JPH0820252A - Four-wheel drive vehicle - Google Patents

Four-wheel drive vehicle

Info

Publication number
JPH0820252A
JPH0820252A JP15370994A JP15370994A JPH0820252A JP H0820252 A JPH0820252 A JP H0820252A JP 15370994 A JP15370994 A JP 15370994A JP 15370994 A JP15370994 A JP 15370994A JP H0820252 A JPH0820252 A JP H0820252A
Authority
JP
Japan
Prior art keywords
drive
driven
fluid pressure
vehicle
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15370994A
Other languages
Japanese (ja)
Inventor
Kiyotaka Ozaki
清孝 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15370994A priority Critical patent/JPH0820252A/en
Publication of JPH0820252A publication Critical patent/JPH0820252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain a four-wheel drive state at the starting time of a vehicle so as to suppress the unnecessary slip of driving wheels. CONSTITUTION:The driving force of an engine 1 is transmitted to front wheels 5 and the rotary shaft 6a of a piston pump 6 through a transmission 2 and a differential gear 3. The discharge port 6c and suction port 6b of the pump 6 are connected to the ports P, T of a forward/reverse switching valve 9 built in a cam plate type variable displacement pump motor 10 through high pressure piping 8H and low pressure piping 8L so as to form a hydraulic transmission gear. When the vehicle speed is less than the set speed, the discharge flow of the piston pump 6 is made larger than the discharge flow of the pump motor 10, and when the vehicle speed is the set speed or more, the discharge flow of the piston pump 6 is set to the discharge flow of the pump motor 10 or less. Until reaching the set speed from the start of a vehicle, transmission torque is constantly generated to the hydraulic transmission gear to maintain the four- wheel drive state. The unnecessary slip of driving wheels is thereby suppressed to make a smooth start.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主原動機の回転駆動力
を前輪及び後輪に伝達するようにした四輪駆動車に係
り、特に駆動力の伝達を流体圧伝動機構で行うようにし
た四輪駆動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel drive vehicle in which a rotational driving force of a main engine is transmitted to front wheels and rear wheels, and particularly, the driving force is transmitted by a fluid pressure transmission mechanism. It relates to four-wheel drive vehicles.

【0002】[0002]

【従来の技術】この種の四輪駆動車にあっては、パート
タイム式のように手動で二輪駆動と四輪駆動との機械的
な連結を切換える四輪駆動車の場合、その切換え操作が
面倒である他、タイトコーナーブレーキング現象などの
不具合を生じ乗用車には不向きである。これに対してフ
ルタイム式四輪駆動車はタイトコーナーブレーキング現
象は解消できるが、センタデフに差動制限装置が必要と
なり装置が複雑になる。また、パートタイム式及びフル
タイム式にかかわらず現在の乗用車に用いられている駆
動方式ではプロペラシャフトを有することから、これが
前輪駆動車に対する重量の増加、車室内スペースへの悪
影響、燃費の悪化、騒音や振動の悪化をもたらし、後輪
駆動車の場合でも重量増、燃費の悪化を免れない。
2. Description of the Related Art In a four-wheel drive vehicle of this type, in the case of a four-wheel drive vehicle in which the mechanical connection between two-wheel drive and four-wheel drive is manually switched like a part-time system, the switching operation is Besides being troublesome, it is not suitable for passenger cars due to problems such as tight corner braking. On the other hand, a full-time four-wheel drive vehicle can eliminate the tight corner braking phenomenon, but it requires a differential limiting device for the center differential, which complicates the device. Further, regardless of the part-time type and the full-time type, since the drive system used in the current passenger cars has a propeller shaft, this increases the weight of the front-wheel drive vehicle, adversely affects the vehicle interior space, and deteriorates fuel efficiency. Noise and vibration are worsened, and even in the case of a rear-wheel drive vehicle, there is an unavoidable increase in weight and fuel consumption.

【0003】そこで、従来、構成部材の重量軽減を図る
目的で、例えば特開昭63−176734号公報(以
下、第1従来例と称す)に記載されているように、エン
ジンの出力で駆動輪を駆動すると共に、エンジンの出力
軸から駆動輪に至る何れかの駆動系に油圧ポンプを連動
させ、この油圧ポンプに油圧配管を介して従動軸を駆動
する油圧モータを連動させ、油圧ポンプにおける吐出管
路側と前記油圧モータにおける吐出管路側との間に、油
圧ポンプからの圧油吐出量に対して油圧モータにおける
圧油吐出量が多くなっているとき、油圧モータにおける
吐出管路側と油圧ポンプにおける吐出管路側とを連通さ
せ、逆に油圧ポンプからの圧油吐出量が油圧モータにお
ける圧油吐出量より多くなっているとき、連通状態を遮
断する切換弁を設け、さらに油圧ポンプにおける押しの
け容積と油圧モータにおける押しのけ容積との関係は、
油圧ポンプから吐出する圧油の吐出流量が、自動車が直
進し且つ駆動輪及び車輪が路面に対して滑っていないと
想定した状態において、油圧モータが吐出する圧油の吐
出流量より少ない値となる関係とした四輪駆動車が提案
されている。
Therefore, conventionally, for the purpose of reducing the weight of the constituent members, as described in, for example, Japanese Patent Application Laid-Open No. 63-176734 (hereinafter referred to as the first conventional example), the drive wheels are driven by the output of the engine. The hydraulic pump is linked to any drive system from the output shaft of the engine to the drive wheels, and the hydraulic motor that drives the driven shaft is linked to this hydraulic pump via the hydraulic pipe to discharge the hydraulic pump. When the pressure oil discharge amount in the hydraulic motor is larger than the pressure oil discharge amount from the hydraulic pump between the pipeline side and the discharge pipeline side in the hydraulic motor, the discharge pipeline side in the hydraulic motor and the hydraulic pump Provided with a switching valve that communicates with the discharge pipe side and conversely shuts off the communication state when the amount of pressure oil discharged from the hydraulic pump is greater than the amount of pressure oil discharged from the hydraulic motor. Furthermore the relationship between the displacement volume of the volume and the hydraulic motor displacement of the hydraulic pump,
The discharge rate of the pressure oil discharged from the hydraulic pump is less than the discharge rate of the pressure oil discharged by the hydraulic motor, assuming that the vehicle is straight ahead and the drive wheels and wheels are not slipping on the road surface. A related four-wheel drive vehicle has been proposed.

【0004】また、特開平3−224831号公報(以
下、第2従来例と称す)に記載されているように、前輪
と連動回転する第1部材と、後輪と連動回転する第2部
材と、前記第1部材と前記第2部材との間に介設された
前記前輪と前記後輪との回転速度差に応じて伝達トルク
が変化するトルク伝達装置とを有する四輪駆動車両の動
力伝達装置であって、前記トルク伝達装置の伝達トルク
を車速の増大に応じて減じるように、トルク伝達装置を
構成する駆動軸側の第1流体圧ポンプの吐出流量が従動
軸側の第2流体圧ポンプの吐出流量より常に少なく設定
され、両者の差が車速の増加に応じて増大するように設
定した四輪駆動車も提案されている。
Further, as described in JP-A-3-224831 (hereinafter referred to as a second conventional example), a first member that rotates in conjunction with the front wheels and a second member that rotates in conjunction with the rear wheels. , A power transmission of a four-wheel drive vehicle having a torque transmission device, which is interposed between the first member and the second member, and whose transmission torque changes according to a rotational speed difference between the front wheels and the rear wheels. In the device, the discharge flow rate of the first fluid pressure pump on the drive shaft side, which constitutes the torque transmission device, is reduced by the second fluid pressure on the driven shaft side so as to reduce the transmission torque of the torque transmission device in accordance with an increase in vehicle speed. A four-wheel drive vehicle has also been proposed in which the discharge flow rate of the pump is always set smaller than that of the pump, and the difference between the two is set to increase as the vehicle speed increases.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記第
1従来例及び第2従来例の四輪駆動車にあっては、共に
駆動輪側の油圧ポンプの吐出流量が従動輪側の油圧モー
タの吐出流量より常に少ない値に設定されているので、
車両の発進時には主原動機側の駆動輪が滑って他方の油
圧ポンプの吐出量を越えてから油圧が上昇することによ
り従動輪側が駆動されて四輪駆動状態となるので、四輪
駆動状態となるまでに遅れを生じると共に、駆動輪側の
車輪で必要以上の空転を感じるという未解決の課題があ
る。
However, in the four-wheel drive vehicles of the first conventional example and the second conventional example, the discharge flow rate of the hydraulic pump on the drive wheel side is the discharge rate of the hydraulic motor on the driven wheel side. Since it is always set to a value smaller than the flow rate,
When the vehicle starts, the drive wheels on the main engine side slip and the hydraulic pressure rises after exceeding the discharge amount of the other hydraulic pump, and the driven wheels are driven to the four-wheel drive state, so the four-wheel drive state is set. However, there is an unsolved problem in that the wheels on the drive wheel side feel more idle than necessary.

【0006】そこで、本発明は、上記従来例の未解決の
課題に着目してなされたものであり、発進時を含む低速
走行時に直ちに四輪駆動状態に移行させて、駆動輪側で
の不必要な空転を確実に防止することができる四輪駆動
車を提供することを目的としている。
Therefore, the present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional example, and immediately shifts to the four-wheel drive state at low speed running including starting, and the driving wheel side is not operated. It is an object of the present invention to provide a four-wheel drive vehicle capable of reliably preventing necessary idling.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る四輪駆動車は、主原動機により駆動
される駆動車軸の駆動力を流体圧伝動機構を介して従動
車軸に伝達するようにした四輪駆動車において、前記流
体圧伝動機構は、設定車速未満で常に伝達トルクを発生
するように構成されていることを特徴としている。
In order to achieve the above object, in a four-wheel drive vehicle according to a first aspect of the present invention, a drive force of a drive axle driven by a main prime mover is transmitted to a driven axle via a fluid pressure transmission mechanism. In the four-wheel drive vehicle configured to transmit, the fluid pressure transmission mechanism is configured to constantly generate a transmission torque at a speed lower than a set vehicle speed.

【0008】また、請求項2に係る四輪駆動車は、主原
動機により駆動される駆動車軸と、該駆動車軸に連動し
て駆動される駆動側流体圧駆動手段と、従動車軸に連動
して駆動される従動側流体圧駆動手段とを有し、前記駆
動側流体圧駆動手段及び従動側流体圧駆動手段を互いの
吐出口と吸込口とを連通する流路を設けて流体圧伝動機
構を構成した四輪駆動車において、前記駆動車軸と従動
車軸との回転数差が発生する初期状態で前記駆動側流体
圧駆動手段の吐出流量が、設定車速未満では前記従動側
流体圧駆動手段の吸入流量より多くなり、設定車速以上
では当該従動側流体圧駆動手段の吸入流量以下となるよ
うに設定されていることを特徴としている。
According to another aspect of the four-wheel drive vehicle of the present invention, the drive axle driven by the main motor, the drive side fluid pressure drive means driven in conjunction with the drive axle, and the driven axle are interlocked. A driven-side fluid pressure driving means to be driven, and a fluid-pressure transmission mechanism is provided by providing a flow path that connects the driving-side fluid pressure driving means and the driven-side fluid pressure driving means to each other's discharge port and suction port. In the configured four-wheel drive vehicle, when the discharge flow rate of the drive side fluid pressure drive means is less than the set vehicle speed in the initial state in which the rotational speed difference between the drive axle and the driven axle occurs, suction of the driven side fluid pressure drive means The flow rate is greater than the flow rate, and is set to be equal to or lower than the suction flow rate of the driven-side fluid pressure driving means at a set vehicle speed or higher.

【0009】さらに、請求項3に係る四輪駆動車は、請
求項2の四輪駆動車において、前記駆動側流体圧駆動手
段は可変容量ポンプで構成され、当該可変容量ポンプの
流量特性が、駆動車軸の低速回転時の流量が高速回転時
の流量に比較して多くなるように設定されていることを
特徴としている。
Further, a four-wheel drive vehicle according to a third aspect is the four-wheel drive vehicle according to the second aspect, wherein the drive side fluid pressure drive means is composed of a variable displacement pump, and the flow rate characteristic of the variable displacement pump is It is characterized in that the flow rate at low speed rotation of the drive axle is set to be larger than that at high speed rotation.

【0010】[0010]

【作用】請求項1に係る四輪駆動車においては、主原動
機により駆動される駆動車軸の駆動力を従動車軸に伝達
する流体伝動機構で、設定車速未満であるときに常に伝
達トルクを発生することにより、車両の発進時に駆動車
軸が回転を開始した時点で直ちに流体伝動機構で伝達ト
ルクを発生することにより、四輪駆動状態に移行し、駆
動輪の不必要な空転を防止する。
In the four-wheel drive vehicle according to the first aspect of the present invention, the fluid transmission mechanism that transmits the driving force of the drive axle driven by the main prime mover to the driven axle, and always produces the transmission torque when the vehicle speed is less than the set vehicle speed. As a result, when the drive axle starts to rotate when the vehicle starts moving, the transmission torque is immediately generated by the fluid transmission mechanism, thereby shifting to the four-wheel drive state and preventing unnecessary idling of the drive wheels.

【0011】また、請求項2に係る四輪駆動車において
は、主原動機により駆動される駆動車軸の回転によって
駆動側流体圧駆動手段から回転速度に応じた流量の作動
流体が吐出され、これが一方の連通流路を通じて従動車
軸の回転によって駆動される従動側流体圧駆動手段の吸
込側に供給され、この従動側流体圧駆動手段から吐出さ
れる作動流体が他方の連通流路を通じて駆動側流体圧駆
動手段に戻される。このとき、車速が設定車速未満であ
るときには、駆動側流体圧駆動手段の吐出流量が従動側
流体圧駆動手段の吸入流量より多くなるので、駆動車軸
側から従動車軸側への伝達トルクが大きくなって四輪駆
動状態を確保することができ、車両の発進時に駆動輪の
不必要な空転を防止し、設定車速以上では駆動側流体圧
駆動手段の吐出流量が従動側流体圧駆動手段の吸入流量
以上となるので、駆動車軸及び従動車軸の回転数差が小
さいときには、伝達トルクは殆どなく二輪駆動状態を維
持するが、回転数差が大きくなるに従って、伝達トルク
が大きくなって四輪駆動状態に移行する。
Further, in the four-wheel drive vehicle according to the second aspect of the invention, the rotation of the drive axle driven by the main prime mover causes the drive side fluid pressure drive means to discharge a working fluid at a flow rate according to the rotational speed, which is Is supplied to the suction side of the driven side fluid pressure driving means driven by the rotation of the driven axle through the communication flow path of the driven side fluid, and the working fluid discharged from the driven side fluid pressure drive means is driven through the other communication path. It is returned to the driving means. At this time, when the vehicle speed is less than the set vehicle speed, the discharge flow rate of the drive-side fluid pressure drive means becomes larger than the suction flow rate of the driven-side fluid pressure drive means, so the transfer torque from the drive axle side to the driven axle side becomes large. It is possible to secure the four-wheel drive state by preventing the drive wheels from spinning unnecessarily when the vehicle starts, and at the set vehicle speed or higher, the discharge flow rate of the drive side fluid pressure drive means is the intake flow rate of the driven side fluid pressure drive means. As described above, when the rotational speed difference between the drive axle and the driven axle is small, the two-wheel drive state is maintained with almost no transmission torque, but as the rotational speed difference increases, the transmission torque increases and the four-wheel drive state is achieved. Transition.

【0012】さらに、請求項3に係る四輪駆動車におい
ては、駆動側流体圧駆動手段を可変容量ポンプで構成す
ることにより、設定車速未満及び設定車速以上での駆動
側流体圧駆動手段の流量設定を容易に行うことができ
る。
Further, in the four-wheel drive vehicle according to the third aspect of the present invention, the drive side fluid pressure drive means is constituted by a variable displacement pump, so that the flow rate of the drive side fluid pressure drive means below the set vehicle speed and above the set vehicle speed. The setting can be done easily.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明を前輪駆動車をベースとした四輪駆
動車に適用した場合の一実施例を示す概略構成図であっ
て、図中、1は主原動機としてのエンジンであって、こ
のエンジン1の回転駆動力が変速機2を介して前輪側差
動装置3に入力され、この差動装置3の出力側に駆動車
軸としての前車軸4を介して前輪5が連結されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment in which the present invention is applied to a four-wheel drive vehicle based on a front-wheel drive vehicle. In the figure, 1 is an engine as a main prime mover. The rotational driving force of No. 1 is input to the front wheel side differential device 3 via the transmission 2, and the front wheel 5 is connected to the output side of the differential device 3 via the front axle 4 as a drive axle.

【0014】前輪側差動装置3は、デファレンシャギヤ
ケース3aに形成されたリングギヤ3bが変速機2の出
力側に連結されたギヤ2aに噛合されて回転駆動され、
このディファレンシャルギヤケース3a内に形成された
一対のピニオンシャフト3cにピニオン3dが取付けら
れ、これらピニオン3dに一対のサイドギヤ3eが噛合
し、これらサイドギヤ3eに前車軸4が連結されてい
る。
In the front wheel side differential device 3, a ring gear 3b formed in a differential gear case 3a is meshed with a gear 2a connected to an output side of the transmission 2, and is rotationally driven.
A pinion 3d is attached to a pair of pinion shafts 3c formed in the differential gear case 3a, a pair of side gears 3e mesh with these pinion 3d, and a front axle 4 is connected to these side gears 3e.

【0015】また、ディファレンシャルギヤケース3a
にリングギヤ3bと並列に形成されたリングギヤ3fが
これに噛合するギヤ3gを介して流体圧ポンプとしての
吸入絞り型ピストンポンプ6の回転軸6aに連結されて
いる。この吸入絞り型ピストンポンプ6は、その吸込口
6bがリザーバタンク7内に配設されたストレーナ7a
に連結されていると共に、低圧流路としての低圧配管8
Lを通じて2位置4ポートの電磁方向切換弁9のタンク
ポートTに接続され、吐出口6cが高圧流路としての高
圧配管8Hを通じて前後進切換用の電磁方向切換弁9の
ポンプポートPに接続されている。ここで、吸入絞り型
ピストンポンプ6は、回転軸6aの回転方向によって吸
入口と吐出口とが入れ替わることがなく、その吐出流量
1 は、図2で実線図示の特性曲線L1 で示すように、
前車軸4の回転数が“0”から後述する設定車速Vsよ
り低い設定車速V1 に達するまでの間では、回転数の増
加に比例して比較的大きな増加率で増加し、設定車速V
1以上では回転数の増加に比例して比較的小さな増加率
で増加するように設定されている。
Further, the differential gear case 3a
A ring gear 3f formed in parallel with the ring gear 3b is connected to a rotary shaft 6a of a suction throttle piston pump 6 as a fluid pressure pump via a gear 3g meshing with the ring gear 3f. The suction throttle type piston pump 6 has a suction port 6b, which is a strainer 7a having a reservoir tank 7 disposed therein.
Is connected to the low pressure pipe 8 as a low pressure flow path.
It is connected to the tank port T of the two-position four-port electromagnetic directional control valve 9 through L, and the discharge port 6c is connected to the pump port P of the electromagnetic directional control valve 9 for forward / backward switching through the high pressure pipe 8H as a high pressure passage. ing. Here, in the suction throttle type piston pump 6, the suction port and the discharge port do not interchange with each other depending on the rotation direction of the rotating shaft 6a, and the discharge flow rate Q 1 thereof is as shown by a characteristic curve L 1 shown by a solid line in FIG. To
During the period from when the rotation speed of the front axle 4 reaches “0” to the set vehicle speed V 1 which is lower than the set vehicle speed Vs described later, the rotation speed of the front axle 4 increases at a relatively large rate of increase in proportion to the increase of the rotation speed, and the set vehicle speed V increases.
Above 1 it is set to increase at a relatively small rate of increase in proportion to the increase in the number of revolutions.

【0016】前後進切換用の電磁方向切換弁9は、ソレ
ノイド9aが非通電状態であるノーマル位置でポンプポ
ートPを出力ポートAに、タンクポートTを出力ポート
Bに夫々連通し、ソレノイド9aが通電状態であるオフ
セット位置でポンプポートPを出力ポートBに、タンク
ポートTを出力ポートAに夫々連通し、出力ポートA及
びBが流体圧ポンプモータとしての斜板型可変容量ポン
プモータ10の吸入・吐出口10a及び10bに接続さ
れており、ノーマル位置で高圧配管8Hの高圧油を可変
容量ポンプモータ10の吸入・吐出口10aに、低圧配
管8Lを吸入・吐出口10bに連通させて回転軸10c
を前進走行時の回転方向例えば左側面からみて時計方向
に回転駆動し、逆にオフセット位置で高圧配管8Hの高
圧油を可変容量ポンプモータ10の吸入・吐出口10b
に、低圧配管8Lを吸入・吐出口10aに連通させて回
転軸10cを前進走行時の回転方向例えば左側面からみ
て反時計方向に回転駆動する。
In the electromagnetic directional control valve 9 for switching between forward and reverse, the pump port P communicates with the output port A and the tank port T communicates with the output port B at the normal position where the solenoid 9a is in the non-energized state. The pump port P communicates with the output port B and the tank port T communicates with the output port A at the offset position in the energized state, and the output ports A and B suction the swash plate type variable displacement pump motor 10 as a fluid pressure pump motor. Connected to the discharge ports 10a and 10b, the high-pressure oil in the high-pressure pipe 8H is connected to the suction / discharge port 10a of the variable displacement pump motor 10 and the low-pressure pipe 8L is connected to the suction / discharge port 10b in the normal position to rotate the rotary shaft. 10c
Is rotationally driven in a forward rotation direction, for example, clockwise as viewed from the left side surface, and conversely, the high pressure oil in the high pressure pipe 8H is sucked and discharged from the variable displacement pump motor 10b at the offset position.
Further, the low-pressure pipe 8L is connected to the suction / discharge port 10a, and the rotary shaft 10c is rotationally driven in the rotation direction during forward traveling, for example, counterclockwise when viewed from the left side surface.

【0017】なお、電磁方向切換弁9は、斜板型可変容
量ポンプモータ10に内蔵され、出力ポートA及びBが
配管を介することなくポンプモータ10の吸入・吐出口
10a及び10bに連結されている。また、電磁方向切
換弁9のソレノイド9aへの通電、ソレノイド9aが図
示しないがシフトレバーで後進を選択したときに、オン
状態となるシフト位置検出スイッチ9bを介して直流電
源9cに接続されることにより、前進走行時には非通電
状態に、後進走行時には通電状態に夫々制御される。
The electromagnetic directional control valve 9 is built in the swash plate type variable displacement pump motor 10, and the output ports A and B are connected to the suction / discharge ports 10a and 10b of the pump motor 10 without a pipe. There is. Further, the solenoid 9a of the electromagnetic directional control valve 9 is energized, and the solenoid 9a is connected to the DC power source 9c via the shift position detection switch 9b which is turned on when the reverse lever is selected by the shift lever (not shown). Thus, the vehicle is controlled to be in a non-energized state during forward traveling and to be energized during backward traveling.

【0018】この可変容量ポンプモータ10の流量Q2
は、電磁方向切換弁9のタンクポートT近傍の低圧配管
8Lに介挿された差圧検出用オリフィス11の両端に発
生する差圧で油圧シリンダ12aを含んで構成される可
変制御機構としての斜板可変機構12を制御することに
より、図2で破線図示の特性曲線L2 で示すように、設
定車速Vsより高い設定車速V2 に達するまでの間では
車速の増加に比例して駆動側のピストンポンプ6の増加
率より低い増加率で増加し、車速V2 以上となると車速
の増加に伴って前述したピストンポンプ6の設定車速V
1 以上の増加率より僅かに大きな増加率で増加するよう
に設定され、予め設定された設定車速Vs未満ではピス
トンポンプ6の吐出流量が可変容量ポンプモータ10の
吐出流量より多くなり、設定車速Vs以上では逆にピス
トンポンプ6の吐出流量が可変容量ポンプモータ10の
吐出流量より少なくなるように設定されている。ここ
で、設定車速Vsとしては、例えば5km/h或いは1
0km/h程度の極低車速に設定されている。
The flow rate Q 2 of the variable displacement pump motor 10
Is a variable control mechanism including a hydraulic cylinder 12a with a differential pressure generated at both ends of a differential pressure detecting orifice 11 inserted in a low pressure pipe 8L near the tank port T of the electromagnetic directional control valve 9. By controlling the plate variable mechanism 12, as shown by a characteristic curve L 2 shown by a broken line in FIG. 2, until the set vehicle speed V 2 higher than the set vehicle speed Vs is reached, the drive side of the drive side is increased in proportion to the increase of the vehicle speed. When the vehicle speed increases at a rate lower than the rate of increase of the piston pump 6 and becomes equal to or higher than the vehicle speed V 2 , the set vehicle speed V of the piston pump 6 is increased as the vehicle speed increases.
The discharge flow rate of the piston pump 6 becomes larger than the discharge flow rate of the variable displacement pump motor 10 below the preset vehicle speed Vs which is set so as to increase at a slightly higher increase rate than 1 or more. In the above, on the contrary, the discharge flow rate of the piston pump 6 is set to be smaller than the discharge flow rate of the variable displacement pump motor 10. Here, the set vehicle speed Vs is, for example, 5 km / h or 1
It is set to an extremely low vehicle speed of about 0 km / h.

【0019】また、吸入絞り型ピストンポンプ6の吸込
口6b及び吐出口6c間にトルク制限手段としてのピス
トンポンプ6の吐出圧の上限を定めるリリーフ弁13が
介挿されていると共に、油圧ポンプ6及び電磁方向切換
弁9間における高圧配管8H及び低圧配管8L間を連通
する連通配管14Aに低圧配管8L側から高圧配管8H
側への流体流れを許容する逆止弁15が介挿されている
と共に、連通配管14Aと並列に配設された連通配管1
4Bに逆止弁15と並列関係に固定オリフィス16が接
続されている。
Further, a relief valve 13 for limiting the upper limit of the discharge pressure of the piston pump 6 as a torque limiting means is interposed between the suction port 6b and the discharge port 6c of the suction throttle type piston pump 6, and the hydraulic pump 6 is also provided. And the high-pressure pipe 8H from the low-pressure pipe 8L side to the communication pipe 14A that communicates between the high-pressure pipe 8H and the low-pressure pipe 8L between the electromagnetic direction switching valves 9.
A communication pipe 1 in which a check valve 15 that allows a fluid flow to the side is inserted and is arranged in parallel with the communication pipe 14A.
A fixed orifice 16 is connected to 4B in parallel relationship with the check valve 15.

【0020】一方、斜板型可変容量ポンプモータ10の
回転軸10cにギヤ10dが取付けられ、このギヤ10
dに後輪側差動装置17のディファレンシャルギヤケー
ス17aに形成されたリングギヤ17bが噛合されてい
る。この後輪側差動装置17は、前述した前輪側差動装
置3と略同様の構成を有し、ディファレンシャルギヤケ
ース17a内に形成された一対のピニオンシャフト17
cにピニオン17dが取付けられ、これらピニオン17
dに一対のサイドギヤ17eが噛合し、これらサイドギ
ヤ17eに後車軸18が連結され、この後車軸18に後
輪19が連結されている。
On the other hand, a gear 10d is attached to the rotary shaft 10c of the swash plate type variable displacement pump motor 10.
A ring gear 17b formed in a differential gear case 17a of the rear wheel side differential device 17 is meshed with d. The rear wheel side differential device 17 has a configuration similar to that of the front wheel side differential device 3 described above, and a pair of pinion shafts 17 formed in the differential gear case 17a.
pinion 17d is attached to c, and these pinion 17
A pair of side gears 17e meshes with d, a rear axle 18 is connected to these side gears 17e, and a rear wheel 19 is connected to this rear axle 18.

【0021】次に、上記実施例の動作を説明する。今、
車両が乾燥路面等の高摩擦係数路で停車して、エンジン
1がアイドリング状態にある制動状態で、前進走行を開
始する場合には、シフトレバーを前進走行側に切換える
ことにより、発進可能状態とすることができるが、この
とき後進走行側のシフト位置検出スイッチ9bはオフ状
態を維持するため、前後進切換用電磁方向切換弁9のソ
レノイド9aは非通電状態を維持して、切換位置が図1
に示すノーマル位置を継続する。
Next, the operation of the above embodiment will be described. now,
When the vehicle stops on a high friction coefficient road such as a dry road surface and starts forward traveling in a braking state in which the engine 1 is in an idling state, by switching the shift lever to the forward traveling side, the vehicle can be started. However, at this time, the shift position detection switch 9b on the reverse traveling side is maintained in the OFF state, so that the solenoid 9a of the forward / reverse switching electromagnetic directional control valve 9 is maintained in the non-energized state, and the switching position is changed. 1
Continue the normal position shown in.

【0022】この状態で、ブレーキペダルを解放してア
クセルペダルを踏込むことにより、エンジン1の回転力
が変速機2を介して前輪側差動装置3に伝達され、この
前輪側作動装置3で前輪5を前進方向に回転駆動するこ
とにより、前進を開始する。このとき、吸入絞り型ピス
トンポンプ6の回転軸6aが左側面からみて時計方向に
回転駆動されることにより、このピストンポンプ6から
回転速度に応じた吐出流量の作動油が吐出され、これが
高圧配管8Hを介し、前後進切換用電磁方向切換弁9を
介して斜板型可変容量ポンプモータ10の吸入・吐出口
10aに供給されるが、車両の発進により後輪19も前
輪5と同方向に同一回転速度で回転駆動されるので、後
輪側差動装置17を介して斜板型可変容量ポンプモータ
10の回転軸10cが左側面からみて時計方向に回転
し、これによって吸入・吐出口10aから作動油が吸入
され、吸入・吐出口10bから作動油が吐出される。
In this state, by releasing the brake pedal and stepping on the accelerator pedal, the rotational force of the engine 1 is transmitted to the front wheel side differential device 3 via the transmission 2, and the front wheel side operating device 3 operates. The forward movement is started by rotationally driving the front wheels 5 in the forward direction. At this time, the rotary shaft 6a of the suction throttle type piston pump 6 is rotationally driven in the clockwise direction as viewed from the left side surface, whereby the piston pump 6 discharges the hydraulic fluid at a discharge flow rate according to the rotation speed, which is the high pressure pipe. It is supplied to the suction / discharge port 10a of the swash plate type variable displacement pump motor 10 via the forward / reverse switching electromagnetic directional control valve 9 via 8H, but the rear wheel 19 also moves in the same direction as the front wheel 5 when the vehicle starts. Since they are driven to rotate at the same rotational speed, the rotary shaft 10c of the swash plate type variable displacement pump motor 10 rotates clockwise as viewed from the left side surface through the rear wheel side differential device 17, and as a result, the suction / discharge port 10a. The hydraulic oil is sucked in from the suction / discharge port 10b.

【0023】ここで、吸入絞り型ピストンポンプ6と斜
板型可変容量ポンプモータ10の吐出流量は、図2に示
すように、停車状態から設定車速Vsに達するまでの間
は、ピストンポンプ6の吐出流量が可変容量ポンプモー
タ10の吐出流量より多くなるように設定されているの
で、図3に示すように、前輪5が回転し始めると同時に
前後輪の回転速度差ΔNが零の状態でも所定量の伝達ト
ルクT1 を発生することができ、可変容量ポンプモータ
10がモータとして作動することにより、発進と同時に
四輪駆動状態となる。
Here, as shown in FIG. 2, the discharge flow rates of the suction throttle type piston pump 6 and the swash plate type variable displacement pump motor 10 of the piston pump 6 are from the stopped state until the set vehicle speed Vs is reached. Since the discharge flow rate is set to be higher than the discharge flow rate of the variable displacement pump motor 10, as shown in FIG. 3, even when the front wheel 5 starts to rotate, the rotational speed difference ΔN between the front and rear wheels is zero even when the difference is zero. A certain amount of transmission torque T 1 can be generated, and the variable displacement pump motor 10 operates as a motor, so that the four-wheel drive state is set at the same time as starting.

【0024】その後、加速状態を継続して、車速が設定
車速Vs以上となると、ピストンポンプ6の吐出流量が
可変容量ポンプモータ10の吐出流量より少なくなるの
で、ピストンポンプ6から吐出された高圧作動油は可変
容量ポンプモータ10により吸い込まれしまうため、高
圧配管8Hの圧力は上がらない。すなわち、可変容量ポ
ンプモータ10は油圧モータとして作用せず後輪19に
駆動力が伝達されることはなく、前輪駆動車と同様な二
輪駆動状態で前進走行する。このとき、可変容量ポンプ
モータ10の吸入流量は、ピストンポンプ6の吐出流量
を上回ることになるため、不足分は低圧配管8L、連通
配管14A、逆止弁15を介して補給される。
After that, when the acceleration state is continued and the vehicle speed becomes equal to or higher than the set vehicle speed Vs, the discharge flow rate of the piston pump 6 becomes smaller than the discharge flow rate of the variable displacement pump motor 10, so that the high pressure operation discharged from the piston pump 6 is performed. Since the oil is sucked by the variable displacement pump motor 10, the pressure in the high pressure pipe 8H does not rise. In other words, the variable displacement pump motor 10 does not act as a hydraulic motor, the driving force is not transmitted to the rear wheels 19, and the vehicle travels forward in a two-wheel drive state similar to that of a front wheel drive vehicle. At this time, since the suction flow rate of the variable displacement pump motor 10 exceeds the discharge flow rate of the piston pump 6, the shortage is replenished via the low pressure pipe 8L, the communication pipe 14A, and the check valve 15.

【0025】この設定車速Vs以上におけるピストンポ
ンプ6及び可変容量ポンプモータ10の吐出流量差は、
タイヤの摩耗による径変化などにより生じる前後車軸
4,18の回転数差を許容することにもなり、異径タイ
ヤで生じる回転数差程度では駆動力は伝達されず、前輪
駆動車状態が維持され、燃費を悪化させることを抑制す
ることができる。
The discharge flow rate difference between the piston pump 6 and the variable displacement pump motor 10 at the set vehicle speed Vs or higher is
The difference in the rotational speeds of the front and rear axles 4 and 18 caused by the diameter change due to the wear of the tires is also allowed, and the driving force is not transmitted at a difference in the rotational speeds of the tires having different diameters, and the front-wheel drive vehicle state is maintained. It is possible to suppress deterioration of fuel efficiency.

【0026】次に、凍結路、降雪路等の低摩擦係数路で
発進する場合には、前述したように、先ず前輪5が回転
駆動されるが、低摩擦係数路であるため、前輪5がスリ
ップして、前輪5及び後輪19との間に前輪5が高回転
数となる回転数差が生じて、この回転数差ΔNに応じて
伝達トルクTが増加する。このため、低摩擦係数路での
発進時には高摩擦係数路での発進時に比較して伝達トル
クTが大きくなると共に、車両が動き始めると同時に後
輪19に駆動トルクを伝達することができるので、応答
性が良いうえ、前輪5の空転が増大するまえに後輪19
へトルク伝達が可能となり、スムーズな発進を行うこと
ができる。
Next, when the vehicle starts on a low friction coefficient road such as an icy road or a snowfall road, the front wheels 5 are first driven to rotate as described above. As a result of slippage, a rotation speed difference that causes the front wheels 5 to have a high rotation speed is generated between the front wheels 5 and the rear wheels 19, and the transmission torque T increases in accordance with the rotation speed difference ΔN. Therefore, when the vehicle starts on the low friction coefficient road, the transmission torque T becomes larger than when the vehicle starts on the high friction coefficient road, and the driving torque can be transmitted to the rear wheels 19 at the same time when the vehicle starts to move. The responsiveness is good, and the rear wheels 19 before the idling of the front wheels 5 increases.
Torque can be transmitted to a smooth start.

【0027】そして、後輪19側に伝達されるトルク
は、図3に示すように、前後輪に回転数差ΔNが生じて
いない状態でも所定値T1 を確保することができ、回転
数差ΔNが大きくなるにつれて増大し、リリーフ弁13
による圧力制限によって最大トルクTMAX が規制される
ことになる。このトルク制限作用により、後輪側差動装
置17、ドライブシャフトなどの構成部材の強度を従来
の四輪駆動車に比べて下げることが可能となり、重量、
燃費、コストの低減を図ることができる。
As shown in FIG. 3, the torque transmitted to the rear wheel 19 side can maintain a predetermined value T 1 even when there is no rotation speed difference ΔN between the front and rear wheels. It increases as ΔN increases, and the relief valve 13
The maximum torque T MAX is restricted by the pressure limitation due to. This torque limiting action makes it possible to reduce the strength of the components such as the rear wheel differential device 17 and the drive shaft as compared with the conventional four-wheel drive vehicle.
It is possible to reduce fuel consumption and cost.

【0028】また、後輪19側に伝達されるトルクは、
図3に示すように、低速時ほど少ない回転数差で駆動力
を発生し易い特性を有し、これは図2に示すように、設
定車速Vs以上での吸入絞り型ピストンポンプ6と斜板
型可変容量ポンプモータ10の吐出流量特性の固有域に
おける流量が、車速が高いほどその流量差が大きくなる
ことに起因している。
The torque transmitted to the rear wheel 19 side is
As shown in FIG. 3, it has a characteristic that the driving force is easily generated with a smaller rotational speed difference at lower speeds. As shown in FIG. 2, this is because the suction throttle type piston pump 6 and the swash plate at the set vehicle speed Vs or higher. This is because the flow rate in the characteristic range of the discharge flow rate characteristic of the mold variable displacement pump motor 10 becomes larger as the vehicle speed increases.

【0029】このように、ピストンポンプ6及び可変容
量ポンプモータ10の流量特性を図2の特性曲線L1
びL2 のように設定することにより、設定車速Vs未満
ではピストンポンプ6の吐出流量を可変容量ポンプモー
タ10の吐出流量より大きくして、常に後輪への伝達ト
ルクを発生させて四輪駆動状態を維持することができ、
これによって駆動輪の空転を抑制して良好な発進を行う
ことができ、設定車速Vs以上では逆にピストンポンプ
6の吐出流量を可変容量ポンプモータ10の吐出流量以
下として、前後輪回転数差ΔNに応じた最適な四輪又は
二輪駆動状態を得ることができる。このように、車速に
対応する駆動軸4により駆動するピストンポンプ6を用
い、ピストンポンプ6及び可変容量ポンプモータ10の
ポンプ自体の容量特性を設定するだけで、設定車速Vs
前後の容量特性の切換を行うことができるので、このた
めのセンサやコントローラを別途設ける必要がなく、全
体の構成を簡略化することができる。
As described above, by setting the flow rate characteristics of the piston pump 6 and the variable displacement pump motor 10 as shown by the characteristic curves L 1 and L 2 of FIG. 2, the discharge flow rate of the piston pump 6 is set below the set vehicle speed Vs. The discharge flow rate of the variable displacement pump motor 10 can be made larger to constantly generate the transmission torque to the rear wheels to maintain the four-wheel drive state.
As a result, idling of the drive wheels can be suppressed and a good start can be performed. At a set vehicle speed Vs or higher, on the contrary, the discharge flow rate of the piston pump 6 is set to be equal to or lower than the discharge flow rate of the variable displacement pump motor 10, and the difference between the front and rear wheel rotation speeds ΔN. It is possible to obtain an optimum four-wheel or two-wheel drive state according to As described above, by using the piston pump 6 driven by the drive shaft 4 corresponding to the vehicle speed and setting the displacement characteristics of the pump itself of the piston pump 6 and the variable displacement pump motor 10, the set vehicle speed Vs
Since it is possible to switch the front and rear capacitance characteristics, it is not necessary to separately provide a sensor or controller for this purpose, and the entire configuration can be simplified.

【0030】因みに、車速の他に前後加速度等をパラメ
ータとすることも考えられるが、この場合には前後加速
度センサやコントローラが必要となり、製作コストが嵩
むと共に、全体の構成を簡略化することができず、また
前述した第2従来例のように流体作動クラッチ(ビスカ
スカップリング)を適用した場合には車速感応型に構成
することができない。
Incidentally, it is conceivable to use the longitudinal acceleration or the like as a parameter in addition to the vehicle speed, but in this case, a longitudinal acceleration sensor and a controller are required, which increases the manufacturing cost and simplifies the overall structure. In addition, when the fluid actuated clutch (viscus coupling) is applied as in the second conventional example described above, the vehicle speed sensitive type cannot be configured.

【0031】さらに、図3における伝達トルクの立ち上
がりは、高圧配管8H及び低圧配管8Lを連通する連通
配管14Bに介挿された固定オリフィス16により高圧
配管8Hから低圧配管8Lへの漏れ量を管理し、圧力の
立ち上がりを変えることで特性を任意に設定可能であ
る。そして、オリフィスが有する作動油の粘性変化に伴
う温度特性により高温時に比べて低温時は漏れ量が減り
駆動力が発生し易い特性になるため、四輪駆動車として
の機能を要求される機会の多い冬期に四輪駆動になり易
くなるという利点がある。
Further, in the rising of the transmission torque in FIG. 3, the amount of leakage from the high pressure pipe 8H to the low pressure pipe 8L is controlled by the fixed orifice 16 inserted in the communication pipe 14B connecting the high pressure pipe 8H and the low pressure pipe 8L. The characteristics can be set arbitrarily by changing the rise of pressure. Due to the temperature characteristics associated with the viscosity change of the hydraulic oil possessed by the orifice, the amount of leakage decreases and the driving force is more likely to be generated at low temperatures than at high temperatures. There is an advantage that it becomes easy to use four-wheel drive in winter.

【0032】次に、車両を後進させる場合には、シフト
レバーを後進位置に切換えることにより、シフト位置検
出スイッチ9bがオン状態となるため、前後進切換用電
磁方向切換弁9のソレノイド9aが通電状態となり、切
換位置がノーマル位置からオフセット位置に切換えら
れ、これによって高圧配管8Hの作動油を斜板型可変容
量ポンプモータ10の吸入・吐出口10bに供給し、吸
入・吐出口10aから吐出される作動油を低圧配管8L
側に戻すことにより、可変容量ポンプモータ10の回転
軸10cを前進走行時とは逆転させて、後輪19を逆回
転させる。このため、後進時においても、駆動力の伝達
については前進時と全く同様であり、発進時から設定車
速Vsに達するまでの間は四輪駆動状態を維持すると共
に、駆動輪即ち前輪5の空転を抑制することができ、設
定車速Vs以上では前輪5がスリップして前後車軸4,
18にある回転数差が生じた時のみ高圧配管8Hに圧力
が発生し、駆動力が後輪19に伝達されると共に、前後
車軸4,18の回転数差が小さい場合における斜板型可
変容量ポンプモータ10の吸入量不足分は低圧配管8
L、連通配管14A及び逆止弁15を介して補給され
る。
Next, when the vehicle is moved backward, the shift position detection switch 9b is turned on by switching the shift lever to the reverse position, so that the solenoid 9a of the forward / reverse switching electromagnetic directional control valve 9 is energized. Then, the switching position is switched from the normal position to the offset position, whereby the working oil in the high-pressure pipe 8H is supplied to the suction / discharge port 10b of the swash plate type variable displacement pump motor 10 and discharged from the suction / discharge port 10a. Low pressure piping 8L
By returning to the side, the rotary shaft 10c of the variable displacement pump motor 10 is reversed from that during forward traveling, and the rear wheel 19 is rotated in reverse. Therefore, when the vehicle is moving backward, the transmission of the driving force is exactly the same as when driving the vehicle forward, and the four-wheel drive state is maintained from the time when the vehicle starts to the set vehicle speed Vs, and the drive wheels, that is, the front wheels 5 run idle. The front wheel 5 slips at the set vehicle speed Vs or more and the front and rear axles 4,
The pressure is generated in the high-pressure pipe 8H only when there is a difference in the number of revolutions at 18, the driving force is transmitted to the rear wheel 19, and the swash plate type variable displacement in the case where the difference in the number of revolutions between the front and rear axles 4 and 18 is small. Insufficient intake amount of pump motor 10 is low pressure pipe 8
It is replenished through L, the communication pipe 14A and the check valve 15.

【0033】このとき、前輪側の吸入絞り型ピストンポ
ンプ6は、前述したように、回転方向が逆転してもポン
プの吸入口と吐出口とが入れ替わることはないと共に、
前後進切換用電磁方向切換弁9が可変容量ポンプモータ
10に内蔵されているため、高価な高耐圧配管は高圧配
管8Hに使用するだけで済むと共に、リリーフ弁13、
逆止弁15、オリフィス16なども一方向の流れのみに
対応できるように設ければよいので、他の方式のポンプ
を用いた場合に比べて油路構成を極めて簡略化すること
ができる。
At this time, as described above, in the suction throttle type piston pump 6 on the front wheel side, the suction port and the discharge port of the pump are not interchanged even if the rotation direction is reversed, and
Since the forward / backward switching electromagnetic directional switching valve 9 is built in the variable displacement pump motor 10, expensive high pressure piping can be used only for the high pressure piping 8H, and the relief valve 13,
Since the check valve 15, the orifice 16 and the like may be provided so as to handle only one direction of flow, the oil passage structure can be extremely simplified as compared with the case of using a pump of another system.

【0034】また、前輪駆動車ベースのアンチスキッド
制御装置装着車においては、制動時に前輪の回転数は後
輪の回転数より小さくなるため、油圧伝達機構による駆
動力は発生されず、アンチスキッド制御装置との干渉を
小さくすることができる利点がある。なお、上記実施例
においては、差圧検出用オリフィス11の前後の差圧を
斜板可変機構12に供給する場合について説明したが、
これに限定されるものではなく、低圧配管8L側に差圧
検出用オリフィス11を介挿した場合には、差圧検出用
オリフィス11の出側の圧力は大気圧となるので、可変
容量ポンプ10内のドレーン圧と同一であることによ
り、図4に示すように、差圧検出用オリフィス11の高
圧側即ち電磁方向切換弁9のタンクポートT側の圧力の
みを斜板可変機構12の油圧シリンダ12aのヘッドカ
バー側油圧室12bに導入するようにしてもよい。
Further, in a vehicle equipped with an anti-skid control device based on a front-wheel drive vehicle, the rotational speed of the front wheels becomes smaller than the rotational speed of the rear wheels during braking, so that no driving force is generated by the hydraulic transmission mechanism and the anti-skid control is performed. There is an advantage that interference with the device can be reduced. In the above embodiment, the case where the differential pressure before and after the differential pressure detecting orifice 11 is supplied to the swash plate variable mechanism 12 has been described.
The present invention is not limited to this, and when the differential pressure detecting orifice 11 is inserted on the low pressure pipe 8L side, the pressure on the outlet side of the differential pressure detecting orifice 11 becomes atmospheric pressure, so the variable displacement pump 10 Since it is the same as the drain pressure inside, as shown in FIG. 4, only the pressure on the high pressure side of the differential pressure detecting orifice 11, that is, on the tank port T side of the electromagnetic directional control valve 9 is applied to the hydraulic cylinder of the swash plate variable mechanism 12. It may be introduced into the head cover side hydraulic chamber 12b of 12a.

【0035】また、上記実施例においては、伝達トルク
制限手段としてリリーフ弁13を適用した場合について
説明したが、これに限定されるものではなく、図5に示
すように、ピストンポンプ6の吐出圧を容量制御圧とし
て入力し、これに応じてピストンポンプ6の吸入口6b
側の吸入通路の開度を吐出圧が所定圧以上となったとき
に小さく制御する吸入絞り弁21を設けるようにしても
よく、この場合にはポンプ吐出流量が規定の圧力以上と
なるとポンプ吸入量が減少することにより、ポンプ吐出
圧が減少してトルク制限を行うことができ、これと同時
にリリーフ弁を用いた場合には連続高負荷使用時に油温
上昇を生じるが、吸入絞り弁21を設けた場合には、吐
出流量が減少することから発熱の抑制を図ることができ
る。
In the above embodiment, the case where the relief valve 13 is applied as the transmission torque limiting means has been described, but the present invention is not limited to this, and as shown in FIG. 5, the discharge pressure of the piston pump 6 is reduced. Is input as the displacement control pressure, and the suction port 6b of the piston pump 6 is correspondingly input.
A suction throttle valve 21 may be provided to control the opening degree of the side suction passage to be small when the discharge pressure becomes equal to or higher than a predetermined pressure. In this case, when the pump discharge flow rate becomes equal to or higher than a prescribed pressure, the pump suction By reducing the amount, the pump discharge pressure is reduced and torque can be limited. At the same time, when the relief valve is used, the oil temperature rises during continuous high load use. When it is provided, heat generation can be suppressed because the discharge flow rate decreases.

【0036】さらに、上記実施例においては、後輪側差
動装置17を設けた場合について説明したが、これに限
定されるものではなく、図6に示すように、後輪差動装
置17を省略し、これに代えて左右後輪19L,19R
の左右車軸18L,18Rに個別に斜板型可変容量ポン
プモータ10L及び10Rを設けるように構成してもよ
く、この場合には、旋回時などで左右輪で異なる負荷と
なる場合には、各可変容量ポンプモータ10L,10R
で自然にその差に応じた吐出流量差を生じることから差
動装置と同等の差動機能を発揮することができ、この場
合もトルク制限手段としては、図示のリリーフ弁13で
も図5に示す吸入絞り弁21の何れであってもよい。
Further, in the above embodiment, the case where the rear wheel side differential device 17 is provided has been described, but the present invention is not limited to this, and as shown in FIG. Omitted, instead of this, the left and right rear wheels 19L, 19R
The left and right axles 18L and 18R may be individually provided with the swash plate type variable displacement pump motors 10L and 10R. In this case, when different loads are applied to the left and right wheels during turning, Variable displacement pump motor 10L, 10R
Since a discharge flow rate difference naturally occurs according to the difference, a differential function equivalent to that of a differential device can be exerted. In this case as well, the relief valve 13 shown in FIG. Any of the suction throttle valves 21 may be used.

【0037】さらにまた、流体圧ポンプとして回転軸6
aの回転方向にかかわらず吸入口6bと吐出口6cとが
変化しない吸入絞り型ピストンポンプ6を適用した場合
について説明したが、これに限定されるものではなく、
図7に示すように、回転軸30aがギヤ3gに連結され
た油圧ポンプ30の吸込口30b及び吐出口30cに夫
々ポンプポートP及びタンクポートTを接続し、出力ポ
ートA及びBを高圧配管8H及び8Lに接続した前後進
切換用電磁方向切換弁9と同様の前後進切換用電磁方向
切換弁31を設けるようにすれば、前後進で吐出方向が
切り換わるギヤポンプやベーンポンプ等の他の油圧ポン
プを適用することができ、図8に示すように低圧配管8
Lに介挿された差圧発生用オリフィス32の前後差圧が
入力される油圧シリンダ33aを含む可変機構33を備
えた可変容量式の何れであってもよく、さらに差動機構
17を省略して図6に示すように2組の斜板型可変容量
ポンプモータ10L及び10Rを適用するようにしても
よい。
Furthermore, the rotary shaft 6 is used as a fluid pressure pump.
The case where the suction throttle type piston pump 6 in which the suction port 6b and the discharge port 6c do not change regardless of the rotation direction of a is applied has been described, but the present invention is not limited to this.
As shown in FIG. 7, the pump port P and the tank port T are connected to the suction port 30b and the discharge port 30c of the hydraulic pump 30 whose rotary shaft 30a is connected to the gear 3g, and the output ports A and B are connected to the high pressure pipe 8H. And an electromagnetic directional control valve 31 for forward / reverse switching similar to the electromagnetic directional control valve 9 for forward / backward switching connected to 8L and 8L, another hydraulic pump such as a gear pump or a vane pump whose discharge direction is switched by forward / backward movement. Can be applied, as shown in FIG.
Any variable capacity type may be used, which includes a variable mechanism 33 including a hydraulic cylinder 33a to which the differential pressure across the differential pressure generating orifice 32 inserted in L is input, and the differential mechanism 17 may be omitted. As shown in FIG. 6, two sets of swash plate type variable displacement pump motors 10L and 10R may be applied.

【0038】さらにまた、上記実施例においては、前後
進切換用電磁方向切換弁9をポンプモータ10に内蔵さ
せた場合について説明したが、これに限定されるもので
はなく、ポンプモータ10の外側に別設するようにして
もよい。また、上記実施例においては、前輪駆動車をベ
ースとした実施例について説明したが、これに限らず後
輪駆動車をベースとした場合にも、ポンプ6を後輪側
に、ポンプモータ10を前輪側に配置することで、上記
実施例と同様の作用効果を得ることができる。
Further, in the above embodiment, the case where the forward / reverse switching electromagnetic directional control valve 9 is incorporated in the pump motor 10 has been described, but the present invention is not limited to this, and the electromagnetic motor can be provided outside the pump motor 10. It may be provided separately. Further, in the above-mentioned embodiment, the embodiment based on the front-wheel drive vehicle has been described. By arranging it on the front wheel side, it is possible to obtain the same effect as that of the above-described embodiment.

【0039】さらに、上記実施例においては、駆動側流
体圧駆動手段と従動側流体圧駆動手段とを高圧流路8H
及び低圧流路8Lで連通する場合について説明したが、
これに限定されるものではなく、前後進切換用電磁方向
切換弁9及び31を省略して、高圧流路と低圧流路とを
切り分けない場合でも本発明を適用し得る。
Further, in the above embodiment, the high pressure passage 8H is formed by connecting the driving side fluid pressure driving means and the driven side fluid pressure driving means.
And, the case where the low-pressure channel 8L communicates with each other has been described.
The present invention is not limited to this, and the present invention can be applied even in the case where the forward / reverse switching electromagnetic directional control valves 9 and 31 are omitted and the high pressure passage and the low pressure passage are not separated.

【0040】[0040]

【発明の効果】以上説明したように、請求項1に係る四
輪駆動車によれば、主原動機により駆動される駆動車軸
の駆動力を流体圧伝動機構を介して従動車軸に伝達する
ようにした四輪駆動車において、前記流体圧伝動機構を
設定車速未満で常に伝達トルクを発生するように構成し
たので、車両の発進時から設定車速に達するまでの間で
四輪駆動状態を維持することができると共に、駆動輪の
不必要な空転を抑制してスムーズな発進を行うことがで
きるという効果が得られる。
As described above, according to the four-wheel drive vehicle of the first aspect, the driving force of the drive axle driven by the main prime mover is transmitted to the driven axle via the fluid pressure transmission mechanism. In the four-wheel drive vehicle, since the fluid pressure transmission mechanism is configured to constantly generate the transmission torque at a speed lower than the set vehicle speed, it is necessary to maintain the four-wheel drive state from the start of the vehicle until the set vehicle speed is reached. In addition to the above, it is possible to obtain an effect that unnecessary idling of the drive wheels can be suppressed and a smooth start can be performed.

【0041】また、請求項2に係る四輪駆動車によれ
ば、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを連通する流路を設けて流
体圧伝動機構を構成した四輪駆動車において、前記駆動
車軸と従動車軸との回転数差が発生する初期状態で前記
駆動側流体圧駆動手段の吐出流量が、設定車速未満では
前記従動側流体圧駆動手段の吸入流量より多くなり、設
定車速以上では当該従動側流体圧駆動手段の吸入流量以
下となるように設定したので、車両の発進時から設定車
速に達するまでの間で、従動側流体圧駆動手段をモータ
として作動させることができ、車両の発進時から四輪駆
動状態を維持することができると共に、駆動輪の不必要
な空転を抑制してスムーズな発進を行うことができ、設
定車速以上では、異径タイヤ等により前後輪の回転数差
が発生しても二輪駆動状態を維持して走行抵抗増大によ
る燃費の悪化を防止することができるという効果が得ら
れる。
According to the four-wheel drive vehicle of the second aspect, the drive axle driven by the main prime mover, the drive side fluid pressure drive means driven in conjunction with the drive axle, and the driven axle are interlocked. And a driven-side fluid pressure driving means that is driven by the above-mentioned method, wherein the driving-side fluid pressure driving means and the driven-side fluid pressure driving means are provided with a flow path that connects the discharge port and the suction port to each other. In a four-wheel drive vehicle having a mechanism, when the discharge flow rate of the drive-side fluid pressure drive means is less than a set vehicle speed in an initial state in which a rotational speed difference between the drive axle and the driven axle occurs, the driven-side fluid pressure drive means The intake flow rate of the driven side fluid pressure driving means is set to be equal to or less than the suction flow rate of the driven side fluid pressure driving means above the set vehicle speed. To operate as a motor It is possible to maintain the four-wheel drive state from the start of the vehicle, and to suppress unnecessary idling of the drive wheels to perform a smooth start. Even if a difference in the number of rotations of the wheels occurs, the effect of being able to maintain the two-wheel drive state and prevent deterioration of fuel consumption due to an increase in running resistance is obtained.

【0042】さらに、請求項3に係る四輪駆動車によれ
ば、請求項2において、設定車速前後の駆動側流体圧駆
動手段及び従動側流体圧駆動手段の流量特性を可変容量
ポンプの流量特性で設定するようにしたので、その調整
が容易であると共に、別途センサやコントローラを設け
ることなく、車速に応じた正確な流量特性を得ることが
できるという効果が得られる。
Further, according to the four-wheel drive vehicle of the third aspect, in the second aspect, the flow rate characteristics of the drive side fluid pressure drive means and the driven side fluid pressure drive means before and after the set vehicle speed are set to the flow rate characteristics of the variable displacement pump. Since the setting is made in step (1), the adjustment can be easily performed, and an accurate flow rate characteristic according to the vehicle speed can be obtained without separately providing a sensor or controller.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】上記実施例に適用した吸入絞り型ピストンポン
プ及び斜板型可変容量ポンプモータの吐出流量特性を示
す特性線図である。
FIG. 2 is a characteristic diagram showing a discharge flow rate characteristic of a suction throttle type piston pump and a swash plate type variable displacement pump motor applied to the above embodiment.

【図3】上記実施例の前後車軸回転数差と伝達トルクと
の関係を示す特性線図である。
FIG. 3 is a characteristic diagram showing a relationship between a front-rear axle speed difference and a transmission torque in the above embodiment.

【図4】可変容量ポンプモータの他の実施例を示す概略
構成図である。
FIG. 4 is a schematic configuration diagram showing another embodiment of a variable displacement pump motor.

【図5】トルク制限手段の他の実施例を示す概略構成図
である。
FIG. 5 is a schematic configuration diagram showing another embodiment of the torque limiting means.

【図6】差動装置を省略した場合の実施例を示す概略構
成図である。
FIG. 6 is a schematic configuration diagram showing an embodiment in which a differential device is omitted.

【図7】流体圧ポンプとして回転方向によって吐出口が
変更される流体圧ポンプを適用した場合の実施例を示す
概略構成図である。
FIG. 7 is a schematic configuration diagram showing an embodiment in which a fluid pressure pump whose discharge port is changed depending on a rotation direction is applied as the fluid pressure pump.

【符号の説明】 1 エンジン 2 変速機 3 前輪側差動装置 4 前車軸 5 前輪 6 吸込絞り型ピストンポンプ 7 リザーバタンク 8H 高圧配管 8L 低圧配管 9 前後進切換用電磁方向切換弁 10 斜板型可変容量ポンプモータ 11 差圧発生用オリフィス 12 斜板可変機構 13 リリーフ弁 15 逆止弁 16 オリフィス 17 後輪側差動装置 18 後輪車軸 19 後輪 21 吸入絞り弁 10L,10R 斜板型可変容量ポンプモータ 31 前後進切換用電磁方向切換弁[Explanation of reference symbols] 1 engine 2 transmission 3 front wheel side differential device 4 front axle 5 front wheel 6 suction throttle type piston pump 7 reservoir tank 8H high pressure pipe 8L low pressure pipe 9 forward / reverse switching electromagnetic directional control valve 10 swash plate type variable Displacement pump motor 11 Orifice for generating differential pressure 12 Swash plate variable mechanism 13 Relief valve 15 Check valve 16 Orifice 17 Rear wheel side differential device 18 Rear wheel axle 19 Rear wheel 21 Intake throttle valve 10L, 10R Swash plate type variable displacement pump Motor 31 Electromagnetic directional control valve for forward / reverse switching

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主原動機により駆動される駆動車軸の駆
動力を流体圧伝動機構を介して従動車軸に伝達するよう
にした四輪駆動車において、前記流体圧伝動機構は、設
定車速未満で常に伝達トルクを発生するように構成され
ていることを特徴とする四輪駆動車。
1. A four-wheel drive vehicle in which the drive force of a drive axle driven by a main prime mover is transmitted to a driven axle via a fluid pressure transmission mechanism, wherein the fluid pressure transmission mechanism is always less than a set vehicle speed. A four-wheel drive vehicle, which is configured to generate a transmission torque.
【請求項2】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを連通する流路を
設けて流体圧伝動機構を構成した四輪駆動車において、
前記駆動車軸と従動車軸との回転数差が発生する初期状
態で前記駆動側流体圧駆動手段の吐出流量が、設定車速
未満では前記従動側流体圧駆動手段の吸入流量より多く
なり、設定車速以上では当該従動側流体圧駆動手段の吸
入流量以下となるように設定されていることを特徴とす
る四輪駆動車。
2. A drive axle driven by a prime mover,
A drive-side fluid pressure drive means that is driven in conjunction with the drive axle, and a driven-side fluid pressure drive means that is driven in conjunction with the driven axle; and the drive-side fluid pressure drive means and the driven-side fluid pressure. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is configured by providing a flow path that connects the driving means with each other's discharge port and suction port,
If the discharge flow rate of the drive-side fluid pressure drive means is less than the set vehicle speed in the initial state where the rotational speed difference between the drive axle and the driven axle occurs, it is higher than the intake flow rate of the driven-side fluid pressure drive means, and is equal to or higher than the set vehicle speed. Then, the four-wheel drive vehicle is set such that the flow rate is not more than the suction flow rate of the driven-side fluid pressure drive means.
【請求項3】 前記駆動側流体圧駆動手段は可変容量ポ
ンプで構成され、当該可変容量ポンプの流量特性が、駆
動車軸の低速回転時の流量が高速回転時の流量に比較し
て多くなるように設定されていることを特徴とする請求
項2記載の四輪駆動車。
3. The drive-side fluid pressure drive means is composed of a variable displacement pump, and the flow rate characteristic of the variable displacement pump is such that the flow rate at low speed rotation of the drive axle is larger than the flow rate at high speed rotation. The four-wheel drive vehicle according to claim 2, wherein the four-wheel drive vehicle is set to.
JP15370994A 1994-07-05 1994-07-05 Four-wheel drive vehicle Pending JPH0820252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15370994A JPH0820252A (en) 1994-07-05 1994-07-05 Four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15370994A JPH0820252A (en) 1994-07-05 1994-07-05 Four-wheel drive vehicle

Publications (1)

Publication Number Publication Date
JPH0820252A true JPH0820252A (en) 1996-01-23

Family

ID=15568389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15370994A Pending JPH0820252A (en) 1994-07-05 1994-07-05 Four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH0820252A (en)

Similar Documents

Publication Publication Date Title
JP4327284B2 (en) Four-wheel drive vehicle
US6161643A (en) System of controlling torque transfer in a motor vehicle and related method
JPS6137130B2 (en)
JPH11315907A (en) Driving unit for driving system of vehicle having hydraulic clutch which depends on rotational speed difference
JP3817769B2 (en) Vehicle wheel driving force distribution control device
JPH0820252A (en) Four-wheel drive vehicle
JP3196484B2 (en) Four-wheel drive vehicles
JPS63258223A (en) Four-wheel driving system
JP3237379B2 (en) Four-wheel drive vehicles
JP3196485B2 (en) Four-wheel drive vehicles
JP3198794B2 (en) Four-wheel drive vehicles
JPH0899552A (en) Four wheel drive
JP3582156B2 (en) Four-wheel drive vehicles
JP3904630B2 (en) Four-wheel drive vehicle
JPH0820253A (en) Four-wheel drive vehicle
JPH08258582A (en) Four-wheel drive vehicle
JPH08118977A (en) Four-wheel drive car
JP3593785B2 (en) Four-wheel drive vehicles
JPH09175204A (en) Hydraulic transmission for vehicle
JPH09150641A (en) Four-wheel drive vehicle
JPH09240300A (en) Four-wheel drive vehicle
JPH0899551A (en) Four wheel drive
JPH0435367B2 (en)
JPH07257213A (en) Four-wheel drive vehicle
JPH0976781A (en) Four-wheel drive vehicle