JPH08204093A - Bending die of lead frame - Google Patents

Bending die of lead frame

Info

Publication number
JPH08204093A
JPH08204093A JP1352695A JP1352695A JPH08204093A JP H08204093 A JPH08204093 A JP H08204093A JP 1352695 A JP1352695 A JP 1352695A JP 1352695 A JP1352695 A JP 1352695A JP H08204093 A JPH08204093 A JP H08204093A
Authority
JP
Japan
Prior art keywords
less
cemented carbide
lead frame
mold
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1352695A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shimada
浩之 島田
Yoshito Sakamoto
芳人 坂元
Haruyo Fukui
治世 福井
Takeshi Yoshioka
剛 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1352695A priority Critical patent/JPH08204093A/en
Publication of JPH08204093A publication Critical patent/JPH08204093A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE: To enhance the abrasion resistance and work a shape of a working part with high precision by a method wherein an average thickness of a metal Co phase being a coupling phase is made less than a specific value. CONSTITUTION: WC of 1μm or less is manufactured by being directly carbonized from a specific mixture of particles W and carbon, and this is mixed with a specific amount of Co and molded at 0.5 to 2T/cm<2> and sintered for one hour at about 1300 to 1450 deg.C in a vacuum. Further, this is processed with a hot hydrostatic pressure press (HIP) at 1200 to 1350 deg.C at <1000 atmosphere to manufacture a superhard alloy material having particles and high viscosity. The superhard alloy is mainly composed of WC having an average crystalline particle size 1μm or less and TiC, and if an average thickness of a metal Co phase being a coupling phase is 0.15μm or less, a plating adhering amount becomes half or less, preferably. Further, if a surface roughness enhances, the plating adhering amount reduces naturally, and a 10-point average maximum height roughness is 1μm or less based on JIS B0601.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の組み立て工
程において、半導体チップを装着したリードフレームの
整形、即ちリードの曲げ加工などに用いるリードフレー
ムの曲げ用超硬合金製金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead metal-bending metal mold used for shaping a lead frame having a semiconductor chip mounted therein, that is, for bending a lead in an assembly process of a semiconductor device.

【0002】[0002]

【従来の技術】半導体装置の組み立て工程においては、
半導体チップをリードフレームやパッケージに固定し、
チップの電極部とリードフレームのリードをワイヤで結
線し、樹脂等で封止した後、リードの曲げ加工等を行っ
ている。この従来の整形用金型の材料は焼入れ鋼や超硬
合金であり、研磨による表面仕上げ加工を施して加工部
を形成していた。
2. Description of the Related Art In the process of assembling a semiconductor device,
Fix the semiconductor chip to the lead frame or package,
The electrodes of the chip and the leads of the lead frame are connected by wires and sealed with resin or the like, and then the leads are bent. The material of this conventional shaping die is hardened steel or cemented carbide, and the processed portion is formed by performing surface finishing by polishing.

【0003】しかしながら、これらの材料を用いた金型
では、チップをプリント配線基板上に固定する際に用い
る半田メッキが金型の加工部表面に付着することによる
リードの曲げ加工精度不良が大きな問題となっている。
金型表面に半田が付着したままリードの整形加工を続け
ると足曲がりなどのリード変形が生じ、後工程のプリン
ト配線基板上に半田付けする際に、半田不良、接触不
良、左右ピンとのショートが起こり、完成したプリント
配線板が正常に作動しないなどの問題が生じる。そのた
め、付着したメッキを除去するために金型を定期的に装
置から取り外しラッピングして除去しなければならなか
った。
However, in the molds using these materials, there is a big problem that the lead bending accuracy is poor due to the solder plating used for fixing the chip on the printed wiring board to the surface of the processed part of the mold. Has become.
If you continue to shape the lead while solder is still attached to the mold surface, lead deformation such as foot bending will occur, and when soldering on the printed wiring board in the subsequent process, poor soldering, poor contact, short circuit with left and right pins will occur. The problem occurs that the completed printed wiring board does not operate normally. Therefore, in order to remove the adhered plating, the mold had to be regularly removed from the apparatus and lapped to be removed.

【0004】そこで、特開平4−280500号にはリ
ードフレームのアウターリードを曲げ成形時に製品の移
動機構と連動させたブラシクリーニング又はエアブロー
クリーニング機構を取り付けて、金型に付着する半田を
強制的に除く方法が提示されている。しかし、金型に強
固に付着した半田メッキの除去をすると、従来と同様に
金型形状くずれや金型寿命の点で問題が生じる上に、従
来設備への取り付けにおいてスペースの面で問題が生じ
る。
Therefore, in Japanese Unexamined Patent Publication No. 4-280500, a brush cleaning or air blow cleaning mechanism which is interlocked with a moving mechanism of the product at the time of bending the outer lead of the lead frame is attached to force the solder attached to the mold. The method to exclude is presented. However, if the solder plating strongly adhered to the mold is removed, problems like mold deformation and mold life will occur as in the past, and space problems will occur when mounting to conventional equipment. .

【0005】特開平2−28964号ではこのような問
題を解消するため、曲げパンチ表面又は曲げダイ表面の
半導体リードが接触する部分に溝を形成し半田かすの付
着を抑える方法を提唱している。しかし、半田かすが付
着する部位の表面すべてに溝を精度よく加工するのは金
型コスト高をまねくうえ、溝内への半田かすの堆積後の
処理が困難でメンテナンスの点で問題が生じる。
In order to solve such a problem, Japanese Unexamined Patent Publication (Kokai) No. 2-28964 proposes a method in which a groove is formed in a portion of the bending punch surface or the bending die surface where the semiconductor leads come into contact with each other to prevent the adhesion of solder residue. . However, it is expensive to mold the groove on the entire surface of the portion where the solder residue is adhered, and the processing after the deposition of the solder residue in the groove is difficult, which causes a problem in maintenance.

【0006】特開平2−134856号には金型への半
田の付着を防止するために切断成形金型のリードフレー
ム接触部表面に耐摩耗性、非粘着性、滑り特性に優れた
5〜10μmのアモルファスクロムメッキ皮膜を施す方
法が開示されている。また、特開昭63−203222
号、同203223号には金属加工用の鋼、超硬製金型
表面にプラズマCVD法等によってSi34、Al
23、ダイヤモンド、SiC等のセラミックスを被覆す
る手段が開示されている。しかし、これらの膜では基材
との密着力や、成膜直後の面粗度が悪いという問題が生
じる。密着力の高いセラミックス膜を成膜するためには
高温での成膜が必要となったり、成膜するセラミックス
と基材との熱膨張を考慮する必要があり基材に制限が生
じる問題があった。
Japanese Patent Laid-Open No. 2-134856 discloses that the surface of a lead frame contact portion of a cutting mold has excellent wear resistance, non-adhesiveness, and sliding characteristics of 5 to 10 μm in order to prevent solder from adhering to the mold. The method of applying the amorphous chrome plating film is disclosed. Also, JP-A-63-203222
No. 203223, steel for metal working, Si 3 N 4 , Al by plasma CVD method etc.
Means for coating ceramics such as 2 O 3 , diamond and SiC are disclosed. However, these films have problems such as poor adhesion to the substrate and poor surface roughness immediately after film formation. In order to form a ceramic film with high adhesion, it is necessary to form a film at a high temperature, and it is necessary to consider the thermal expansion between the ceramic to be formed and the base material, which poses a problem of limiting the base material. It was

【0007】[0007]

【発明が解決しようとする課題】本発明は、耐摩耗性の
向上と加工部形状の高精密加工を達成でき、しかもリー
ドフレーム材料やハンダとの化学的反応性を抑制するこ
とができ、金型表面への付着物や凝着物等の除去工程を
少なくし、従来の金型よりも寿命を著しく改善向上させ
ることができるとともに長期間の使用によって半田が金
型に付着した場合でも簡単な作業でそれを除去しうるリ
ードフレーム曲げ加工用金型を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention can improve wear resistance and achieve high precision machining of the shape of a machined portion, and can suppress chemical reactivity with a lead frame material or solder. The number of steps to remove deposits and adhesions on the mold surface can be reduced, and the life can be significantly improved and improved compared to conventional molds, and even if solder adheres to the mold due to long-term use, simple work is possible. It is an object of the present invention to provide a die for bending a lead frame capable of removing it.

【0008】[0008]

【課題を解決するための手段】上述した問題点を解決す
るための手段としては、本発明が提供するリードフレー
ム曲げ加工用金型は、少なくとも金型の加工部が超硬合
金材料からなることを特徴とするものであり、従って、
金型全体が超硬合金材からなっていなくても良い。ただ
し、超硬合金材料が主として平均結晶粒径が1μm以下
であるWCをはじめとする硬質炭化物より構成され、結
合相である金属Co相の平均厚みが0.15μm以下で
あることを特徴とする。
As a means for solving the above-mentioned problems, in the lead frame bending die provided by the present invention, at least the die processed portion is made of a cemented carbide material. And is therefore characterized by
The entire mold does not have to be made of a cemented carbide material. However, the cemented carbide material is mainly composed of a hard carbide such as WC having an average crystal grain size of 1 μm or less, and an average thickness of a metallic Co phase as a binder phase is 0.15 μm or less. .

【0009】超硬合金は、耐摩耗性、高ヤング率かつ高
硬度特性をもつために高精密加工が可能となる。そのた
め、金型の曲げ加工先端形状部の形状保持の点で従来の
鋼系材料に比べ有利で、これがリードフレームの加工特
性に大きく影響する。さらには、熱膨張係数が鋼系材料
に比較し極めて小さいことから、リードフレームの連続
加工中に発生する熱による金型の変形も小さく、金型加
工精度の維持が期待できる。
Cemented carbide has wear resistance, high Young's modulus, and high hardness characteristics, so that high precision machining is possible. Therefore, it is more advantageous than the conventional steel-based material in terms of maintaining the shape of the bent tip end portion of the die, and this greatly affects the processing characteristics of the lead frame. Furthermore, since the coefficient of thermal expansion is extremely smaller than that of steel-based materials, the deformation of the mold due to heat generated during continuous processing of the lead frame is small, and it is expected that the accuracy of mold processing can be maintained.

【0010】また、金型の超硬合金化によって半田やリ
ードフレーム屑との反応性が抑制されリードフレームの
曲げ加工時に半田や、加工屑の付着や凝着がし難くな
る。そのうえ、超硬合金は耐摩耗性が優れるため付着物
を除去する際に形状くずれが少ない。この超硬合金が主
として平均結晶粒径が1μm以下であるWCあるいはW
CとTiC等の周期律表IVa,Va,VIa族の炭化
物、窒化物などの硬質炭化物より構成され、結合相であ
る金属Co相の平均厚みが0.15μm以下であると、
超硬合金表面にWCの結晶粒が細かく分散するためCo
相が薄くなる。これより、Co相と半田や付着物との摩
擦係数が小さくなり、Coと半田や付着物との摩擦によ
る原子の拡散を抑えることができ、半田や付着物との反
応性を抑制するため、リードフレーム材料や半田が付着
し難く、付着物の除去工程が不要となり長期間の使用が
可能となる。
Further, the cemented carbide of the mold suppresses the reactivity with solder and lead frame scraps, which makes it difficult for the solder and the scraps to adhere or adhere during bending of the lead frame. In addition, the cemented carbide has excellent wear resistance, and therefore, the shape of the cemented carbide is hardly deformed when the deposit is removed. This cemented carbide is mainly composed of WC or W having an average crystal grain size of 1 μm or less.
If the average thickness of the metallic Co phase, which is a binder phase, is 0.15 μm or less, it is composed of hard carbides such as carbides and nitrides of Group IVa, Va, and VIa of the periodic table such as C and TiC.
Because the WC crystal grains are finely dispersed on the surface of the cemented carbide, Co
The phase becomes thin. As a result, the coefficient of friction between the Co phase and the solder or the deposit becomes small, the diffusion of atoms due to the friction between the Co and the solder or the deposit can be suppressed, and the reactivity with the solder or the deposit is suppressed, The lead frame material and the solder are less likely to adhere, and the step of removing the adhered matter is not required, which enables long-term use.

【0011】金型の曲げ加工部表面がJIS B060
1に準拠する10点平均最大高さ粗さ(Rz)で1μm
以下であると半田などの付着はさらに抑制できる。これ
は、高ヤング率かつ高硬度特性をもつ超硬合金のリード
や半田メッキへの攻撃性を抑制することにより、超硬合
金素材の持つ付着し難さが顕著に発現するためと考えら
れる。リードや半田メッキの表面状態にもよるが、超硬
合金金型表面の面粗さRzを0.5μm以下とすれば、
整形加工時のリードと金型の摺動によるメッキの付着が
一層抑制されて好ましい。
The surface of the mold bending portion is JIS B060
10 point average maximum height roughness (Rz) according to 1 is 1 μm
If it is below, the adhesion of solder or the like can be further suppressed. It is considered that this is because the cemented carbide material having a high Young's modulus and a high hardness characteristic remarkably develops the difficulty of adhesion of the cemented carbide material by suppressing the aggressiveness to the leads and the solder plating. Depending on the surface condition of leads and solder plating, if the surface roughness Rz of the cemented carbide die surface is 0.5 μm or less,
Adhesion of plating due to sliding of the lead and the mold during shaping is further suppressed, which is preferable.

【0012】さらに好ましくは、超硬合金材料の曲げ強
度がJIS R1601に準拠する3点曲げ強度で30
0Kg/mm2以上であれば、更に本発明を顕著にでき
る。これは加工中に金型には衝撃等の高い負荷が作用す
るため、金型材料としては高強度が要求されるため、曲
げ強度が300Kg/mm2以上であることで、金型に
加わる負荷に耐え、曲げ加工時の破損、欠損を防ぐのに
有効である。
More preferably, the cemented carbide material has a three-point bending strength of 30 according to JIS R1601.
If it is 0 Kg / mm 2 or more, the present invention can be more remarkable. Since a high load such as impact acts on the mold during processing, high strength is required as a mold material. Therefore, the bending strength is 300 Kg / mm 2 or more, so the load applied to the mold It is effective in resisting damage and damage during bending.

【0013】曲げ加工時のリードや半田などの付着を抑
えるために超硬合金材料からなる加工部の表面に膜厚
0.1〜5μmの硬質炭素膜を成膜すると付着抑制効果
が一層高められる。ここで硬質炭素膜とはダイヤモンド
膜、ダイヤモンドライクカーボン膜(DLC)、アモル
ファスカーボン膜(a−C、a−C:H、i−C等)等
をさす。硬質炭素膜は整形加工時の滑り性に優れリード
素材や半田などの金属と付着し難いうえに、成膜面の平
滑度が非常に高く、摩耗し難いため、平滑度のくずれが
非常に少なく、付着抑制効果が一層高められると考えら
れる。
When a hard carbon film having a film thickness of 0.1 to 5 μm is formed on the surface of the processed portion made of a cemented carbide material in order to suppress the adhesion of leads and solder during bending, the adhesion suppressing effect is further enhanced. . Here, the hard carbon film refers to a diamond film, a diamond-like carbon film (DLC), an amorphous carbon film (a-C, a-C: H, i-C, etc.). The hard carbon film has excellent slipperiness during shaping and is unlikely to adhere to lead materials or metals such as solder, and the film surface has very high smoothness and is hard to wear, so there is very little loss of smoothness. It is considered that the effect of suppressing adhesion is further enhanced.

【0014】成膜する厚さは、0.1μm以下では整形
加工時の耐久性に問題があり、5μm以上では成膜時の
寸法精度が困難となるうえに成膜に長時間を要するため
工業的に不向である。成膜によってリードや半田との付
着を抑制するためには、成膜後の表面が10点平均最大
高さ粗さで1μm以下、さらに好ましくは0.5μm以
下にすることが望ましい。成膜後に前述の表面粗さにす
るためには硬質炭素膜の成膜方法によって達成しても良
いが、基材超硬合金の表面粗さを10点平均最大高さ粗
さで1μm以下、さらに好ましくは0.5μm以下にし
た表面に成膜することが望ましい。
When the film thickness is 0.1 μm or less, there is a problem in durability during shaping, and when the film thickness is 5 μm or more, the dimensional accuracy during film formation becomes difficult and the film formation requires a long time. Unfit In order to suppress adhesion to leads and solder by film formation, it is desirable that the surface after film formation has a 10-point average maximum height roughness of 1 μm or less, and more preferably 0.5 μm or less. In order to obtain the above-mentioned surface roughness after the film formation, it may be achieved by a method for forming a hard carbon film, but the surface roughness of the base cemented carbide is 10 μm in average maximum height roughness of 1 μm or less, More preferably, it is desirable to form a film on the surface of 0.5 μm or less.

【0015】これは、基材の表面粗さを規定することで
成膜時の密着力が改善されるため好ましく、曲げ加工時
の膜の剥離問題が一層改善される。硬質炭素膜を成膜す
る際の基材としては前述の主として平均結晶粒径が1μ
m以下であるWCをはじめとする硬質炭化物より構成さ
れ、結合相である例えばCo相の平均厚みが0.15μ
m以下であればどの超硬合金材料を用いても良い。
This is preferable because the surface roughness of the base material is specified to improve the adhesion force during film formation, and the problem of peeling of the film during bending is further improved. As a base material for forming a hard carbon film, the above-mentioned average crystal grain size is mainly 1 μm.
The average thickness of the binder phase, for example, Co phase, is 0.15 μm.
Any cemented carbide material may be used as long as it is m or less.

【0016】[0016]

【実施例】次に本発明の効果について、実施例により具
体的に説明する。なお、以下の実施例において超硬合金
材料の組成の測定は、エネルギー分散型X線分光(ED
X)分析により、また、WCをはじめとする硬質炭化物
の平均粒径、Co相の平均厚みについては走査電子顕微
鏡(SEM)観察し、その際に得られる二次電子像のコ
ントラストから超硬合金成分を判別して、その平均粒
径、およびCo相の平均厚みを測定し、その平均値をと
っている。
EXAMPLES Next, the effects of the present invention will be specifically described by way of examples. In the following examples, the composition of the cemented carbide material was measured by energy dispersive X-ray spectroscopy (ED
X) By analysis, the average grain size of hard carbides including WC and the average thickness of Co phase are observed by a scanning electron microscope (SEM), and from the contrast of the secondary electron image obtained at that time, the cemented carbide is obtained. The components are discriminated, the average particle size and the average thickness of the Co phase are measured, and the average value is taken.

【0017】(実施例) 本発明による超硬合金基材
について、半田メッキに対する付着性を評価した。前記
超硬合金材の製造方法としては、微粒Wと炭素の所定混
合物から直接炭化炉にて1μm以下のWCを作製し、こ
れにCoを所定量混合し、0.5〜2T/cm2で成型
し、真空中で1300〜1450℃程度で1時間焼結す
る。更に、1200〜1350℃〜1000気圧で熱間
静水圧プレス(HIP)処理することによって微粒、高
靱性の超硬合金材料を作製した。なお、評価方法として
は、図1に示すボールオンディスク摺動試験を実施した
後のボール摩耗量を用いた。
(Example) The cemented carbide base material according to the present invention was evaluated for adhesion to solder plating. As a method for producing the cemented carbide material, a WC having a size of 1 μm or less is directly produced from a predetermined mixture of fine particles W and carbon in a carbonization furnace, and a predetermined amount of Co is mixed therein, and 0.5 to 2 T / cm 2 It is molded and sintered in vacuum at about 1300 to 1450 ° C. for 1 hour. Further, a hot isostatic pressing (HIP) process was performed at 1200 to 1350 ° C. to 1000 atm to produce a cemented carbide material having fine particles and high toughness. As the evaluation method, the amount of ball abrasion after the ball-on-disk sliding test shown in FIG. 1 was used.

【0018】ボールオンディスク摺動試験とは、図1に
示すように回転速度wで回転するディスク(平板)に、
荷重Pでボールを押しあて、その際の摩耗現象を調べる
ものである。今回、半田メッキに対する付着性を評価す
る目的から、ボールには¢6mmのSUJ−2ボールの
表面に20μmメッキ(Pb:Sn=9:1)したもの
を用い、ディスクには試料1〜20及び比較例1、2を
用いた。具体的摺動条件としては、室温・大気雰囲気
で、荷重1N、摺動速度6m/min、摺動距離20
m、摺動円¢4mmとした。
The ball-on-disk sliding test is performed on a disk (flat plate) which rotates at a rotation speed w as shown in FIG.
The ball is pressed against the load P and the wear phenomenon at that time is examined. For the purpose of evaluating the adhesion to solder plating, a ball having a surface of SUJ-2 ball of 6 mm and 20 μm plating (Pb: Sn = 9: 1) was used for the ball, and samples 1 to 20 and a disk were used. Comparative Examples 1 and 2 were used. Specific sliding conditions are room temperature and atmospheric atmosphere, load 1N, sliding speed 6 m / min, sliding distance 20.
m and sliding circle of 4 mm.

【0019】表1からわかるように、超硬合金が主とし
て平均結晶粒径が1μm以下であるWCとTiCとより
構成され、結合相である金属Co相の平均厚みが0.1
5μm以下であると、比較例及び上記範囲外のものに比
べ、メッキ付着量が半分以下となり好ましい。さらに、
当然のことながら表面粗さを向上させるとメッキ付着量
は減少し、JIS B0601に準拠する10点平均最
大高さ粗さ(Rz)で1μm以下であることが好ましい
ことが表1より理解できる。
As can be seen from Table 1, the cemented carbide is mainly composed of WC and TiC having an average crystal grain size of 1 μm or less, and the average thickness of the metallic Co phase as the binder phase is 0.1.
When the thickness is 5 μm or less, the amount of deposited plating is half or less as compared with Comparative Examples and those outside the above range, which is preferable. further,
It can be understood from Table 1 that, as a matter of course, when the surface roughness is improved, the plating adhesion amount is reduced, and the 10-point average maximum height roughness (Rz) according to JIS B0601 is preferably 1 μm or less.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例) この実施例では、上記実施
例同様の方法で基材を用意し、表2に示す基材表面に
硬質炭素膜を設けた試料21〜33を作成した。ここ
で、試料34は比較のために硬質炭素膜を設けていない
ものである。硬質炭素膜の形成方法としては、高周波あ
るいは直流電力によるグロー放電プラズマを用いたプラ
ズマCVD(化学的気相析出)法、マイクロ波プラズマ
CVD法、炭化水素ガスのイオンビームを用いたイオン
ビーム蒸着法、固体炭素の昇華・析出を利用したイオン
プレーティング等のPVD(物理的気相析出)法等がす
でに知られている。いずれの方法も本発明によるリード
フレーム曲げ金型への硬質炭素膜の形成に利用できる。
本実施例においては高周波プラズマCVD法を用いた。
Example In this example, a base material was prepared in the same manner as in the above-mentioned example, and samples 21 to 33 in which a hard carbon film was provided on the surface of the base material shown in Table 2 were prepared. Here, sample 34 does not have a hard carbon film for comparison. As a method for forming a hard carbon film, a plasma CVD (chemical vapor deposition) method using glow discharge plasma with high frequency or direct current power, a microwave plasma CVD method, an ion beam vapor deposition method using an ion beam of hydrocarbon gas are used. PVD (physical vapor deposition) methods such as ion plating utilizing sublimation and precipitation of solid carbon are already known. Either method can be used to form the hard carbon film on the lead frame bending die according to the present invention.
In this embodiment, the high frequency plasma CVD method is used.

【0022】さて、本発明による硬質炭素膜の作成方法
は以下の通りである。まず、基材である実施例に示し
た超硬合金材の被覆する面を所定の面粗さまで研磨加工
・ラッピング仕上げする。この時の面粗さは、10点平
均最大高さ粗さ(Rz)で1μm以下であることが好ま
しい。この超硬合金基材を有機溶剤や洗剤、水等を用い
て洗浄し、表面に無機あるいは有機のいかなる汚れも残
留しないようにする。洗浄された超硬合金基材を図2に
示される硬質炭素膜形成装置の中の電極12に取り付け
る。真空容器11の中を真空排気装置3によって5×1
ー6Torrまで排気し、その後、ガス供給系14から
真空容器11内にアルゴンガス(Ar)を0.2Tor
rの真空度になるまで導入する。
Now, the method for producing the hard carbon film according to the present invention is as follows. First, the surface to be coated with the cemented carbide material shown in the embodiment, which is the base material, is polished and lapped to a predetermined surface roughness. The surface roughness at this time is preferably 1 μm or less in terms of 10-point average maximum height roughness (Rz). This cemented carbide base material is washed with an organic solvent, detergent, water or the like to prevent any inorganic or organic stains from remaining on the surface. The cleaned cemented carbide substrate is attached to the electrode 12 in the hard carbon film forming apparatus shown in FIG. The inside of the vacuum container 11 is 5 × 1 by the vacuum exhaust device 3.
Evacuated to 0 over 6 Torr, then, 0.2Tor argon gas (Ar) into the vacuum container 11 from the gas supply system 14
It is introduced until the degree of vacuum reaches r.

【0023】次に、電極12に接続された高周波(1
3.56MHz)電源を用い、電極12に500W投入
して放電を発生させ、超硬合金基材16の表面をクリー
ニングする。イオンクリーニングを10分間行った後高
周波電源をいったん停止させ、ガス供給系14から真空
容器11内にメタンガス(CH4)を導入する。メタン
ガス導入に際しては、アルゴンガス停止後真空容器11
内の圧力が10ー6Torr以下になってから導入し、
0.2Torrの真空度になるまで導入する。その後電
極12に高周波電源を用いて400W投入し放電させ、
硬質炭素膜の形成を実施した。
Next, the high frequency (1
(3.56 MHz) Using a power source, 500 W is applied to the electrode 12 to generate discharge, and the surface of the cemented carbide base material 16 is cleaned. After performing ion cleaning for 10 minutes, the high frequency power supply is once stopped, and methane gas (CH 4 ) is introduced from the gas supply system 14 into the vacuum container 11. When introducing methane gas, vacuum container 11 after stopping argon gas
Pressure of the inner is introduced from becoming below 10 @ 6 Torr,
It is introduced until a vacuum degree of 0.2 Torr is reached. After that, 400 W is applied to the electrode 12 by using a high frequency power source to discharge,
A hard carbon film was formed.

【0024】この様にして、高周波放電によるプラズマ
CVD法により、全体膜厚0.08〜6μm(断面のS
EM観察により確認した)の硬質炭素膜を得た。また比
較のために、PVD法による窒化チタン及び窒化クロム
膜をそれぞれ形成した試験片を用意し、実施例に示し
たのと同様のボールオンディスク摺動試験による評価を
実施した。この評価結果を表2に示す。
In this way, the overall film thickness of 0.08 to 6 μm (S of the cross section is measured by the plasma CVD method using high frequency discharge.
A hard carbon film (confirmed by EM observation) was obtained. For comparison, test pieces having a titanium nitride film and a chromium nitride film formed by the PVD method were prepared and evaluated by a ball-on-disk sliding test similar to that shown in the examples. The evaluation results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2からわかるように、硬質炭素膜を設け
ることで、メッキ付着量は未コート超硬合金基材比較例
に比べ著しく改善される。ただし、膜厚が0.1μm以
下では効果があらわれない。さらに好ましくは、硬質炭
素膜形成前の基材表面粗さがRzで1μm以上のとき膜
剥離が発生するため、好ましくはRzで0.5μmにす
ることがメッキ付着量から判断してよい。さらに、超硬
合金基材の表面粗さRzを0.2μm以下とすれば、硬
質炭素膜の密着力も向上し好ましい。ここでの密着力評
価は、アコーステック(AF)測定での結果である。ま
た、WC相の平均間隔が0.15μm以下であると、超
硬合金表面にWCの結晶粒が細かく分散するため、Co
相が薄くなる。このことが、硬質炭素膜の向上に寄与す
ることを本発明者らはつきとめ、従来から問題となって
いた硬質炭素膜と超硬合金基材との密着力不足を解決す
るに至った
As can be seen from Table 2, by providing the hard carbon film, the coating amount is significantly improved as compared with the comparative example of the uncoated cemented carbide base material. However, if the film thickness is 0.1 μm or less, no effect is exhibited. More preferably, when the surface roughness of the substrate before forming the hard carbon film is 1 μm or more in Rz, film peeling occurs. Therefore, it may be judged from the plating adhesion amount that Rz is preferably 0.5 μm. Further, if the surface roughness Rz of the cemented carbide base material is 0.2 μm or less, the adhesion of the hard carbon film is improved, which is preferable. The adhesion strength evaluation here is the result of acoustic (AF) measurement. Further, if the average spacing of the WC phase is 0.15 μm or less, the WC crystal grains are finely dispersed on the surface of the cemented carbide, so Co
The phase becomes thin. The present inventors have found that this contributes to the improvement of the hard carbon film, and have solved the insufficient adhesion between the hard carbon film and the cemented carbide base material, which has been a problem in the past.

【0027】(実施例) 表1中試料20,7,12
の材料を用いて、それぞれ表3中の試料35,36,3
7を、表1中の12の材料と硬質炭素膜を用いて、表3
中の試料38で示すリードフレームの曲げ金型を作成
し、曲げ加工を実施した。本発明の試料36,37は、
比較例5(従来材)の1.5倍の寿命を示したが、試料
35は、比較例5と同程度の寿命で加工部先端が欠損し
た。また、硬質炭素膜を設けた金型試料38において
は、比較例5の3倍加工を行った時点においてもメッキ
の付着はなかった。以上のことから、曲げ強度がJIS
R1601に準拠する3点曲げ強度で300Kg/m
2以上あると、加工時の欠損を防ぐことができ、さら
には、硬質炭素膜を設けることで、リードフレーム曲げ
金型の延命化を図ることができる。
(Example) Samples 20, 7, 12 in Table 1
Samples 35, 36 and 3 in Table 3 using the materials
7 in Table 3 using 12 materials in Table 1 and a hard carbon film.
A bending die for a lead frame shown by sample 38 in the inside was prepared and bending was performed. The samples 36 and 37 of the present invention are
The life of the sample 35 was 1.5 times that of the comparative example 5 (conventional material), but the tip of the processed portion was chipped off with the same life as the comparative example 5. Further, in the mold sample 38 provided with the hard carbon film, no plating adhered even when the processing was performed three times as much as that of Comparative Example 5. From the above, the bending strength is JIS
Three-point bending strength according to R1601, 300 Kg / m
When it is m 2 or more, damage during processing can be prevented, and further, by providing the hard carbon film, the life of the lead frame bending die can be extended.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】以上述べてきたように、本発明の金型を
用いることにより、本発明は半導体リードフレームの組
立・加工工程における、リードの曲げ加工を行う金型
の、リード材料等の付着、凝着を抑制、あるいは耐摩耗
性の向上による寿命延長や、上記の付着・凝着物を除去
するために発生する除去工程のサイクル・リードタイム
を延長することによる、生産性の向上が可能となる。
As described above, by using the mold of the present invention, the present invention is to attach the lead material and the like to the mold for bending the leads in the process of assembling and processing the semiconductor lead frame. It is possible to improve productivity by suppressing adhesion or extending wear life by improving wear resistance, and by extending the cycle lead time of the removal process that occurs to remove the above-mentioned adhered and adhered substances. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】ボールオンディスク摺動試験装置を示す。FIG. 1 shows a ball-on-disk sliding test device.

【図2】硬質炭素膜の形成装置を示す。FIG. 2 shows an apparatus for forming a hard carbon film.

【符号の説明】[Explanation of symbols]

11:真空容器 12:電極 13:真空排気装置 14:ガス供給系 15:高周波電源 16:超硬合金基材 11: Vacuum container 12: Electrode 13: Vacuum exhaust device 14: Gas supply system 15: High frequency power supply 16: Cemented carbide base material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 剛 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Go Yoshioka 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体チップを装着したリードフレーム
を加工するための金型において、少なくともその加工部
が超硬合金材料からなり、その超硬合金材料が主として
平均結晶粒径が1μm以下であるWCより構成され、F
e,Co,Niより選ばれる1種以上より構成される結
合相の平均厚みが0.15μm以下であることを特徴と
するリードフレームの曲げ加工用超硬合金製金型。
1. A mold for processing a lead frame having a semiconductor chip mounted, wherein at least the processed portion is made of a cemented carbide material, and the cemented carbide material has an average crystal grain size of 1 μm or less. Composed of F
A cemented carbide die for lead frame bending, wherein the average thickness of the binder phase composed of one or more selected from e, Co, and Ni is 0.15 μm or less.
【請求項2】 超硬合金材料からなる加工部の表面がJ
IS B0601に準拠する10点平均最大高さ粗さで
1μm以下であることを特徴とする請求項1記載のリー
ドフレームの曲げ加工用超硬合金製金型。
2. The surface of the processed portion made of cemented carbide material is J
The 10-point average maximum height roughness conforming to IS B0601 is 1 μm or less, and the lead frame bending cemented carbide mold according to claim 1.
【請求項3】 超硬合金材料の曲げ強度が、JIS R
1601に準拠する3点曲げ強度で300Kg/mm2
以上であることを特徴とする請求項1ないし請求項2記
載のリードフレームの曲げ加工用超硬合金製金型。
3. The bending strength of the cemented carbide material is JIS R
Three-point bending strength according to 1601 is 300 Kg / mm 2
The above is the cemented carbide mold for bending a lead frame according to claim 1 or 2.
【請求項4】 超硬合金材料からなる加工部の表面に膜
厚0.1〜5μmの硬質炭素膜を設けたことを特徴とす
る請求項1〜請求項3記載のリードフレームの曲げ加工
用超硬合金製金型。
4. The lead frame bending process according to claim 1, wherein a hard carbon film having a film thickness of 0.1 to 5 μm is provided on the surface of the processed portion made of a cemented carbide material. Mold made of cemented carbide.
JP1352695A 1995-01-31 1995-01-31 Bending die of lead frame Pending JPH08204093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1352695A JPH08204093A (en) 1995-01-31 1995-01-31 Bending die of lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1352695A JPH08204093A (en) 1995-01-31 1995-01-31 Bending die of lead frame

Publications (1)

Publication Number Publication Date
JPH08204093A true JPH08204093A (en) 1996-08-09

Family

ID=11835607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1352695A Pending JPH08204093A (en) 1995-01-31 1995-01-31 Bending die of lead frame

Country Status (1)

Country Link
JP (1) JPH08204093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259481A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of amorphous carbon coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262275A (en) * 1993-03-10 1994-09-20 Toshiba Tungaloy Co Ltd Die for plastic working of metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262275A (en) * 1993-03-10 1994-09-20 Toshiba Tungaloy Co Ltd Die for plastic working of metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259481A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of amorphous carbon coating

Similar Documents

Publication Publication Date Title
JP4560964B2 (en) Amorphous carbon coated member
JP2793772B2 (en) Hard film coated tools and hard film coated members with excellent adhesion
JP4780734B2 (en) DLC coated tool
EP0503822B1 (en) A diamond- and/or diamond-like carbon-coated hard material
JP4846872B2 (en) Sputtering target and manufacturing method thereof
JP6337944B2 (en) Coated tool
JPWO2016171273A1 (en) Coated mold and manufacturing method thereof
WO2004076710A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
JP2004238736A (en) Hard film, and hard film-coated tool
JP2010099735A (en) Coated die for plastic working
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JP4449187B2 (en) Thin film formation method
EP0779940B1 (en) Method for the deposition of a diamond film on an electroless-plated nickel layer
JP6308298B2 (en) Manufacturing method of coated tool
JP7360202B2 (en) Manufacturing method of diamond coated silicon nitride ceramic whole tool
JP5212416B2 (en) Amorphous carbon coated member
JP2002206177A (en) Sliding member having excellent sliding characteristic
JPH08204093A (en) Bending die of lead frame
JPH07284862A (en) Ceramic die for lead frame working and cleaning method thereof
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP2015193913A (en) Manufacturing method of coating tool
JP3841186B2 (en) Mold for optical element molding
JP3327424B2 (en) Hard alloy mold for resin and powder molding
JP2012136775A (en) Coated mold excellent in adhesion resistance and method for manufacturing the same
EP0427332B1 (en) Method of applying a boron layer to a steel substrate and a tool provided with a boron layer