JPH0435367B2 - - Google Patents

Info

Publication number
JPH0435367B2
JPH0435367B2 JP22322183A JP22322183A JPH0435367B2 JP H0435367 B2 JPH0435367 B2 JP H0435367B2 JP 22322183 A JP22322183 A JP 22322183A JP 22322183 A JP22322183 A JP 22322183A JP H0435367 B2 JPH0435367 B2 JP H0435367B2
Authority
JP
Japan
Prior art keywords
rotating shaft
driving force
reference line
steering angle
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22322183A
Other languages
Japanese (ja)
Other versions
JPS60116526A (en
Inventor
Takeo Hiramatsu
Yoshimasa Nagayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP22322183A priority Critical patent/JPS60116526A/en
Publication of JPS60116526A publication Critical patent/JPS60116526A/en
Publication of JPH0435367B2 publication Critical patent/JPH0435367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3505Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】 本発明は前輪・後輪を同一のエンジンで駆動し
4輪駆動とする場合の駆動連結装置に関し、車両
の経時変化等に応じて最適に制御できるようにし
たものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drive coupling device for four-wheel drive in which the front and rear wheels are driven by the same engine, and is capable of optimal control in accordance with changes in the vehicle over time. be.

前輪・後輪を同一のエンジンで駆動する4輪駆
動車においては、前輪および後輪のタイヤの有効
径に多少の相違があつたり、旋回走行の場合はタ
イヤのころがり経路の違いからタイヤにすべりを
伴い駆動系に無理な力が作用するためこれを防止
する手段を設ける必要がある。
In a four-wheel drive vehicle where the front and rear wheels are driven by the same engine, there is a slight difference in the effective diameter of the front and rear tires, and when driving in turns, the tire may slip due to the difference in the rolling path of the tire. As a result, an unreasonable force is applied to the drive system, so it is necessary to provide a means to prevent this.

このため従来からフルタイム4輪駆動車では前
輪に駆動力を伝達する第1回転軸と後輪に駆動力
を伝達する第2回転軸との間に回転速度差が生じ
ても駆動力を伝達できるようセンタデフと称する
第3の差動装置が用いられており、重量、大きさ
およびコストの面からパートタイム4輪駆動車に
比べて不利であると共に差動回転が可能であるこ
とから4輪駆動を必要とするときに4輪駆動が達
成できない場合があり、デフロツク機構を必要と
する等装置の一層複雑化を招いてしまう。
For this reason, in conventional full-time four-wheel drive vehicles, even if there is a rotational speed difference between the first rotating shaft that transmits driving force to the front wheels and the second rotating shaft that transmits driving force to the rear wheels, the driving force is transmitted. A third differential device called a center differential is used to allow the vehicle to rotate, which is disadvantageous compared to a part-time 4-wheel drive vehicle in terms of weight, size, and cost. There are cases where four-wheel drive cannot be achieved when a drive is required, and the device becomes even more complex, such as requiring a deflock mechanism.

一方、パートタイム4輪駆動車にあつてはセン
タデフを設置しないものが多く、旋回走行により
生ずるタイトコーナブレーキング現象等4輪駆動
による不具合がある場合には運転者による操作で
2輪駆動とするよう指示されており、運転操作が
煩雑となる欠点がある。
On the other hand, many part-time 4-wheel drive vehicles do not have a center differential, and if there are problems with 4-wheel drive such as tight corner braking caused by cornering, the driver must operate 2-wheel drive. This has the disadvantage that driving operations are complicated.

そこで、従来のセンタデフに相当するものとし
て電磁クラツチを用いるものが提案されており
(特開昭57−15019号)、上記欠点を解消するため
常時駆動される前輪用の差動装置の左右の駆動軸
それぞれに回転センサを設け、この回転信号に基
づき前輪の左右のスリツプ状態を検出したり、あ
るいは車速センサと操舵角センサとの信号により
電磁クラツチの係合力を調整して電磁クラツチで
前後輪の速度差を許容したり、あるいは前輪のス
リツプによる走行不能時に4輪駆動とするよう制
御している。
Therefore, a system using an electromagnetic clutch has been proposed as an equivalent to the conventional center differential (Japanese Patent Application Laid-open No. 15019/1986), and in order to eliminate the above drawback, the left and right drive of the differential device for the front wheels that is constantly driven has been proposed. A rotation sensor is installed on each shaft, and the left and right slip status of the front wheels is detected based on the rotation signal, or the engagement force of the electromagnetic clutch is adjusted based on signals from the vehicle speed sensor and steering angle sensor. It allows for speed differences, or controls the vehicle to use four-wheel drive when the vehicle is unable to travel due to front wheel slip.

ところが、電磁クラツチの係合力の制御は、操
舵角に対し一定の関係となるようにしており、車
両の使用による経時変化、例えば荷重配分やタイ
ヤ摩耗による前後輪のタイヤ有効径の変化によつ
て前後輪のスリツプの発生状態が変化してしまう
と、電磁クラツチの係合力が最適に制御されず、
旋回時に必要な回転速度差(スリツプ)が前後輪
間に得られない場合には、ブレーキング現象を生
じ、タイヤの偏摩耗が起きたり、ハンドルが重く
なつて操縦安定性を害するおそれがある。
However, the engagement force of the electromagnetic clutch is controlled in such a way that it has a fixed relationship with the steering angle, and this is due to changes over time due to vehicle use, such as changes in the effective diameter of the front and rear tires due to load distribution or tire wear. If the conditions in which slip occurs in the front and rear wheels change, the engagement force of the electromagnetic clutch will not be optimally controlled.
If the required rotational speed difference (slip) cannot be obtained between the front and rear wheels when turning, a braking phenomenon may occur, causing uneven tire wear, and the steering becomes heavy, which may impair steering stability.

本発明はかかる従来の欠点を解消し、車両に経
時変化があつた場合にも常に最適に制御し得る4
輪駆動用駆動連結装置の提供を目的とする。かか
る目的を達成する本発明の第1の構成は、前輪に
駆動力を伝達する第1回転軸と後輪に駆動力を伝
達する第2回転軸とをこれら第1回転軸と第2回
転軸との回転速度差によつて駆動されると共に回
転速度差に応じた油量を吐出して駆動力を伝達し
得る油圧ポンプを介して連結し、前記第1回転軸
および第2回転軸のそれぞれの回転速度を検出す
る回転センサを設けると共に操舵角を検出する操
舵角センサを設ける一方、前記油圧ポンプの吐出
圧を制御し伝達される駆動力を調整する制御弁を
設け、操舵角の変化に対する第1回転軸と第2回
転軸のスリツプ率とで基準線を予め設定し、この
基準線より前記スリツプ率が大きく且つ正のとき
または基準線よりスリツプ率が小さく且つ負のと
き前記油圧ポンプの吐出圧を増大させると共にこ
れ以外のとき吐出圧を零とするよう前記制御弁を
制御する制御装置を具えたことを特徴とし、さら
に第2の構成は前輪に駆動力を伝達する第1回転
軸と後輪に駆動力を伝達する第2回転軸とをこれ
ら第1回転軸と第2回転軸との回転速度差によつ
て駆動されると共に回転速度差に応じた油量を吐
出して駆動力を伝達し得る油圧ポンプを介して連
結し、前記第1回転軸および第2回転軸のそれぞ
れの回転速度を検出する回転センサを設けると共
に操舵角を検出する操舵角センサを設ける一方、
前記油圧ポンプの吐出圧を制御し伝達される駆動
力を調整する制御弁を設け、操舵角の変化に対す
る第1回転軸と第2回転軸のスリツプ率で決まる
基準線を操舵角が零かつエンジンの出力トルクが
零のとき検出されるスリツプ率により前記基準線
と平行な新たな基準線に更新する機構を具えると
共にこの新たな基準線より前記スリツプ率が大き
く且つ正のときまたは基準線より前記スリツプ率
が小さく且つ負のとき前記油圧ポンプの吐出圧を
増大させると共にこれ以外のとき吐出圧を零とす
るよう前記制御弁を制御する制御装置を具えたこ
とを特徴とする。
The present invention eliminates such conventional drawbacks and enables optimum control at all times even when the vehicle changes over time.
The purpose of the present invention is to provide a drive coupling device for wheel drive. A first configuration of the present invention that achieves this object is to connect a first rotating shaft that transmits driving force to the front wheels and a second rotating shaft that transmits driving force to the rear wheels. The first rotating shaft and the second rotating shaft are connected to each other via a hydraulic pump that is driven by a rotational speed difference between the first and second rotating shafts and is capable of discharging an amount of oil corresponding to the rotational speed difference and transmitting driving force. A rotation sensor is provided to detect the rotational speed of the hydraulic pump, and a steering angle sensor is provided to detect the steering angle.A control valve is provided to control the discharge pressure of the hydraulic pump and adjust the transmitted driving force. A reference line is set in advance by the slip ratios of the first rotation shaft and the second rotation shaft, and when the slip ratio is larger than this reference line and positive, or when the slip ratio is smaller than the reference line and negative, the hydraulic pump The invention is characterized by comprising a control device that controls the control valve to increase the discharge pressure and to make the discharge pressure zero at other times, and further includes a first rotary shaft that transmits driving force to the front wheels. and a second rotating shaft that transmits driving force to the rear wheels are driven by the rotational speed difference between the first rotating shaft and the second rotating shaft, and are driven by discharging an amount of oil according to the rotational speed difference. A rotation sensor connected via a hydraulic pump capable of transmitting force and detecting the rotational speed of each of the first rotation shaft and the second rotation shaft is provided, and a steering angle sensor is provided to detect the steering angle;
A control valve is provided to control the discharge pressure of the hydraulic pump and adjust the transmitted driving force, and a reference line determined by the slip ratio of the first rotating shaft and the second rotating shaft with respect to changes in the steering angle is set when the steering angle is zero and the engine The slip ratio detected when the output torque of The present invention is characterized by comprising a control device that controls the control valve to increase the discharge pressure of the hydraulic pump when the slip rate is small and negative, and to make the discharge pressure zero at other times.

以下、本発明の一実施例を図面に基づき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図は本発明の4輪駆動用駆動連結装置の一
実施例にかかる概略構成図である。
FIG. 1 is a schematic diagram of an embodiment of a four-wheel drive drive coupling device of the present invention.

横置きされたエンジン1に変速機2が連結さ
れ、その出力軸3に取付けたドライブギヤ4から
駆動力が取り出され、アイドルギヤ5を介して両
端部にギヤ6,7を具えた中間伝達軸8に伝達さ
れ、この中間伝達軸8の一方のギヤ7から前輪9
用の差動装置10に駆動力が伝達されて前輪9が
駆動される一方、前輪9に伝達された駆動力がそ
のまま第1回転軸11にギヤ12を介して伝達さ
れ4輪駆動用駆動連結装置13を経て第2回転軸
14に伝達されるようになつており、回転取出方
向を変換する歯車機構15を介して後輪16用の
差動装置17に駆動力が伝達され、後輪16を駆
動する。
A transmission 2 is connected to an engine 1 placed horizontally, and driving force is taken out from a drive gear 4 attached to an output shaft 3 of the transmission, and an intermediate transmission shaft is provided with gears 6 and 7 at both ends via an idle gear 5. 8, and from one gear 7 of this intermediate transmission shaft 8 to the front wheel 9
The driving force is transmitted to the differential gear 10 for driving the front wheels 9, while the driving force transmitted to the front wheels 9 is directly transmitted to the first rotating shaft 11 via the gear 12 to form a four-wheel drive drive connection. The driving force is transmitted to the second rotating shaft 14 via the device 13, and is transmitted to the differential device 17 for the rear wheels 16 via the gear mechanism 15 that changes the direction of rotation. to drive.

この4輪駆動用駆動連結装置13は、第2図に
その断面構造を示すように、油圧ポンプであるベ
ーンポンプ20とこれに付属する油圧制御回路2
1とで構成されており、ベーンポンプ20のロー
タ20aが前輪9への駆動力がそのまま伝達され
る第1回転軸11と連結されると共にカムリング
20bが後輪16に駆動力を伝達する第2回転軸
14に連結してある。この油圧ポンプとしてのベ
ーンポンプ20はその回転数に比例した油量を吐
出するものであり、ロータ20aとカムリング2
0bとの間に相対回転、すなわち第1回転軸11
と第2回転軸14との間に相対回転が生ずると油
圧ポンプとして機能して油圧が発生されるもので
あり、ベーンポンプ20の吐出口(相対回転方向
先端の吸込吐出口がこれに相当)を塞ぐことで油
を介してその静圧でロータ20aとカムリング2
0bとが剛体のようになつて一体回転される。こ
のためカムリング20bには対角位置に2つのポ
ンプ室が形成され回転方向基端側に位置したとき
吸込口となり、先端側に位置したとき吐出口とな
る4個の吸込吐出口22,23,24,25がほ
ぼ対角位置に形成してあり、それぞれ同一機能を
なす対角位置の吸込吐出口22,24と吸込吐出
口23,25がそれぞれカムリング20bの回転
状態でも固定側に油を送通し得る機構を介して第
1油路26と第2油路27とで連通してある。ま
た、第1油路26と第2油路27との間にそれぞ
れチエツク弁28,29を介してオイル溜30が
連通され、オイル溜30からの流れのみが許容さ
れると共に第1油路26と第2油路27との間に
流出のみを許容する相対向した2つのチエツク弁
31,32を介して両油路26,27が連通さ
れ、この2つのチエツク弁31,32の中間部が
リリーフ弁33に連通している。このリリーフ弁
33のスプリング34側である中間部には、オイ
ル溜30と2つのチエツク弁28,29までの中
間部との連通路35が設けてあり、スプリング3
4の他端には、スプリング34によりリリーフ弁
33の開弁圧力を制御するピストン36が設けら
れ、ピストン36の他端にはデユーテイ制御され
る制御油圧が作用するようになつている。そし
て、デユーテイ制御のためオリフイス37を介し
て供給される一定圧力の油圧をソレノイド弁38
で制御するが、このソレノイド弁38はコンピユ
ータ39に電気的に接続され、コンピユータ39
に入力されるエンジン回転数NE、第1回転軸1
1の回転数N1、第2回転軸14の回転数N2、ス
ロツトル開度β、ブレーキ作動検出スイツチSwB
転舵角検出信号θによりピストン36の他端に作
用する油圧を制御する。尚、オリフイス37を介
して供給される一定圧力の油圧は、変速機2がオ
ートマチツクトランスミツシヨンの場合にはその
制御用油圧を利用すれば良く、手動式の場合には
オイルポンプを設置する等によりこの油圧を確保
する。
As shown in FIG. 2, the four-wheel drive drive coupling device 13 includes a vane pump 20, which is a hydraulic pump, and a hydraulic control circuit 2 attached thereto.
1, the rotor 20a of the vane pump 20 is connected to the first rotating shaft 11 through which the driving force to the front wheels 9 is directly transmitted, and the cam ring 20b is connected to the second rotating shaft through which the driving force is transmitted to the rear wheels 16. It is connected to a shaft 14. The vane pump 20, which serves as a hydraulic pump, discharges an amount of oil proportional to its rotation speed, and has a rotor 20a and a cam ring 2.
0b, relative rotation, that is, the first rotation axis 11
When a relative rotation occurs between the shaft and the second rotating shaft 14, it functions as a hydraulic pump and generates hydraulic pressure, and the discharge port of the vane pump 20 (the suction and discharge port at the tip in the relative rotation direction corresponds to this). By blocking the rotor 20a and the cam ring 2, the static pressure is applied via oil.
0b become like a rigid body and are rotated together. For this reason, two pump chambers are formed at diagonal positions in the cam ring 20b, and four suction and discharge ports 22, 23, 24 and 25 are formed at almost diagonal positions, and the suction and discharge ports 22 and 24 and the suction and discharge ports 23 and 25, which are located diagonally and have the same function, respectively, send oil to the stationary side even when the cam ring 20b is rotating. The first oil passage 26 and the second oil passage 27 are in communication with each other via a mechanism that allows passage therethrough. Further, an oil reservoir 30 is communicated between the first oil passage 26 and the second oil passage 27 via check valves 28 and 29, respectively, and only flow from the oil reservoir 30 is allowed, and the first oil passage 27 Both oil passages 26 and 27 are communicated with each other through two check valves 31 and 32 facing each other, which allow only outflow, and an intermediate portion between these two check valves 31 and 32 is connected to the second oil passage 27. It communicates with the relief valve 33. A communication path 35 between the oil reservoir 30 and the intermediate portions up to the two check valves 28 and 29 is provided in the intermediate portion of the relief valve 33 on the spring 34 side.
A piston 36 is provided at the other end of the piston 36 for controlling the opening pressure of the relief valve 33 by a spring 34, and a control hydraulic pressure that is duty-controlled acts on the other end of the piston 36. Then, for duty control, a constant pressure of oil pressure supplied through an orifice 37 is applied to a solenoid valve 38.
This solenoid valve 38 is electrically connected to a computer 39, and is controlled by the computer 39.
The engine speed N E input to the first rotating shaft 1
1 rotation speed N 1 , rotation speed N 2 of the second rotating shaft 14 , throttle opening β, brake operation detection switch S wB ,
The hydraulic pressure acting on the other end of the piston 36 is controlled by the steering angle detection signal θ. Note that the constant pressure oil pressure supplied through the orifice 37 may be used as the control oil pressure if the transmission 2 is an automatic transmission, or an oil pump may be installed in the case of a manual transmission. Secure this oil pressure by etc.

このような油圧制御回路21とすることでロー
タ20aとカムリング20bとの相対回転方向に
よらず常に吐出圧がリリーフ弁33の弁体に作用
し、オイル溜30が吸込口と連通することとな
る。
With such a hydraulic control circuit 21, the discharge pressure always acts on the valve body of the relief valve 33 regardless of the relative rotation direction between the rotor 20a and the cam ring 20b, and the oil reservoir 30 communicates with the suction port. .

次に、かように構成した4輪駆動用駆動連結装
置による駆動状態を説明する。
Next, the driving state of the four-wheel drive drive coupling device configured as described above will be explained.

制御用のコンピユータ39には、予め前輪9の
回転速度に相当する第1回転軸11の回転数N1
と後輪16の回転速度に相当する第2回転軸14
の回転数N2とから次式によつてスリツプ率Sを
演算し、操舵角θに対して必要なスリツプ率Sが
記憶させてある。
The control computer 39 is programmed with the rotational speed N 1 of the first rotating shaft 11 corresponding to the rotational speed of the front wheels 9 in advance.
and the second rotating shaft 14 corresponding to the rotational speed of the rear wheel 16.
The slip rate S is calculated from the rotational speed N2 using the following equation, and the slip rate S required for the steering angle θ is stored.

S=N1−N2/N1 すなわち、操舵角θ=Oのときのスリツプ率S0
を基準値とし、第1回転軸11と第2回転軸14
との間で必要なスリツプ率Sは操舵角θに対して
一定の変化率αであれば良いとし、これを傾きα
とした基準線LとしてS=S0+α・θなる関係を
記憶させてあり、例えば第3図に示すような基準
線Lとしてあるのである。
S=N 1 −N 2 /N 1 , that is, the slip rate S 0 when the steering angle θ=O
is the reference value, and the first rotating shaft 11 and the second rotating shaft 14
The slip rate S required between
The relationship S=S 0 +α·θ is stored as a reference line L, such as the one shown in FIG. 3, for example.

そして、かような基準線Lに基づき、操舵角θ
と第1回転軸11の回転数N1および第2回転軸
14の回転数N2との実測値によつて油圧ポンプ
20の吐出圧が制御される。この制御は第3図に
示す4つの範囲A,B,C,Dによつてそれぞれ
行なわれる。
Then, based on such a reference line L, the steering angle θ
The discharge pressure of the hydraulic pump 20 is controlled by the actually measured values of the rotation speed N 1 of the first rotation shaft 11 and the rotation speed N 2 of the second rotation shaft 14 . This control is performed respectively in four ranges A, B, C, and D shown in FIG.

ある運転状態で実測されたスリツプ率S1が基
準線Lより上側(S1>L)であり、且つこのス
リツプ率S1が正(S1>O)の場合、すなわち前
輪9が早すぎると共に後輪16が遅すぎる場合
のAの範囲では、後輪16への伝達トルクを増
大し、スリツプ率S1を小さくするよう4輪駆動
状態を強める必要がある。
If the slip rate S 1 actually measured in a certain driving state is above the reference line L (S 1 >L), and if this slip rate S 1 is positive (S 1 >O), that is, the front wheels 9 move too quickly and In the range A where the rear wheels 16 are too slow, it is necessary to increase the torque transmitted to the rear wheels 16 and strengthen the four-wheel drive state so as to reduce the slip ratio S1 .

そこで、この場合には、コンピユータ39よ
りデユーテイ制御ソレノイド弁38に信号を送
出して油圧ポンプ20の吐出圧を高めるように
する。
Therefore, in this case, the computer 39 sends a signal to the duty control solenoid valve 38 to increase the discharge pressure of the hydraulic pump 20.

この結果、第1回転軸11と第2回転軸14
との間に生じる回転速度差によりベーンポンプ
20が機能してこの回転速度差に応じた油圧が
発生し、ロータ20aとカムリング20bが一
体となつて回転し、この吐出圧が制御された油
圧とベーンの受圧面積とに対応した駆動力が後
輪16に伝達されて4輪駆動状態となる。
As a result, the first rotating shaft 11 and the second rotating shaft 14
The vane pump 20 functions due to the rotational speed difference generated between the vane pump 20 and the vane pump 20, which generates hydraulic pressure corresponding to the rotational speed difference.The rotor 20a and the cam ring 20b rotate as a unit, and this discharge pressure is controlled between the controlled hydraulic pressure and the vane pump. A driving force corresponding to the pressure receiving area is transmitted to the rear wheels 16, resulting in a four-wheel drive state.

この場合のベーンポンプ20における油の流
れは、第4図aに示すように、相対的にロータ
20aが回転することとなり、吸込吐出口2
3,25が吸込口となつてチエツク弁29を介
してオイル溜30から油が吸込まれる一方、吸
込吐出口22,24が吐出口となつてチエツク
弁28,32を閉じると同時にチエツク弁31
を介してリリーフ弁33に導びかれる。尚、図
中実線矢印が吐出油の流れを、破線矢印が吸込
油の流れをそれぞれ示す。
In this case, the oil flow in the vane pump 20 is caused by the relative rotation of the rotor 20a, as shown in FIG.
3 and 25 serve as suction ports, and oil is sucked in from the oil reservoir 30 via the check valve 29, while the suction and discharge ports 22 and 24 serve as discharge ports, and the check valve 31 is closed at the same time as the check valves 28 and 32 are closed.
is guided to the relief valve 33 via. In the figure, solid line arrows indicate the flow of discharged oil, and broken line arrows indicate the flow of suction oil.

ある運転状態で実測されたスリツプ率S1が基
準線Lより上側(S1>L)であり、且つスリツ
プ率S1が負(S1<O)で後輪16の方が早すぎ
る場合、すなわち操舵状態でしかもブレーキン
グさり前輪9がロツク気味となる場合等のBの
範囲では、吐出圧を高めて4輪駆動状態とする
と、逆駆動が生じ前輪9と後輪16とで駆動力
の正負が互いに逆になつてしまう。
If the slip rate S 1 actually measured in a certain driving state is above the reference line L (S 1 >L), and the slip rate S 1 is negative (S 1 <O) and the rear wheel 16 is moving too quickly, In other words, in range B, such as when the front wheels 9 tend to lock up during steering and braking, if the discharge pressure is increased to create a four-wheel drive state, reverse drive will occur and the front wheels 9 and rear wheels 16 will change the driving force. The positive and negative are reversed.

そこで、かかる状態では4輪駆動状態となら
ないようコンピユータ39からデユーテイ制御
ソレノイド弁38に信号を送出しリリーフ弁3
3を開放して吐出圧をOとしベーンポンプ20
により発生した油を単に循環させる。
Therefore, in such a state, the computer 39 sends a signal to the duty control solenoid valve 38 to prevent the relief valve 3 from entering the four-wheel drive state.
3 and set the discharge pressure to O, vane pump 20
Simply circulate the oil generated.

ある運転状態で実測されたスリツプ率S1が基
準線Lより下側(S1<L)であり、且つスリツ
プ率S1が正(S1>O)の場合には、基準線Lよ
り下側であることから後輪16が多少早く回転
する必要がある一方でスリツプ率S1が正である
ので操舵角θに対しては前輪9が多少早く回転
しなければならない場合であるCの範囲では、
上記の場合と同様に吐出圧を高めて4輪駆動
状態とすると、前輪9と後輪16との駆動力の
正負が互いに逆となつてしまう。
If the slip ratio S 1 actually measured in a certain operating state is below the reference line L (S 1 <L), and if the slip ratio S 1 is positive (S 1 >O), the slip ratio S 1 is below the reference line L. Range C, which is the case where the rear wheels 16 need to rotate somewhat faster because the steering angle is on the side, and the front wheels 9 have to rotate a little faster with respect to the steering angle θ because the slip rate S1 is positive. Well then,
If the discharge pressure is increased to create a four-wheel drive state in the same way as in the above case, the polarity of the driving forces of the front wheels 9 and the rear wheels 16 will be opposite to each other.

したがつて、このCの範囲においても前後輪
9,16間で矛盾が生ずる4輪駆動状態を回避
するためコンピユータ39からデユーテイ制御
ソレノイド弁38に信号を送出してリリーフ弁
33を開放してベーンポンプ20の吐出圧をO
とし前2輪駆動とする。
Therefore, in order to avoid a four-wheel drive state in which a contradiction occurs between the front and rear wheels 9 and 16 even in this range of C, the computer 39 sends a signal to the duty control solenoid valve 38 to open the relief valve 33 and operate the vane pump. 20 discharge pressure to O
It has front two-wheel drive.

ある運転状態で実測されたスリツプ率S1が基
準線Lより下側(S1<L)であり、したがつて
後輪16が多少早く回転する必要がある状態
で、且つスリツプ率S1が負(S1<O)となつて
前輪9が遅く後輪16が多少早い場合であるD
の範囲では、上記、の状態と異なりこの状
態を保持しても互いに駆動力の正負が逆となる
等の矛盾がないので4輪駆動状態とする。
The slip rate S 1 actually measured in a certain driving condition is below the reference line L (S 1 <L), and therefore the rear wheels 16 need to rotate somewhat faster, and the slip rate S 1 is lower than the reference line L (S 1 <L). D, which is negative (S 1 < O) and the front wheel 9 is slow and the rear wheel 16 is somewhat fast.
In this range, unlike the above state, there is no contradiction such as the positive and negative polarity of the driving force being reversed even if this state is maintained, so the four-wheel drive state is defined.

そこで、コンピユータ39よりデユーテイ制
御ソレノイド弁38に信号を送り、リリーフ弁
38の開弁圧力を高めてベーンポンプ20の吐
出圧を高め後輪16への駆動力の伝達量を増大
する。
Therefore, the computer 39 sends a signal to the duty control solenoid valve 38 to increase the opening pressure of the relief valve 38 to increase the discharge pressure of the vane pump 20 and increase the amount of driving force transmitted to the rear wheels 16.

この場合は、例えば前輪9のブレーキ状態で
ロツク気味となる場合であり、4輪駆動用駆動
連結装置13の第1回転軸11と第2回転軸1
4との間に上述とは逆方向に回転速度差が生
じ、ベーンポンプ20では、第4図bに示すよ
うな油の流れが生じ、吸込吐出口22,24が
吸込口となり、チエツク弁28を介してオイル
溜30から油が吸込まれる一方、吸込吐出口2
3,25が吐口出となり第2油路27を経てチ
エツク弁29,31を閉じてチエツク弁32か
らリリーフ弁33に導びかれ大きな油圧が作用
するが、この吐出油の圧力がデユーテイ制御ソ
レノイド弁38で制御され所定の駆動力が後輪
16に伝達されて4輪駆動状態となる結果、後
輪16へのブレーキトルクを増大して前輪9の
ロツクを防止する。
In this case, for example, the brake state of the front wheels 9 is a little locked, and the first rotation shaft 11 and the second rotation shaft 1 of the four-wheel drive drive coupling device 13
4, a rotational speed difference occurs in the opposite direction to that described above, and in the vane pump 20, oil flows as shown in FIG. Oil is sucked from the oil reservoir 30 through the suction outlet 2
3 and 25 are discharge ports, and the check valves 29 and 31 are closed through the second oil passage 27, and the check valve 32 is led to the relief valve 33, where a large hydraulic pressure is applied.The pressure of this discharge oil is applied to the duty control solenoid valve. 38, a predetermined driving force is transmitted to the rear wheels 16, resulting in a four-wheel drive state, thereby increasing the brake torque to the rear wheels 16 to prevent the front wheels 9 from locking.

かような4輪駆動用駆動連結装置13によれ
ば、従来パートタイム4輪駆動車で4輪駆動状態
を必要とする場合には運転者の操作が必要であつ
たものが、自動的に4輪駆動と2輪駆動との切換
が行なわれると共に前輪と後輪との回転速度差に
応じた駆動力による4輪駆動状態が得られる。ま
た、フルタイム4輪駆動車では必ず装備されてい
たセンタデフに比べ小型コンパクト化をはかるこ
とができると共に重量軽減もはかれ、コスト低減
ともなる。
According to such a 4-wheel drive drive coupling device 13, when a part-time 4-wheel drive vehicle requires a 4-wheel drive state, the driver's operation is automatically required. Switching between wheel drive and two-wheel drive is performed, and a four-wheel drive state is obtained with a driving force corresponding to the rotational speed difference between the front wheels and the rear wheels. In addition, it can be made smaller and more compact than the center differential that is always installed in full-time four-wheel drive vehicles, and it also reduces weight and costs.

さらに、前後輪9,16の回転速度に対応する
第1回転軸11の回転数N1と第2回転軸14の
回転数N2と操舵角θとから、その運転状態を4
つの範囲A,B,C,Dに分けて4輪駆動状態を
制御することで、4輪駆動車で問題となるタテト
コーナブレーキング現象や前後輪の駆動力の正負
が互いに逆となる等の不具合を解消できると共に
4輪による駆動とエンジンブレーキが必要な場合
にその状態が得られる。
Furthermore, from the rotation speed N 1 of the first rotation shaft 11 corresponding to the rotation speed of the front and rear wheels 9, 16, the rotation speed N 2 of the second rotation shaft 14, and the steering angle θ, the operating state can be determined as 4.
By controlling the four-wheel drive state in three ranges A, B, C, and D, problems such as vertical corner braking, which is a problem with four-wheel drive vehicles, and the polarity of the driving force of the front and rear wheels are reversed, can be avoided. This eliminates the problem and provides a state where four-wheel drive and engine braking are required.

次に、本発明の他の実施例について説明する。 Next, other embodiments of the present invention will be described.

上記実施例では、基準線Lに基づき運転状態を
4つの範囲A,B,C,Dに分け、それぞれの状
態に応じて4輪駆動用駆動連結装置13を制御し
ているが、車両の経時変化により、例えば荷重配
分やタイヤ摩耗などによつてタイヤの有効径が変
化すると、予め上述のように基準値S0と傾きαと
から定めた基準線Lでは操舵角θとこれに対応し
たスリツプ率Sとの関係が最適な値からずれてし
まう。
In the above embodiment, the driving state is divided into four ranges A, B, C, and D based on the reference line L, and the four-wheel drive drive coupling device 13 is controlled according to each state. When the effective diameter of the tire changes due to changes such as load distribution or tire wear, the steering angle θ and the corresponding slip will change at the reference line L determined in advance from the reference value S 0 and the slope α as described above. The relationship with the rate S deviates from the optimal value.

そこで、基準値S0を車両の経時変化により更新
し、更新した基準線によつて制御を行なう。
Therefore, the reference value S 0 is updated based on changes in the vehicle over time, and control is performed using the updated reference line.

まず、第1回転軸11の回転数N1と第2回転
軸14の回転数N2とから実際のスリツプ率S1
求める。このとき、基準値S0と同一の条件で得ら
れたスリツプ率S1を知る必要があるので、車両の
走行中、操舵角θがO、即ち直進状態で、しかも
エンジン1の出力トルクTEがOの場合に第1回
転軸11の回転数N1と第2回転軸14の回転数
N2をそれぞれ検出しこの状態の実際のスリツプ
率S1を求め、これを新たに基準値とする。(予め
定めたS0と同一のときはそのままとする。) 尚、操舵角θ=Oは操舵角センサから検出する
が、エンジン1の出力トルクTE=Oとは、車両
の走行抵抗をOとみなしたとき、ある一定速度を
保持して走行可能なエンジン1の出力トルクTE
をいい、予め定めたエンジン回転数NEに対する
エンジントルクTE(実際には、ある程度の幅をと
る)の関係から求めたり、あるいは予め定めたエ
ンジン回転数NEに対するスロツトル開度β(実際
には、ある程度の幅をとる)の関係から出力トル
クTE=Oを検出する。
First, the actual slip rate S 1 is determined from the rotation speed N 1 of the first rotation shaft 11 and the rotation speed N 2 of the second rotation shaft 14 . At this time, it is necessary to know the slip ratio S 1 obtained under the same conditions as the reference value S 0 , so when the vehicle is running, the steering angle θ is O, that is, the straight-ahead state, and the output torque of the engine 1 is T E When is O, the number of revolutions N 1 of the first rotating shaft 11 and the number of revolutions of the second rotating shaft 14
N 2 is detected, the actual slip rate S 1 in this state is determined, and this is used as a new reference value. (If it is the same as the predetermined S 0 , leave it as is.) Note that the steering angle θ=O is detected from the steering angle sensor, but the output torque T E =O of the engine 1 means the running resistance of the vehicle. When it is assumed that the output torque T E of engine 1 that can maintain a certain constant speed
is calculated from the relationship between the engine torque T E (actually, it takes a certain range) with respect to the predetermined engine speed N E , or the throttle opening β (actually The output torque T E =O is detected from the relationship (has a certain range).

こうして基準値S0をS1に更新したのち、操舵角
θに対するスリツプ率Sの変化率は一定のままで
あるとし、傾きαは同一とする。
After the reference value S 0 is updated to S 1 in this way, it is assumed that the rate of change of the slip rate S with respect to the steering angle θ remains constant, and the slope α is assumed to be the same.

したがつて、基準値をS1に更新したのちの新た
な基準線L1は次式を満足する直線となる。
Therefore, the new reference line L 1 after updating the reference value to S 1 becomes a straight line that satisfies the following equation.

L1=S1+α・θ こうして、新たな基準線L1が設定されたなら
ば、上述と同様に運転状態に応じた4つの範囲
A,B,C,Dあるいは新たな基準値S1がS1≧O
の場合には3つの範囲A,C,Dに分けてそれぞ
れベーンポンプ20の吐出圧を制御して4輪駆動
状態あるいは2輪駆動状態を得る。このような経
時変化を考慮した場合の制御を表わしたのが第5
図に示すフローチヤートである。
L 1 = S 1 + α・θ In this way, once the new reference line L 1 has been set, the four ranges A, B, C, and D or the new reference value S 1 can be set according to the operating conditions as described above. S 1 ≧O
In this case, the discharge pressure of the vane pump 20 is controlled in three ranges A, C, and D to obtain a four-wheel drive state or a two-wheel drive state. The fifth section shows control when such changes over time are taken into consideration.
This is a flowchart shown in the figure.

かようにタイヤの有効径の変化に応じて基準線
Lを更新しながら4輪駆動用駆動連結装置を制御
することで、車両に経時変化があつても常に前後
輪の実際に生ずるスリツプ率S1に基づいて制御で
き、最適な運転状態が得られると共にブレーキン
グ現象を生じたり、タイヤの偏摩耗を生ずること
がなく操縦安定性を良好に保つことができる。
In this way, by controlling the four-wheel drive drive coupling device while updating the reference line L according to changes in the effective diameter of the tires, the actual slip rate S of the front and rear wheels can always be maintained even if the vehicle changes over time. 1 , it is possible to obtain optimal driving conditions and maintain good steering stability without causing braking phenomena or uneven tire wear.

尚、上記実施例では4輪駆動用駆動連結装置1
3の油圧ポンプとしてベーンポンプを用い、しか
も吸込吐出口が4個の平衡形のもので説明した
が、駆動力の伝達量によつては吸込吐出口が2個
の不平衡形ベーンポンプとすることも可能であ
り、他の形式の油圧ポンプ、例えば内接ギヤポン
プ、トロコイドポンプ、ハイポサイクロイドポン
プ、アキシヤルおよびラジアルプランジヤポンプ
等のものも使用でき、回転速度差に応じて吐出油
量が変化する形式のものであれば良い。また、通
常の直進状態で前輪を駆動するものに限らず後輪
を駆動する形式のものにも適用できる。さらに、
変速機も手動式、自動式のいずれであつても良
い。
In the above embodiment, the four-wheel drive drive coupling device 1
In the explanation, a vane pump is used as the hydraulic pump in step 3, and it is a balanced type with four suction and discharge ports, but depending on the amount of driving force transmitted, an unbalanced type vane pump with two suction and discharge ports may be used. Possible, and other types of hydraulic pumps such as internal gear pumps, trochoid pumps, hypocycloid pumps, axial and radial plunger pumps, etc., can also be used, such as those whose discharge oil volume changes according to the difference in rotational speed. That's fine. Furthermore, the present invention is applicable not only to a type that drives the front wheels in a normal straight-ahead state but also to a type that drives the rear wheels. moreover,
The transmission may also be manual or automatic.

以上、実施例とともに具体的に説明したように
本発明の第1構成・作用によれば、前輪に駆動力
を伝達する第1回転軸と後輪に駆動力を伝達する
第2回転軸とをこれらの回転速度差に応じて駆動
され且つ回転速度差に応じた油量を吐出する油圧
ポンプを介して連結し、その静的油圧により駆動
力を伝達して4輪駆動状態を得ると共に第1回転
軸と第2回転軸との実測されたスリツプ率に応じ
て、予め定めた操舵角とスリツプ率との関係を表
わす基準線に基づいて油圧ポンプの吐出圧を制御
するので実際に発生するスリツプ率に応じて最適
な4輪駆動状態あるいは2輪駆動状態を得ること
ができる。
As described above in detail with the embodiments, according to the first configuration and operation of the present invention, the first rotating shaft that transmits the driving force to the front wheels and the second rotating shaft that transmits the driving force to the rear wheels are connected to each other. These are connected via a hydraulic pump that is driven according to the rotational speed difference and discharges an amount of oil according to the rotational speed difference, and the driving force is transmitted by the static hydraulic pressure to obtain a four-wheel drive state. The discharge pressure of the hydraulic pump is controlled based on a predetermined reference line representing the relationship between the steering angle and the slip ratio in accordance with the actually measured slip ratio between the rotating shaft and the second rotating shaft. An optimal four-wheel drive state or two-wheel drive state can be obtained depending on the ratio.

また、本発明の第2の構成・作用によれば、前
輪に駆動力を伝達する第1回転軸と後輪に駆動力
を伝達する第2回転軸とをこれらの回転速度差に
応じて駆動され且つ回転速度差に応じた油量を吐
出する油圧ポンプを介して連結し、その静的油圧
により駆動力を伝達して4輪駆動状態を得ると共
に第1回転軸と第2回転軸との実測されたスリツ
プ率に応じて、予め定めた操舵角とスリツプ率と
の関係を表わす基準線を所定の運転状態で実測し
たスリツプ率により更新しながら新たな基準線に
基づき油圧ポンプの吐出圧を制御するので、車両
の経時変化によりタイヤの有効径等が変化しても
常に最適な4輪駆動状態あるいは2輪駆動状態が
得られる。
Further, according to the second configuration and operation of the present invention, the first rotating shaft that transmits driving force to the front wheels and the second rotating shaft that transmits driving force to the rear wheels are driven according to the rotational speed difference between them. and are connected via a hydraulic pump that discharges an amount of oil according to the difference in rotational speed, and the static hydraulic pressure transmits the driving force to obtain a four-wheel drive state and to connect the first rotating shaft and the second rotating shaft. In accordance with the actually measured slip rate, a reference line representing the relationship between a predetermined steering angle and the slip rate is updated with the slip rate actually measured under a predetermined operating condition, and the discharge pressure of the hydraulic pump is adjusted based on the new reference line. Since the control is performed, the optimum four-wheel drive state or two-wheel drive state can always be obtained even if the effective diameter of the tires changes due to changes in the vehicle over time.

したがつて、4輪駆動時にブレーキング現象や
タイヤの偏摩耗を生ずることがなく、前後輪の駆
動力の正負が互いに逆となることもなく、4輪駆
動状態での駆動やエンジンブレーキが必要なとき
にのみ4輪駆動となる。
Therefore, there is no braking phenomenon or uneven tire wear during 4-wheel drive, and the polarity of the driving force on the front and rear wheels does not become opposite to each other, making it necessary to drive in 4-wheel drive mode or use engine braking. Four-wheel drive is available only in certain situations.

また、いずれの発明の場合にもパートタイム4
輪駆動車のタイトコーナブレーキング現象などの
不具合や運転操作の煩雑さを解消できると共にフ
ルタイム4輪駆動車に従来装備されたセンタデフ
に比べ小型・軽量とすることができ、しかも構造
も簡単で安価となる。
In addition, in the case of any invention, part-time 4
In addition to eliminating problems such as tight corner braking in wheel drive vehicles and the complexity of driving operations, it is also smaller and lighter than the center differential conventionally equipped on full-time four-wheel drive vehicles, and has a simple structure. It will be cheaper.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の4輪駆動用駆動連結
装置の一実施例にかかり、第1図は概略構成図、
第2図は詳細な断面図、第3図は操舵角θに対す
るスリツプ率Sの関係を示す説明図、第4図a,
bはそれぞれ油の流れの説明図、第5図は制御内
容を示すフローチヤートである。 図面中、9は前輪、10は前輪用の差動装置、
11は第1回転軸、13は4輪駆動用駆動連結装
置、14は第2回転軸、16は後輪、17は後輪
用の差動装置、20はベーンポンプ、20aはロ
ータ、20bはカムリング、21は油圧制御回
路、22,23,24,25は吸込吐出口、2
6,27は第1および第2油路、28,29,3
1,32はチエツク弁、30はオイル溜、33は
リリーフ弁、36はピストン、37はオリフイ
ス、38はソレノイド弁、39はコンピユータで
ある。
1 to 5 show an embodiment of the four-wheel drive drive coupling device of the present invention, and FIG. 1 is a schematic configuration diagram;
Fig. 2 is a detailed sectional view, Fig. 3 is an explanatory diagram showing the relationship between the slip rate S and the steering angle θ, and Fig. 4 a,
b is an explanatory diagram of the oil flow, and FIG. 5 is a flowchart showing the control contents. In the drawing, 9 is a front wheel, 10 is a differential gear for the front wheels,
11 is a first rotating shaft, 13 is a four-wheel drive drive coupling device, 14 is a second rotating shaft, 16 is a rear wheel, 17 is a differential device for the rear wheels, 20 is a vane pump, 20a is a rotor, and 20b is a cam ring. , 21 is a hydraulic control circuit, 22, 23, 24, 25 are suction and discharge ports, 2
6, 27 are the first and second oil passages, 28, 29, 3
1 and 32 are check valves, 30 is an oil reservoir, 33 is a relief valve, 36 is a piston, 37 is an orifice, 38 is a solenoid valve, and 39 is a computer.

Claims (1)

【特許請求の範囲】 1 前輪に駆動力を伝達する第1回転軸と後輪に
駆動力を伝達する第2回転軸とをこれら第1回転
軸と第2回転軸との回転速度差によつて駆動され
ると共に回転速度差に応じた油量を吐出して駆動
力を伝達し得る油圧ポンプを介して連結し、前記
第1回転軸および第2回転軸のそれぞれの回転速
度を検出する回転センサを設けると共に操舵角を
検出する操舵角センサを設ける一方、前記油圧ポ
ンプの吐出圧を制御し伝達される駆動力を調整す
る制御弁を設け、操舵角の変化に対する第1回転
軸と第2回転軸のスリツプ率とで基準線を予め設
定し、この基準線より前記スリツプ率が大きく且
つ正のときまたは基準線よりスリツプ率が小さく
且つ負のとき前記油圧ポンプの吐出圧を増大させ
ると共にこれ以外のとき吐出圧を零とするよう前
記制御弁を制御する制御装置を具えたことを特徴
とする4輪駆動用駆動連結装置。 2 前輪に駆動力を伝達する第1回転軸と後輪に
駆動力を伝達する第2回転軸とをこれら第1回転
軸と第2回転軸との回転速度差によつて駆動され
ると共に回転速度差に応じた油量を吐出して駆動
力を伝達し得る油圧ポンプを介して連結し、前記
第1回転軸および第2回転軸のそれぞれの回転速
度を検出する回転センサを設けると共に操舵角を
検出する操舵角センサを設ける一方、前記油圧ポ
ンプの吐出圧を制御し伝達される駆動力を調整す
る制御弁を設け、操舵角の変化に対する第1回転
軸と第2回転軸のスリツプ率で決まる基準線を操
舵角が零かつエンジンの出力トルクが零のとき検
出されるスリツプ率により前記基準線と平行な新
たな基準線に更新する機構を具えると共にこの新
たな基準線より前記スリツプ率が大きく且つ正の
ときまたは基準線より前記スリツプ率が小さく且
つ負のとき前記油圧ポンプの吐出圧を増大させる
と共にこれ以外のとき吐出圧を零とするよう前記
制御弁を制御する制御装置を具えたことを特徴と
する4輪駆動用駆動連結装置。
[Claims] 1. A first rotating shaft that transmits driving force to the front wheels and a second rotating shaft that transmits driving force to the rear wheels are controlled by a difference in rotational speed between the first rotating shaft and the second rotating shaft. The rotating shafts are connected via a hydraulic pump capable of transmitting a driving force by discharging an amount of oil according to the rotational speed difference, and detecting the respective rotational speeds of the first rotating shaft and the second rotating shaft. A steering angle sensor for detecting a steering angle is provided, and a control valve for controlling the discharge pressure of the hydraulic pump and adjusting the transmitted driving force is provided, and a control valve is provided for controlling a first rotation shaft and a second rotation shaft for changes in the steering angle. A reference line is set in advance based on the slip ratio of the rotating shaft, and when the slip ratio is larger than the reference line and positive, or when the slip ratio is smaller than the reference line and negative, the discharge pressure of the hydraulic pump is increased and A drive coupling device for four-wheel drive, comprising a control device that controls the control valve so that the discharge pressure is zero at other times. 2. A first rotating shaft that transmits driving force to the front wheels and a second rotating shaft that transmits driving force to the rear wheels are driven and rotated by the rotational speed difference between the first rotating shaft and the second rotating shaft. A rotation sensor is provided which is connected via a hydraulic pump capable of transmitting driving force by discharging an amount of oil according to the speed difference, and detects the rotation speed of each of the first rotation shaft and the second rotation shaft, and also includes a rotation sensor that detects the rotation speed of the first rotation shaft and the second rotation shaft. A steering angle sensor is provided to detect the steering angle, and a control valve is provided to control the discharge pressure of the hydraulic pump and adjust the transmitted driving force, and the slip rate of the first rotation shaft and the second rotation shaft is adjusted according to the change in the steering angle. A mechanism is provided for updating the determined reference line to a new reference line parallel to the reference line based on the slip rate detected when the steering angle is zero and the output torque of the engine is zero, and the slip rate is updated from this new reference line. a control device that controls the control valve to increase the discharge pressure of the hydraulic pump when the slip ratio is large and positive or when the slip ratio is smaller and negative than a reference line, and to make the discharge pressure zero at other times; A four-wheel drive drive coupling device characterized by:
JP22322183A 1983-11-29 1983-11-29 Driving-coupling device for four-wheel driving Granted JPS60116526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22322183A JPS60116526A (en) 1983-11-29 1983-11-29 Driving-coupling device for four-wheel driving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22322183A JPS60116526A (en) 1983-11-29 1983-11-29 Driving-coupling device for four-wheel driving

Publications (2)

Publication Number Publication Date
JPS60116526A JPS60116526A (en) 1985-06-24
JPH0435367B2 true JPH0435367B2 (en) 1992-06-10

Family

ID=16794685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22322183A Granted JPS60116526A (en) 1983-11-29 1983-11-29 Driving-coupling device for four-wheel driving

Country Status (1)

Country Link
JP (1) JPS60116526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068219A1 (en) 2021-03-31 2022-10-05 FUJIFILM Business Innovation Corp. Information processing apparatus, information processing program, and information processing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816760A1 (en) * 1987-05-18 1988-12-08 Koyo Seiko Co POWER TRANSMISSION DEVICE FOR A VEHICLE
JP2558352B2 (en) * 1989-07-06 1996-11-27 株式会社富士鉄工所 Vehicle power transmission device
JP2504322Y2 (en) * 1990-03-15 1996-07-10 光洋精工株式会社 Drive coupling device for four-wheel drive
US5154252A (en) * 1990-06-05 1992-10-13 Koyo Seiko Co., Ltd. Power transmission apparatus for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068219A1 (en) 2021-03-31 2022-10-05 FUJIFILM Business Innovation Corp. Information processing apparatus, information processing program, and information processing method

Also Published As

Publication number Publication date
JPS60116526A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
US4676336A (en) Power transmission apparatus for vehicle
US4719998A (en) Power transmission system for vehicle
US4727966A (en) Differential with differential motion limiting mechanism
US6161643A (en) System of controlling torque transfer in a motor vehicle and related method
JPH0435367B2 (en)
JPS60116529A (en) Driving-coupling device for four-wheel driving
JPS6365533B2 (en)
JPS647895B2 (en)
JPH0435366B2 (en)
JPS6259124A (en) Power transmission apparatus for vehicle
KR890000272B1 (en) Power transmission system for vehicles
JPS6361632A (en) All-wheel-drive coupling device
JPH0139226Y2 (en)
JPH0364326B2 (en)
JPH0215699Y2 (en)
JPH038498Y2 (en)
JPH0215698Y2 (en)
JPS61102326A (en) Vehicle power transmission device
JPH0440976Y2 (en)
JPH0511060Y2 (en)
JPH0462891B2 (en)
JPH0423055Y2 (en)
JPS63315326A (en) Four-wheel-drive vehicle
JPH0512093Y2 (en)
JPH0610229Y2 (en) Torque transmission device for four-wheel drive vehicle