shown.
The partition plate 2h of the outdoor unit 2 includes a fan room in which the outdoor heat exchanger 23 and the outdoor fan 26 are arranged, a machine room in which the electromagnetic induction heating unit 6, the compressor 21, the accumulator 25, and the like are arranged, Is partitioned from the upper end to the lower end from the front to the rear. The compressor 21 and the accumulator 25 are disposed in a space below the machine room of the outdoor unit 2. The electromagnetic induction heating unit 6, the four-way switching valve 22, and the outdoor control unit 12 are disposed in a space above the machine room of the outdoor unit 2 and above the compressor 21, the accumulator 25, and the like. . A compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor electric expansion valve 24, an accumulator 25, a hot gas bypass valve 27, a capillary, which are functional elements constituting the outdoor unit 2 and are disposed in the machine room The tube 28 and the electromagnetic induction heating unit 6 include a discharge pipe A, an indoor side gas pipe B, an outdoor side liquid pipe D, an outdoor side gas pipe E, an accumulator so as to execute the refrigeration cycle by the refrigerant circuit 10 shown in FIG. They are connected via a tube F, a hot gas bypass circuit H, and the like. Here, as will be described later, the hot gas bypass circuit H is configured by connecting nine parts of the first bypass part H1 to the ninth bypass part H9, and when the refrigerant flows into the hot gas bypass circuit H, , Flows in the direction from the first bypass portion H1 toward the ninth bypass portion H9 in order.
 <1-3>電磁誘導加熱ユニット6
 図9に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6概略斜視図を示す。図10に、電磁誘導加熱ユニット6から遮蔽カバー75を取り除いた状態の外観斜視図を示す。図11に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6の断面図を示す。
 電磁誘導加熱ユニット6は、アキューム管Fのうち発熱部分である磁性体管F2を径方向外側から覆うように配置されており、電磁誘導加熱によって磁性体管F2を発熱させる。このアキューム管Fの発熱部分は、内側の銅管F1と外側の磁性体管F2とを有する二重管構造となっている。
 電磁誘導加熱ユニット6は、第1六角ナット61、第2六角ナット66、第1ボビン蓋63、第2ボビン蓋64、ボビン本体65、第1フェライトケース71、第2フェライトケース72、第3フェライトケース73、第4フェライトケース74、第1フェライト98、第2フェライト99、コイル68、遮蔽カバー75、サーミスタ14およびヒューズ15等を備えている。
<1-3> Electromagnetic induction heating unit 6
FIG. 9 is a schematic perspective view of the electromagnetic induction heating unit 6 attached to the accumulator tube F. FIG. 10 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed. FIG. 11 is a cross-sectional view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
The electromagnetic induction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating. The heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
The electromagnetic induction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite. A case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, the thermistor 14 and a fuse 15 are provided.
 第1六角ナット61および第2六角ナット66は、樹脂製であって、図示しないC型リングを用いて、電磁誘導加熱ユニット6とアキューム管Fとの固定状態を安定させる。第1ボビン蓋63および第2ボビン蓋64は、樹脂製であって、アキューム管Fをそれぞれ上端位置および下端位置において径方向外側から覆っている。この第1ボビン蓋63および第2ボビン蓋64は、後述する第1~第4フェライトケース71~74をネジ69を介して螺着させるための、ネジ69用の螺着孔を4つ有している。さらに、第2ボビン蓋64は、サーミスタ14を差し込んで、磁性体管F2の外表面に取り付けるための電磁誘導サーミスタ差し込み開口64fを有している。また、第2ボビン蓋64は、図13に示すヒューズ15を差し込んで、磁性体管F2の外表面に取り付けるためのヒューズ差し込み開口64eを有している。サーミスタ14は、検知温度を信号にして制御部11まで伝える。ヒューズ15は、検知結果を信号にして制御部11まで伝える。ヒューズ15から所定制限温度を超えた温度検知の知らせを受けた制御部11は、コイル68への電力供給を停止させる制御を行って、機器の熱損傷を回避させる。ボビン本体65は、樹脂製であって、コイル68が巻き付けられる。コイル68は、ボビン本体65の外側においてアキューム管Fの延びる方向を軸方向として螺旋状に巻き付けられている。コイル68は、図示しない制御用プリント基板18に接続されており、高周波電流の供給を受ける。制御用プリント基板は、制御部11によって出力制御される。図12に示すように、ボビン本体65と第2ボビン蓋64とが勘合している状態で、サーミスタ14およびヒューズ15が取り付けられる。ここで、サーミスタ14の取り付け状態では、板バネ16によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。また、ヒューズ15の取り付け状態も同様に、板バネ17によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。このように、サーミスタ14およびヒューズ15がアキューム管Fの外表面との密着性を良好に保たれているために、応答性を向上させ、電磁誘導加熱による急激な温度変化も迅速に検出できるようにしている。第1フェライトケース71は、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込み、ネジ69によって螺着固定されている。第1フェライトケース71~第4フェライトケース74は、透磁率の高い素材であるフェライトによって構成された第1フェライト98および第2フェライト99を収容している。第1フェライト98および第2フェライト99は、図13の磁束説明図において示すように、コイル68によって生じる磁界を取りこんで磁束の通り道を形成することで、磁界が外部に漏れ出しにくいようにしている。遮蔽カバー75は、電磁誘導加熱ユニット6の最外周部分に配置されており、第1フェライト98および第2フェライト99だけでは呼び込みきれない磁束を集める。この遮蔽カバー75の外側にはほとんど漏れ磁束が生じず、磁束の発生場所について自決することができている。 The first hex nut 61 and the second hex nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator tube F using a C-shaped ring (not shown). The first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively. The first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing. Further, the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the thermistor 14 and attaching it to the outer surface of the magnetic tube F2. The second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 shown in FIG. 13 and attaching it to the outer surface of the magnetic tube F2. The thermistor 14 transmits the detected temperature as a signal to the control unit 11. The fuse 15 transmits the detection result to the control unit 11 as a signal. Receiving the notification of temperature detection exceeding the predetermined limit temperature from the fuse 15, the control unit 11 performs control to stop the power supply to the coil 68 to avoid thermal damage of the device. The bobbin main body 65 is made of resin, and the coil 68 is wound around it. The coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction. The coil 68 is connected to a control printed board 18 (not shown) and receives a high-frequency current. The output of the control printed circuit board is controlled by the control unit 11. As shown in FIG. 12, the thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together. Here, in the attached state of the thermistor 14, the plate spring 16 is pushed inward in the radial direction of the magnetic tube F 2, thereby maintaining a good pressure contact state with the outer surface of the magnetic tube F 2. Similarly, the attachment state of the fuse 15 is also pressed by the leaf spring 17 inward in the radial direction of the magnetic tube F2, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained. Thus, since the thermistor 14 and the fuse 15 are kept in good contact with the outer surface of the accumulator tube F, the responsiveness is improved, and a sudden temperature change due to electromagnetic induction heating can be detected quickly. I have to. The first ferrite case 71 is sandwiched between the first bobbin lid 63 and the second bobbin lid 64 from the direction in which the accumulator tube F extends, and is fixed by screwing with screws 69. The first ferrite case 71 to the fourth ferrite case 74 contain the first ferrite 98 and the second ferrite 99 made of ferrite, which is a material having high magnetic permeability. As shown in the magnetic flux explanatory diagram of FIG. 13, the first ferrite 98 and the second ferrite 99 take in the magnetic field generated by the coil 68 to form a path for the magnetic flux, thereby preventing the magnetic field from leaking to the outside. . The shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn only by the first ferrite 98 and the second ferrite 99. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
 (フェライトケースおよびフェライト)
 以下、フェライトケースの詳細を説明する。
 図14に、第1フェライト98および第2フェライト99が収容されつつ固定された第1フェライトケース71の概略斜視図を示す。図15に、第1フェライトケース71の上方側の螺着部近傍の構造を示す。図16に、第1フェライトケース71の下方側の螺着部近傍の構造を示す。なお、第1~第4フェライトケース71~74は、いずれも同様の形状を有している。
 第1フェライトケース71は、樹脂製であって、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込んで固定する機能と、第1フェライト98および第2フェライト99を収容して保持する機能を有している。
(Ferrite case and ferrite)
The details of the ferrite case will be described below.
FIG. 14 is a schematic perspective view of the first ferrite case 71 in which the first ferrite 98 and the second ferrite 99 are accommodated and fixed. FIG. 15 shows a structure in the vicinity of the screwed portion on the upper side of the first ferrite case 71. FIG. 16 shows a structure in the vicinity of the screwed portion on the lower side of the first ferrite case 71. Note that the first to fourth ferrite cases 71 to 74 all have the same shape.
The first ferrite case 71 is made of resin, and has a function of sandwiching and fixing the first bobbin lid 63 and the second bobbin lid 64 from the direction in which the accumulator tube F extends, and the first ferrite 98 and the second ferrite. 99 has a function of accommodating and holding 99.
 第1フェライトケース71は、底面部71j、側面部71h、第1蓋螺着部71a、第1蓋螺着孔71b、第2蓋螺着部71f、第2蓋螺着孔71g、遮蔽カバー螺着部71cおよび遮蔽カバー螺着孔71dを有している。
 底面部71jは、第1フェライトケース71の底面を構成している。この底面部71jには、後述するように、第1フェライト98および第2フェライト99が接着される。底面部71jは、電磁誘導加熱ユニット6に固定された状態では、面が径方向を向く位置に設けられ、長手方向がアキューム管Fの伸びる方向に沿うように設けられる。この底面部71jは、第1ボビン蓋63および第2ボビン蓋64の径方向の外縁のうち4つの対称的に設けられた略直線形状の辺のいずれかに取り付けられる。これにより、底面部71jの背面側と、第1ボビン蓋63および第2ボビン蓋64のそれぞれの略直線形状の辺とが当接した状態で固定される。これにより、第1フェライトケース71は、周方向への移動が規制された構造となっている。
The first ferrite case 71 includes a bottom surface portion 71j, a side surface portion 71h, a first lid screwing portion 71a, a first lid screwing hole 71b, a second lid screwing portion 71f, a second lid screwing hole 71g, and a shielding cover screw. It has a wearing part 71c and a shielding cover screwing hole 71d.
The bottom surface portion 71 j constitutes the bottom surface of the first ferrite case 71. As will be described later, the first ferrite 98 and the second ferrite 99 are bonded to the bottom surface portion 71j. In a state where the bottom surface portion 71j is fixed to the electromagnetic induction heating unit 6, the bottom surface portion 71j is provided at a position where the surface faces the radial direction, and the longitudinal direction is provided along the direction in which the accumulator tube F extends. The bottom surface portion 71j is attached to any one of four symmetrically provided substantially linear sides among the radial outer edges of the first bobbin lid 63 and the second bobbin lid 64. As a result, the back surface side of the bottom surface portion 71j and the substantially linear sides of the first bobbin lid 63 and the second bobbin lid 64 are fixed in contact with each other. Thereby, the 1st ferrite case 71 has the structure where the movement to the circumferential direction was controlled.
 側面部71hは、底面部71jの長手方向と直交する方向の両端それぞれから、底面部71jから離れる方向に伸びている面を有している。
 第1蓋螺着部71aは、第1フェライトケース71と第1ボビン蓋63とを螺着させるために設けられており、2つの側面部71hに挟まれる径方向に広がる仮想空間からはずれた位置に設けられている。これにより、第1フェライト98を磁性体管F2の近傍まで配置させることができるようになっており、磁力の漏れを低減させることができている。
 第2蓋螺着部71fは、第1フェライトケース71と第2ボビン蓋64とを螺着させるために設けられており、2つの側面部71hに挟まれる径方向に広がる仮想空間から、第1蓋螺着部71aとは反対側にはずれた位置に設けられている。これにより、第1フェライト98を磁性体管F2の近傍まで配置させることができるようになっており、磁力の漏れを低減させることができている。なお、第1蓋螺着部71aと第2蓋螺着部71fとが、2つの側面部71hに挟まれており径方向に広がる仮想空間に対して、一方側と、他方側とに配置されているため、単に磁力の漏れを低減させるだけでなく、第1フェライトケース71と第1ボビン蓋63および第2ボビン蓋64との固定をより強固にしている。
The side surface portion 71h has a surface extending in a direction away from the bottom surface portion 71j from both ends in a direction orthogonal to the longitudinal direction of the bottom surface portion 71j.
The first lid screwing portion 71a is provided for screwing the first ferrite case 71 and the first bobbin lid 63, and is located away from the radially extending virtual space sandwiched between the two side surface portions 71h. Is provided. As a result, the first ferrite 98 can be disposed up to the vicinity of the magnetic tube F2, and leakage of magnetic force can be reduced.
The second lid screwing portion 71f is provided for screwing the first ferrite case 71 and the second bobbin lid 64, and from the virtual space extending in the radial direction between the two side surfaces 71h, It is provided at a position shifted to the opposite side to the lid screwing portion 71a. As a result, the first ferrite 98 can be disposed up to the vicinity of the magnetic tube F2, and leakage of magnetic force can be reduced. The first lid screwing portion 71a and the second lid screwing portion 71f are arranged on one side and the other side with respect to a virtual space sandwiched between the two side surface portions 71h and extending in the radial direction. Therefore, not only the leakage of magnetic force is reduced, but also the first ferrite case 71 and the first bobbin lid 63 and the second bobbin lid 64 are more firmly fixed.
 第2蓋螺着孔71gは、第1フェライトケース71と第2ボビン蓋64とを互いに螺着させて、固定させる。具体的には、上述の第1蓋螺着孔71bと同様に、金属製のネジ69によって、第1フェライトケース71の第2蓋螺着孔71gと、第2ボビン蓋64のネジ69用の螺着孔(図示せず)と、を合わせて螺着することで固定する。
 遮蔽カバー螺着部71cは、側面部71h同士が向き合っている内側とは反対側である外側に向けて膨出して形成されており、上方に2カ所、下方に2カ所設けられている。
 遮蔽カバー螺着孔71dは、各遮蔽カバー螺着部71cに設けられている開口であり、図11に示すように、遮蔽カバー75が取り付けられた状態で、ネジによってそれぞれ螺着される。これにより、第1フェライトケース71と遮蔽カバー75とが固定される。なお、この遮蔽カバー螺着部71cおよび遮蔽カバー螺着孔71dは、第2~第4フェライトケース72~74についても設けられているが、実際に遮蔽カバー75が固定されるのはこれらのうち対向して配置されている2つであり、本実施形態では第1フェライトケース71および第3フェライトケース73となっている。
The second lid screwing hole 71g screws and fixes the first ferrite case 71 and the second bobbin lid 64 to each other. Specifically, similarly to the first lid screwing hole 71b described above, the screw 69 made of metal is used for the second lid screwing hole 71g of the first ferrite case 71 and the screw 69 of the second bobbin lid 64. It fixes by screwing together with a screw hole (not shown).
The shielding cover screwing portion 71c is formed to bulge toward the outer side opposite to the inner side where the side surface portions 71h face each other, and is provided at two locations on the upper side and two locations on the lower side.
The shield cover screw holes 71d are openings provided in the shield cover screw portions 71c, and are screwed with screws in a state where the shield cover 75 is attached as shown in FIG. Thereby, the 1st ferrite case 71 and the shielding cover 75 are fixed. The shield cover screw portion 71c and the shield cover screw hole 71d are also provided for the second to fourth ferrite cases 72 to 74, but the shield cover 75 is actually fixed. In the present embodiment, the first ferrite case 71 and the third ferrite case 73 are provided.
 なお、各フェライトケースに収容されている第1フェライト98と第2フェライト99とは、互いに面部分同士で接触した状態となるように配置されている。
 また、このフェライト98、99は、第1フェライト98と、第2フェライト99との2種類の形状を組み合わせて磁界を導いている。U字形状に一体成形されたフェライトを用いるのではなく、このように、同一形状のフェライトを組み合わせて用いることで、コストを低く抑えることができる。なお、各フェライトケースに収容されている第1フェライト98と第2フェライト99とは、互いに面部分同士で接触した状態となるように配置されている。
 (遮蔽カバー)
 以下、遮蔽カバー75の詳細について説明する。
The first ferrite 98 and the second ferrite 99 housed in each ferrite case are disposed so as to be in contact with each other at the surface portions.
The ferrites 98 and 99 guide the magnetic field by combining two types of shapes of the first ferrite 98 and the second ferrite 99. Costs can be kept low by using ferrites of the same shape in combination as described above, instead of using ferrite integrally molded in a U shape. The first ferrite 98 and the second ferrite 99 housed in each ferrite case are disposed so as to be in contact with each other at the surface portions.
(Shielding cover)
Hereinafter, the details of the shielding cover 75 will be described.
 遮蔽カバー75は、図17の上面断面図において示すように、第1ボビン蓋63および第2ボビン蓋64に対して第1~第4フェライトケース71~74が取り付けられた際の平面視外縁形状に沿うように、略8角形状を有しており、磁性体材料を含んだ板金である。
 遮蔽カバー75は、図17の上面図に示すように、周方向の一端75aと他端75bとが、板厚方向に重なった重複部分75dを有している。この重複部分75dでは、一端75aの近傍の面と他端75b近傍の面とが、アキューム管Fの延びる方向の上から下にかけて、互いに面接触された状態で溶接されている。これにより、電磁誘導加熱ユニット6によって磁界を生じさせた場合において、遮蔽カバー75が漏れ磁束を吸入する場合であっても、遮蔽カバー75の一部同士が部分的に接触している箇所が無いために、渦電流の局所的な発生を防止することができている。これにより、電磁誘導加熱ユニット6の外側を構成している遮蔽カバー75の発熱を小さく抑え、ユーザが触れた危険に備えた温度で低く維持することができている。また、遮蔽カバー75を取り付けていない状態を示す図10と、遮蔽カバー75が取り付けられた状態を示す図9とを比較すると分かるように、遮蔽カバー75は、コイル68に対するユーザの指等のアクセスを拒むように、コイル68の周囲を覆っている。なお、ここでは、アキューム管Fの延びる方向におけるコイル68の両端は、遮蔽カバー75の両端の間に位置するように配置されているため、ユーザによるコイル68へのアクセスを効果的に防ぐことができている。
As shown in the top sectional view of FIG. 17, the shielding cover 75 has an outer edge shape in plan view when the first to fourth ferrite cases 71 to 74 are attached to the first bobbin lid 63 and the second bobbin lid 64. The sheet metal has a substantially octagonal shape and includes a magnetic material.
As shown in the top view of FIG. 17, the shielding cover 75 has an overlapping portion 75d in which one end 75a and the other end 75b in the circumferential direction overlap in the plate thickness direction. In this overlapping portion 75d, the surface in the vicinity of the one end 75a and the surface in the vicinity of the other end 75b are welded in a state of being in surface contact with each other from the top to the bottom in the direction in which the accumulator tube F extends. Thereby, when a magnetic field is generated by the electromagnetic induction heating unit 6, even if the shielding cover 75 sucks the leakage magnetic flux, there is no portion where the shielding covers 75 are partially in contact with each other. Therefore, local generation of eddy current can be prevented. Thereby, the heat generation of the shielding cover 75 constituting the outside of the electromagnetic induction heating unit 6 can be suppressed to be small, and can be kept low at a temperature in preparation for a danger touched by the user. Further, as can be seen from a comparison between FIG. 10 showing a state where the shielding cover 75 is not attached and FIG. 9 showing a state where the shielding cover 75 is attached, the shielding cover 75 provides access to the coil 68 such as a user's finger. The periphery of the coil 68 is covered so as to refuse. Here, since both ends of the coil 68 in the direction in which the accumulator tube F extends are arranged so as to be positioned between both ends of the shielding cover 75, the user can be effectively prevented from accessing the coil 68. is made of.
 また、遮蔽カバー75は、図18に示すように、長手方向上端近傍にネジ穴75x、75yがそれぞれ設けられている。これらのネジ穴は、図9に示すように、第1フェライトケース71に対して遮蔽カバー75を固定させる場合に、ネジ70a、70bを通す穴としての機能を有している。
 図19に、フェライト98、99に対して遮蔽カバー75よりも優先して磁束が導かれる様子についての断面図を示す。
 フェライト98、99は、板金によって構成されている遮蔽カバー75よりも透磁率が高く、コイル68の上端および下端において径方向に延びるように配置されており、アキューム管Fの延びる方向から見た場合にコイル68をまたぐように配置されている。このため、漏れだそうとする磁束は、遮蔽カバー75よりもフェライト98、99に導かれやすく、コイル68で生じた磁束は、遮蔽カバー75に集められる前にフェライト98、99によって磁束が集められ、ほとんどの磁束をフェライト98、99に導くことができる。さらに、遮蔽カバー75にかかる磁界漏れ出し防止の負担を軽減させることができ、電磁誘導加熱ユニット6の外部漏れ出す磁界をよりいっそう低減させることができている。
Further, as shown in FIG. 18, the shielding cover 75 is provided with screw holes 75x and 75y in the vicinity of the upper end in the longitudinal direction. As shown in FIG. 9, these screw holes function as holes through which screws 70 a and 70 b are passed when the shielding cover 75 is fixed to the first ferrite case 71.
FIG. 19 is a cross-sectional view showing how the magnetic flux is guided with priority over the shielding cover 75 with respect to the ferrites 98 and 99.
The ferrites 98 and 99 have higher magnetic permeability than the shielding cover 75 made of sheet metal, and are arranged so as to extend in the radial direction at the upper and lower ends of the coil 68, when viewed from the direction in which the accumulator tube F extends. Are arranged so as to straddle the coil 68. Therefore, the magnetic flux that is about to leak is more easily guided to the ferrites 98 and 99 than the shielding cover 75, and the magnetic flux generated by the coil 68 is collected by the ferrites 98 and 99 before being collected by the shielding cover 75. Most of the magnetic flux can be guided to the ferrites 98 and 99. Further, the burden of preventing leakage of the magnetic field applied to the shielding cover 75 can be reduced, and the magnetic field leaking from the electromagnetic induction heating unit 6 can be further reduced.
 また、第1フェライトケース71は、樹脂によって形成されているため、遮蔽カバー75が金属製のネジ70a、70bによって第1フェライトケース71に螺着されることがあっても、第1フェライト98および第2フェライト99と、遮蔽カバー75と、は直接接触しない。このように、第1フェライト98および第2フェライト99と遮蔽カバー75とが接触しないような配置構造が採用されているため、当然、第1フェライト98および第2フェライト99と遮蔽カバー75との局所的な接触部分が存在しない。このため、電磁誘導のためにコイル68に電流を流したとしても、第1フェライト98および第2フェライト99と遮蔽カバー75との接触部分が存在することに起因する磁束の集中が生じにくい。これにより、磁束の集中に起因する部分的な温度上昇の発生を抑えることができている。 Further, since the first ferrite case 71 is made of resin, even if the shielding cover 75 is screwed to the first ferrite case 71 by metal screws 70a and 70b, the first ferrite 98 and The second ferrite 99 and the shielding cover 75 are not in direct contact. As described above, since an arrangement structure is employed in which the first ferrite 98 and the second ferrite 99 do not come into contact with the shielding cover 75, naturally, the first ferrite 98, the second ferrite 99 and the shielding cover 75 are locally disposed. There is no specific contact area. For this reason, even if a current is passed through the coil 68 for electromagnetic induction, the concentration of magnetic flux due to the presence of contact portions between the first ferrite 98 and the second ferrite 99 and the shielding cover 75 hardly occurs. Thereby, generation | occurrence | production of the partial temperature rise resulting from concentration of magnetic flux can be suppressed.
 また、遮蔽カバー75の隙間部分以外の位置で遮蔽カバー75によって径方向外側から覆われている第2~第4フェライトケース72~74のフェライトは、磁性体を含んだ遮蔽カバー75と第2~第4フェライトケース72~74に収容された第1フェライト98および第2フェライト99とによって、磁束の漏れ出しを抑える二重構造を採用することができている。これにより、磁束の漏れ出しをより効率的に抑えることができている。
 なお、遮蔽カバー75は、図8に示すように、上面視において室外機2の右側面パネル2fの近くに位置している部分は、右側面パネル2fと面平行となるようにしつつ、右側面パネル2fとの間を確保して配置されている。これにより、遮蔽カバー75に導かれた磁束が、さらに右側面パネル2fにまで導かれてしまったり、右側面パネル2fと遮蔽カバー75との局所的な接触部分に渦電流が発生して局所的な発熱が生じてしまうことを防止している。
Further, the ferrites of the second to fourth ferrite cases 72 to 74 covered from the outside in the radial direction by the shielding cover 75 at positions other than the gap portion of the shielding cover 75 are the same as the shielding cover 75 containing the magnetic material and the second to fourth ferrite cases. With the first ferrite 98 and the second ferrite 99 housed in the fourth ferrite cases 72 to 74, a double structure that suppresses leakage of magnetic flux can be adopted. Thereby, the leakage of magnetic flux can be suppressed more efficiently.
As shown in FIG. 8, the shielding cover 75 has a portion located near the right side panel 2f of the outdoor unit 2 when viewed from above, while being parallel to the right side panel 2f. It arrange | positions ensuring between the panels 2f. As a result, the magnetic flux guided to the shielding cover 75 is further guided to the right side panel 2f, or an eddy current is generated at a local contact portion between the right side panel 2f and the shielding cover 75, resulting in local localization. This prevents the generation of excessive heat.
 <本実施形態の空気調和装置1の特徴>
 電磁誘導加熱する場合には、発熱させる目的の磁性体だけでなく、その周囲にまで磁界が生じてしまうことがある。
 これに対して、上記空気調和装置1の電磁誘導加熱ユニット6では、コイル68の外側に遮蔽カバー75よりも透磁率の高い磁性体材料を含んだフェライト98、99が配置されており、遮蔽カバー75よりもフェライト98、99のほうがコイル68の近くまで延びるように配置されている。このため、このアキューム管F以外の部分に生じる磁界は、遮蔽カバー75よりもフェライト98、99を優先的に通過するようになる。このため、フェライト98、99が、アキューム管F以外の部分に漏れ出そうとする磁束を効率的に捕らえることができる。これにより、電磁誘導加熱を行う場合において、アキューム管F以外の部分に生じる磁界を、効率的にフェライト98、99に通過させることができ、さらにフェライト98、99に集められなかった磁束も遮蔽カバー75によって集められる。このため、電磁誘導加熱ユニット6以外の部分に漏れ出す磁束を小さく抑えることができる。
<Characteristics of the air conditioner 1 of the present embodiment>
In the case of electromagnetic induction heating, a magnetic field may be generated not only for the purpose of generating heat but also for the surroundings.
On the other hand, in the electromagnetic induction heating unit 6 of the air conditioning apparatus 1, the ferrites 98 and 99 containing a magnetic material having a higher magnetic permeability than the shielding cover 75 are disposed outside the coil 68. The ferrites 98 and 99 are arranged so as to extend closer to the coil 68 than 75. For this reason, the magnetic field generated in the portion other than the accumulator tube F passes through the ferrites 98 and 99 preferentially over the shielding cover 75. For this reason, the magnetic flux which the ferrite 98 and 99 tends to leak to parts other than the accumulation tube F can be caught efficiently. As a result, when electromagnetic induction heating is performed, the magnetic field generated in the portion other than the accumulator tube F can be efficiently passed through the ferrites 98 and 99, and the magnetic flux not collected by the ferrites 98 and 99 is also shielded. Collected by 75. For this reason, the magnetic flux which leaks to parts other than the electromagnetic induction heating unit 6 can be suppressed small.
 <他の実施形態>
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (A)
 上記実施形態では、フェライト98、99が磁束を導く場合について例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、磁束を導くための材料としては、フェライトほどの磁性を有していない良導体材料であってもよい。この場合には、磁界を導いた場合において電気抵抗によって生じるジュール熱を小さく抑えることができる。
<Other embodiments>
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
(A)
In the above embodiment, the case where the ferrites 98 and 99 guide the magnetic flux has been described as an example.
However, the present invention is not limited to this.
For example, the material for guiding the magnetic flux may be a good conductor material that does not have magnetism as much as ferrite. In this case, Joule heat generated by electric resistance when a magnetic field is guided can be suppressed to a small value.
 (B)
 上記実施形態では、冷媒回路10のうち、アキューム管Fに対して電磁誘導加熱ユニット6が取り付けられる場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、アキューム管F以外の他の冷媒配管に設けられていてもよい。この場合には、電磁誘導加熱ユニット6を設ける冷媒配管部分に磁性体管F2等の磁性体を設ける。
 (C)
 上記実施形態では、アキューム管Fは、銅管F1と磁性体管F2との二重管として構成されている場合を挙げて説明した。
 しかし、本発明はこれに限られるものではない。
(B)
In the above embodiment, the case where the electromagnetic induction heating unit 6 is attached to the accumulator tube F in the refrigerant circuit 10 has been described.
However, the present invention is not limited to this.
For example, other refrigerant pipes other than the accumulator pipe F may be provided. In this case, a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagnetic induction heating unit 6 is provided.
(C)
In the said embodiment, the case where the accumulation pipe F was comprised as a double pipe | tube of the copper pipe F1 and the magnetic body pipe | tube F2 was mentioned and demonstrated.
However, the present invention is not limited to this.
 図20に示すように、例えば、被加熱部材F2aと、2つのストッパーF1aと、がアキューム管Fや加熱対象となる冷媒配管の内部に配置されていてもよい。ここで、被加熱部材F2aは、磁性体材料を含有しており、上記実施形態における電磁誘導加熱によって発熱を生じる部材である。ストッパーF1aは、銅管F1の内側二カ所において、冷媒の通過を常時許容するが、被加熱部材F2aの通過は許容しない。これにより、被加熱部材F2aは、冷媒が流れても移動しない。このため、アキューム管F等の目的の加熱位置を加熱させることができる。さらに、発熱する被加熱部材F2aと冷媒とが直接接触するため、熱伝達効率を向上させることができる。
 (D)
 上記他の実施形態(C)で説明した被加熱部材F2aは、ストッパーF1aを用いることなく配管に対して位置が定まるようにしてもよい。
As shown in FIG. 20, for example, the member to be heated F2a and the two stoppers F1a may be arranged inside the accumulator pipe F or the refrigerant pipe to be heated. Here, the member to be heated F2a is a member that contains a magnetic material and generates heat by electromagnetic induction heating in the above embodiment. The stopper F1a always allows passage of the refrigerant at two locations inside the copper tube F1, but does not allow passage of the heated member F2a. Thereby, the to-be-heated member F2a does not move even if the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated. Furthermore, since the to-be-heated member F2a and the refrigerant are in direct contact with each other, the heat transfer efficiency can be improved.
(D)
The heated member F2a described in the other embodiment (C) may be positioned with respect to the pipe without using the stopper F1a.
 図21に示すように、例えば、銅管F1に二カ所で曲げ部分FWを設け、当該二カ所の曲げ部分FWの間の銅管F1の内側に被加熱部材F2aを配置させてもよい。このようにしても、冷媒を通過させつつ、被加熱部材F2aの移動を抑制させることができる。
 (E)
 上記実施形態では、コイル68がアキューム管Fに対して螺旋状に巻き付けられている場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、図22に示すように、ボビン本体165に巻き付けられたコイル168が、アキューム管Fに巻き付くことなく、アキューム管Fの周囲に配置されていてもよい。ここでは、ボビン本体165は、軸方向がアキューム管Fの軸方向に対して略垂直となるように配置されている。また、ボビン本体165およびコイル168は、アキューム管Fを挟むように2つに別れて配置されている。
As illustrated in FIG. 21, for example, the copper pipe F1 may be provided with two bent portions FW, and the heated member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even if it does in this way, the movement of the to-be-heated member F2a can be suppressed, allowing a refrigerant to pass through.
(E)
In the above embodiment, the case where the coil 68 is spirally wound around the accumulator tube F has been described.
However, the present invention is not limited to this.
For example, as shown in FIG. 22, the coil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F. Here, the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F. Further, the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
 この場合には、例えば、図23に示すように、アキューム管Fを貫通させている第1ボビン蓋163および第2ボビン蓋164が、ボビン本体165に対して勘合した状態で配置されていてもよい。
 さらに、図24に示すように、第1ボビン蓋163および第2ボビン蓋164が、第1フェライトケース171および第2フェライトケース172によって挟み込まれて固定されていてもよい。図24では、2つのフェライトケースがアキューム管Fを挟み込むように配置されている場合を例にあげたが、上記実施形態と同様に、4方向に配置されていてもよい。また、上記実施形態と同様に、フェライトを収容させていてもよい。
 そして、遮蔽カバー75は、このようにして固定された電磁誘導加熱ユニット6の最外周部分を覆うように設けられていてもよい。
In this case, for example, as shown in FIG. 23, even if the first bobbin lid 163 and the second bobbin lid 164 passing through the accumulator tube F are disposed in a state of being fitted to the bobbin main body 165. Good.
Furthermore, as shown in FIG. 24, the first bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172. In FIG. 24, the case where two ferrite cases are arranged so as to sandwich the accumulator tube F is taken as an example, but may be arranged in four directions as in the above embodiment. Moreover, you may accommodate the ferrite similarly to the said embodiment.
And the shielding cover 75 may be provided so that the outermost periphery part of the electromagnetic induction heating unit 6 fixed in this way may be covered.
 <その他>
 以上、本発明の実施形態について、いくつかの例を挙げて説明したが、本発明はこれらに限られない。例えば、上記記載から当業者が実施可能な範囲で、上述の実施形態の異なる部分を適宜組み合わせて得られる組合せ実施形態も、本発明に含まれる。
<Others>
The embodiments of the present invention have been described above with some examples, but the present invention is not limited to these. For example, combined embodiments obtained by appropriately combining different portions of the above-described embodiments within the scope that can be implemented by those skilled in the art from the above description are also included in the present invention.
 本発明を利用すれば、冷媒配管を電磁誘導によって加熱する場合であっても局所的な発熱を抑えつつ周囲への磁界の漏れ出しを抑えることが可能なため、電磁誘導を用いて冷媒を加熱させる電磁誘導加熱ユニットおよび空気調和装置において特に有用である。 If the present invention is used, even if the refrigerant pipe is heated by electromagnetic induction, it is possible to suppress leakage of the magnetic field to the surroundings while suppressing local heat generation, so that the refrigerant is heated using electromagnetic induction. It is particularly useful in an electromagnetic induction heating unit and an air conditioner.
  1 空気調和装置
  6 電磁誘導加熱ユニット
 10 冷媒回路
 14 サーミスタ
 15 ヒューズ
 21  圧縮機
 22  四路切換弁
 23  室外熱交換器
 24  電動膨張弁
 25  アキュームレータ
 41  室内熱交換器
 65  ボビン本体
 68  コイル
 71~74  第1フェライトケース~第4フェライトケース
 75  遮蔽カバー
 98、99  第1フェライト、第2フェライト
  F  アキューム管、冷媒配管
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 6 Electromagnetic induction heating unit 10 Refrigerant circuit 14 Thermistor 15 Fuse 21 Compressor 22 Four-way switching valve 23 Outdoor heat exchanger 24 Electric expansion valve 25 Accumulator 41 Indoor heat exchanger 65 Bobbin main body 68 Coil 71-74 1st Ferrite case to 4th ferrite case 75 Shielding cover 98, 99 1st ferrite, 2nd ferrite F Accumulation tube, refrigerant piping
特開平8-210720号公報JP-A-8-210720

Claims (8)

  1.  冷媒配管(F)および/または前記冷媒配管(F)中を流れる冷媒と熱的接触をする部材を加熱する電磁誘導加熱ユニット(6)であって、
     前記冷媒配管(F)の近傍に配置されたコイル(68)と、
     前記冷媒配管(F)の周囲に配置され、磁性体を含んでいる外部部材(75)と、
     前記コイル(68)の前記冷媒配管(F)側である内側とは反対側の外側であってかつ前記外部部材(75、175)の内側に配置され、前記外部部材よりも透磁率が高い磁性体材料を含んでいる磁性体部(98、99)と、
    を備え、
     前記冷媒配管(F)の延びる方向において、前記外部部材(75)の両端部は、前記磁性体部(98、99)の両端部よりも内側に位置している、
    電磁誘導加熱ユニット(6)。
    An electromagnetic induction heating unit (6) for heating a refrigerant pipe (F) and / or a member in thermal contact with the refrigerant flowing in the refrigerant pipe (F),
    A coil (68) disposed in the vicinity of the refrigerant pipe (F);
    An external member (75) disposed around the refrigerant pipe (F) and containing a magnetic material;
    The coil (68) is disposed on the outer side opposite to the inner side on the refrigerant pipe (F) side and on the inner side of the outer member (75, 175), and has a magnetic permeability higher than that of the outer member. A magnetic part (98, 99) containing body material;
    With
    In the extending direction of the refrigerant pipe (F), both end portions of the external member (75) are located on the inner side than both end portions of the magnetic body portions (98, 99).
    Electromagnetic induction heating unit (6).
  2.  前記コイル(68)は、前記冷媒配管(F)の少なくとも一部の周りを取り巻いている、
    請求項1に記載の電磁誘導加熱ユニット(6)。
    The coil (68) surrounds at least a part of the refrigerant pipe (F).
    The electromagnetic induction heating unit (6) according to claim 1.
  3.  前記磁性体部(98、99)の少なくとも一部は、前記冷媒配管(F)が延びている方向における前記コイル(68)の一方側と前記コイル(68)に対して前記一方側とは反対側である他方側との少なくともいずれか一方まで延びている、
    請求項1または2に記載の電磁誘導加熱ユニット(6)。
    At least a part of the magnetic part (98, 99) is opposite to the one side of the coil (68) and the one side with respect to the coil (68) in the direction in which the refrigerant pipe (F) extends. Extending to at least one of the other side,
    The electromagnetic induction heating unit (6) according to claim 1 or 2.
  4.  前記磁性体部(98、99)の少なくとも一部は、前記冷媒配管の軸方向視において、前記冷媒配管(F)の外側であって前記コイル(68)の内側まで延びている、
    請求項1から3のいずれか1項に記載の電磁誘導加熱ユニット(6)。
    At least a part of the magnetic part (98, 99) extends to the outside of the refrigerant pipe (F) and the inside of the coil (68) in the axial view of the refrigerant pipe.
    The electromagnetic induction heating unit (6) according to any one of claims 1 to 3.
  5.  前記磁性体部(98、99)は、互いに接触して配置されている複数の磁性体部品(98,99)を有している、
    請求項1から4のいずれか1項に記載の電磁誘導加熱ユニット(6)。
    The magnetic part (98, 99) has a plurality of magnetic parts (98, 99) arranged in contact with each other.
    The electromagnetic induction heating unit (6) according to any one of claims 1 to 4.
  6.  前記磁性体部(98、99)は、良導体材料を含む、
    請求項1から5のいずれか1項に記載の電磁誘導加熱ユニット(6)。
    The magnetic part (98, 99) includes a good conductor material,
    The electromagnetic induction heating unit (6) according to any one of claims 1 to 5.
  7.  前記磁性体部(98、99)は、フェライトを含む、
    請求項1から6のいずれか1項に記載の電磁誘導加熱ユニット(6)。
    The magnetic part (98, 99) contains ferrite,
    The electromagnetic induction heating unit (6) according to any one of claims 1 to 6.
  8.  請求項1から7のいずれか1項に記載の電磁誘導加熱ユニット(6)と、
     前記冷媒配管(F)に冷媒を流す部分を含む冷凍サイクル(10)と、
    を備えた空気調和装置(1)。
    Electromagnetic induction heating unit (6) according to any one of claims 1 to 7,
    A refrigeration cycle (10) including a portion for flowing a refrigerant through the refrigerant pipe (F);
    An air conditioner (1) comprising:
PCT/JP2009/007240 2009-01-07 2009-12-25 Electromagnetic induction heating unit and air conditioning device WO2010079570A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09837460A EP2381740A1 (en) 2009-01-07 2009-12-25 Electromagnetic induction heating unit and air conditioning device
JP2010545640A JP5267572B2 (en) 2009-01-07 2009-12-25 Electromagnetic induction heating unit and air conditioner
CN2009801490965A CN102227951A (en) 2009-01-07 2009-12-25 Electromagnetic induction heating unit and air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009001931 2009-01-07
JP2009-001931 2009-01-07

Publications (1)

Publication Number Publication Date
WO2010079570A1 true WO2010079570A1 (en) 2010-07-15

Family

ID=42316348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007240 WO2010079570A1 (en) 2009-01-07 2009-12-25 Electromagnetic induction heating unit and air conditioning device

Country Status (4)

Country Link
EP (1) EP2381740A1 (en)
JP (1) JP5267572B2 (en)
CN (1) CN102227951A (en)
WO (1) WO2010079570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033125A1 (en) * 2021-09-03 2023-03-09 日本碍子株式会社 Induction heating coil unit and induction heating device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988973A1 (en) * 2012-03-27 2013-10-04 Jean Serge Yves Herskovits Device for producing heat by electromagnetic induction in e.g. electric household appliance, has armature, where shape of part composing armature allows circulation of flux, and armature parts are manufactured out of magnetisable materials
CN107053642A (en) * 2017-05-27 2017-08-18 深圳市鑫多达科技有限公司 Manufacture the hot-bending machine of curved surface film
JP6766128B2 (en) * 2017-12-22 2020-10-07 深▲せん▼市合元科技有限公司Shenzhen First Union Technology Co.,Ltd Heating device and smoking equipment
US10914503B2 (en) 2018-02-01 2021-02-09 Johnson Controls Technology Company Coil heating systems for heat pump systems
CN109974130A (en) * 2019-04-08 2019-07-05 广东美的暖通设备有限公司 Heater assembly and air-conditioner outdoor unit with it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138737A (en) * 1976-05-17 1977-11-19 Tokushu Denki Kk Fluid induction heater
JPS5944300U (en) * 1982-09-17 1984-03-23 明治製菓株式会社 boiling equipment
JPH0874563A (en) * 1994-09-07 1996-03-19 Denki Kogyo Co Ltd Exhaust emission control device
JPH08210720A (en) 1995-02-06 1996-08-20 Matsushita Electric Ind Co Ltd Air conditioner with refrigeratnt heater
JP2001174055A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP2008202922A (en) * 2007-02-23 2008-09-04 Sharp Corp Fluid temperature raising device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275780A (en) * 2007-12-15 2008-10-01 廖智 Tubular high-frequency electromagnetic induction heating type water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138737A (en) * 1976-05-17 1977-11-19 Tokushu Denki Kk Fluid induction heater
JPS5944300U (en) * 1982-09-17 1984-03-23 明治製菓株式会社 boiling equipment
JPH0874563A (en) * 1994-09-07 1996-03-19 Denki Kogyo Co Ltd Exhaust emission control device
JPH08210720A (en) 1995-02-06 1996-08-20 Matsushita Electric Ind Co Ltd Air conditioner with refrigeratnt heater
JP2001174055A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP2008202922A (en) * 2007-02-23 2008-09-04 Sharp Corp Fluid temperature raising device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033125A1 (en) * 2021-09-03 2023-03-09 日本碍子株式会社 Induction heating coil unit and induction heating device

Also Published As

Publication number Publication date
JP5267572B2 (en) 2013-08-21
CN102227951A (en) 2011-10-26
JPWO2010079570A1 (en) 2012-06-21
EP2381740A1 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5131352B2 (en) Electromagnetic induction heating unit and air conditioner
JP5267572B2 (en) Electromagnetic induction heating unit and air conditioner
JP5168357B2 (en) Electromagnetic induction heating unit and air conditioner
JP4826643B2 (en) Air conditioner
US9328944B2 (en) Air conditioning apparatus
RU2479800C1 (en) Air conditioner
JP5304741B2 (en) Air conditioner
JP5353250B2 (en) Electromagnetic induction heating unit and air conditioner
JP2011002190A (en) Refrigerating device
JP2010071537A (en) Electromagnetic induction heating unit and air conditioner
JP2010071532A (en) Electromagnetic induction heating unit and air conditioner
JP2010153202A (en) Electromagnetic induction heating unit and air conditioner
JP2010071535A (en) Electromagnetic induction heating unit and air conditioner
JP2010073447A (en) Electromagnetic induction heating unit, and air conditioner
JP2010071533A (en) Electromagnetic induction heating unit and air conditioner
WO2010146803A1 (en) Refrigeration device
JP5347400B2 (en) Electromagnetic induction heating unit and air conditioner
WO2010146809A1 (en) Refrigeration device
JP2001091065A (en) Refrigerant heater
WO2010106803A1 (en) Air conditioner
JP2010243149A (en) Air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149096.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009837460

Country of ref document: EP