JPH0215698Y2 - - Google Patents

Info

Publication number
JPH0215698Y2
JPH0215698Y2 JP1984052649U JP5264984U JPH0215698Y2 JP H0215698 Y2 JPH0215698 Y2 JP H0215698Y2 JP 1984052649 U JP1984052649 U JP 1984052649U JP 5264984 U JP5264984 U JP 5264984U JP H0215698 Y2 JPH0215698 Y2 JP H0215698Y2
Authority
JP
Japan
Prior art keywords
wheel drive
oil passage
oil
rotational speed
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984052649U
Other languages
Japanese (ja)
Other versions
JPS60165222U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5264984U priority Critical patent/JPS60165222U/en
Publication of JPS60165222U publication Critical patent/JPS60165222U/en
Application granted granted Critical
Publication of JPH0215698Y2 publication Critical patent/JPH0215698Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【考案の詳細な説明】 本考案は前輪及び後輪を同一のエンジンで駆動
する4輪駆動用駆動連結装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a four-wheel drive drive coupling device in which front wheels and rear wheels are driven by the same engine.

前輪及び後輪を同一のエンジンで駆動する4輪
駆動車においては、前輪及び後輪のタイヤの有効
半径に多少の相違があつたり、旋回走行の場合
は、タイヤのころがり経路の違いからタイヤにす
べりを伴い駆動系に無理な力が作用するためこれ
を防止する手段を設ける必要がある。
In a four-wheel drive vehicle where the front and rear wheels are driven by the same engine, there is a slight difference in the effective radius of the front and rear tires, and when driving in turns, the difference in the rolling path of the tires causes the tires to Since unreasonable force is applied to the drive system due to slippage, it is necessary to provide a means to prevent this.

このため従来からフルタイム4輪駆動車では前
輪の駆動力を伝達する第1回転軸と後輪に駆動力
を伝達する第2回転軸との間に回転速度差が生じ
ても駆動力を伝達できるようセンタデフと称する
第3の差動装置が用いられている。しかし、この
装置では、重量及びコストの面からパートタイム
4輪駆動車に比べて不利であると共に差動回転が
可能であることから4輪駆動を必要とするときに
4輪駆動が達成できない場合があり、デフロツク
機構を必要とする等装置の一層の複雑化を招いて
しまう。
For this reason, in conventional full-time four-wheel drive vehicles, even if there is a difference in rotational speed between the first rotating shaft that transmits the driving force for the front wheels and the second rotating shaft that transmits the driving force to the rear wheels, the driving force is transmitted. To achieve this, a third differential device called a center differential is used. However, this device is disadvantageous compared to part-time 4-wheel drive vehicles in terms of weight and cost, and because it allows differential rotation, there are cases where 4-wheel drive cannot be achieved when 4-wheel drive is required. This results in further complication of the device, such as the need for a deflock mechanism.

一方、パートタイム4輪駆動車にあつては、セ
ンタデフを設置しないものが多く、旋回走行によ
り生ずるタイトコーナブレーキング現象等4輪駆
動による不具合がある場合には運転者による操作
で2輪駆動とするよう指示しており、運転操作が
煩雑となる欠点がある。
On the other hand, many part-time 4-wheel drive vehicles do not have a center differential, and if there is a problem with 4-wheel drive, such as tight corner braking caused by cornering, the driver can switch to 2-wheel drive. This has the disadvantage that driving operations are complicated.

本考案は従来の4輪駆動車における上述のよう
な欠点を解決すべくなされたもので、その目的と
するところは、運転状態に応じて2輪駆動と4輪
駆動とが自動的に達成でき、しかも小型軽量な4
輪駆動用駆動連結装置を得ることを目的とする。
The present invention was developed to solve the above-mentioned drawbacks of conventional four-wheel drive vehicles, and its purpose is to automatically achieve two-wheel drive and four-wheel drive depending on the driving condition. , yet small and lightweight 4
The object is to obtain a drive coupling device for wheel drive.

上記目的を達成するために、本考案に係る4輪
駆動用駆動連結装置は、前輪に駆動力を伝達する
第1回転軸と、後輪に駆動力を伝達する第2回転
軸と、前記第1回転軸と第2回転軸とを連結し且
つ両回転軸の回転速度差によつて駆動されると共
に回転速度差に応じた油量を吐出する油圧ポンプ
とを備えた4輪駆動用駆動連結装置において、前
記油圧ポンプの吐出口側油路と吸込口側油路とを
連通する副油路と、同副油路に設けられ同副油路
の流通抵抗を変え得る可変絞り機構と、車速に比
例して前記可変絞り機構の絞り量を増大する制御
手段とを設けたことを特徴とする。
In order to achieve the above object, the four-wheel drive drive coupling device according to the present invention includes a first rotating shaft that transmits driving force to the front wheels, a second rotating shaft that transmits driving force to the rear wheels, and a second rotating shaft that transmits driving force to the rear wheels. A four-wheel drive drive connection comprising a hydraulic pump that connects a first rotating shaft and a second rotating shaft, is driven by the difference in rotational speed between the two rotating shafts, and discharges an amount of oil according to the difference in rotational speed. The device includes: a sub-oil passage that communicates an oil passage on the discharge port side and an oil passage on the suction port side of the hydraulic pump; a variable throttle mechanism provided in the sub-oil passage and capable of changing the flow resistance of the sub-oil passage; The invention is characterized by further comprising a control means for increasing the aperture amount of the variable aperture mechanism in proportion to .

以下、本考案に係る連結装置の一実施例を図面
に基づいて説明する。
Hereinafter, one embodiment of the connecting device according to the present invention will be described based on the drawings.

第1図には一実施例に係る連結装置を装備した
4輪駆動車の駆動系の概略を示し、第2図には連
結装置の横断面を示し、第3図にはその縦断面を
示し、第4図a,b,cには可変絞り機構の断面
を示してある。
Fig. 1 shows an outline of the drive system of a four-wheel drive vehicle equipped with a coupling device according to an embodiment, Fig. 2 shows a cross section of the coupling device, and Fig. 3 shows a longitudinal section thereof. , FIGS. 4a, 4b and 4c show cross-sections of the variable diaphragm mechanism.

第1図に示すように、横置されたエンジン1に
変速機2が連結され、その出力軸3に取り付けた
ドライブギヤ4から駆動力が取り出されて、アイ
ドルギヤ5を介して両端部にギヤ6,7を具えた
中間伝達軸8に伝達される。
As shown in FIG. 1, a transmission 2 is connected to an engine 1 placed horizontally, and driving force is taken out from a drive gear 4 attached to an output shaft 3 of the engine 1, and is transmitted to both ends of the engine via an idle gear 5. 6, 7 is transmitted to an intermediate transmission shaft 8.

そして、この中間伝達軸8の一方のギヤ7から
前輪9用の差動装置10に駆動力が伝達されて前
輪9が駆動される一方、前輪9に伝達された駆動
力がそのまま第1の回転軸11にギヤ12を介し
て伝達され、さらに、ベーンポンプ型連結機構と
しての4輪駆動用駆動連結装置本体13に伝達さ
れる。この4輪駆動力は、第2の回転軸14に伝
達されるようになつており、回転取出方向を変換
する歯車機構15を介して後輪16用の差動装置
17に駆動力が伝達され、後輪16を駆動する。
Then, the driving force is transmitted from one gear 7 of this intermediate transmission shaft 8 to the differential device 10 for the front wheels 9 to drive the front wheels 9, while the driving force transmitted to the front wheels 9 is directly transmitted to the first rotation. The power is transmitted to the shaft 11 via the gear 12, and further to the four-wheel drive drive coupling device main body 13, which is a vane pump type coupling mechanism. This four-wheel drive force is transmitted to the second rotating shaft 14, and the drive force is transmitted to the differential device 17 for the rear wheels 16 via a gear mechanism 15 that changes the direction of rotation. , drives the rear wheels 16.

この4輪駆動用駆動連結装置本体13は、第
2,3図に示すように、油圧ポンプとしてのベー
ンポンプVPとこれに付属する油圧回路21とで
構成されており、ベーンポンプVPのロータ19
が、前輪9に駆動力を伝達する第1の回転軸11
に連結されるとともに、ケーシング20を構成す
るカムリング部20a、環状プレート20bおよ
び出力側プレート20cが、後輪16に駆動力を
伝達する第2の回転軸14に連結されている。
As shown in FIGS. 2 and 3, this four-wheel drive drive coupling device body 13 is composed of a vane pump VP as a hydraulic pump and a hydraulic circuit 21 attached thereto, and a rotor 19 of the vane pump VP.
is the first rotating shaft 11 that transmits the driving force to the front wheels 9.
The cam ring portion 20a, the annular plate 20b, and the output side plate 20c, which constitute the casing 20, are connected to the second rotating shaft 14 that transmits driving force to the rear wheel 16.

この油圧ポンプとしてのベーンポンプVPには、
そのロータ19の外周面19aに周方向に等間隔
に多数(ここでは、8個)の孔部19bが形成さ
れていて、この多数の孔部19bのそれぞれに
は、カムリング部20aの内周面20dに摺接し
うるベーン18が嵌挿されている。
This vane pump VP as a hydraulic pump has
A large number (8 in this case) of holes 19b are formed at equal intervals in the circumferential direction on the outer circumferential surface 19a of the rotor 19, and each of the large number of holes 19b is provided on the inner circumferential surface of the cam ring portion 20a. A vane 18 that can be slidably contacted with 20d is fitted.

また、ベーンポンプVPは、その回転数に比例
した油量を吐出するものであり、ロータ19とカ
ムリング部20aとの間に相対回転、すなわち、
第1の回転軸11と第2の回転軸14との間に相
対回転が生ずると油圧ポンプとして機能して油圧
を発生する。
Further, the vane pump VP discharges an amount of oil proportional to its rotation speed, and there is a relative rotation between the rotor 19 and the cam ring part 20a, that is,
When relative rotation occurs between the first rotating shaft 11 and the second rotating shaft 14, it functions as a hydraulic pump and generates hydraulic pressure.

ベーンポンプVPの吐出口(ケーシング20に
対するベーン18の相対的回転方向先端の吸込吐
出口22〜25がこれに相当)を塞ぐことによ
り、油を介してその静圧でロータ19とカムリン
グ部20aとが剛体のようになつて一体に回転さ
れる。
By blocking the discharge ports of the vane pump VP (corresponding to the suction and discharge ports 22 to 25 at the tip of the vane 18 in the relative rotational direction with respect to the casing 20), the rotor 19 and the cam ring portion 20a are connected to each other by the static pressure through the oil. It becomes like a rigid body and rotates as one.

このため、カムリング部20aとロータ19と
の間には対角位置に2つのポンプ室36,37が
形成され、また、回転方向基端側に位置したとき
吸込口となり先端側に位置したとき吐出口となる
4個の吸込吐出口22〜25がほぼ対角位置に形
成してあり、それぞれ同一機能をなす対角位置の
吸込吐出口22,24と吸込吐出口23,25と
が、それぞれカムリング部20aの回転状態でも
油を送通し得る機構を介して第1油路26と第2
油路27とで連通されている。
Therefore, two pump chambers 36 and 37 are formed at diagonal positions between the cam ring part 20a and the rotor 19, and when it is located on the base end side in the rotational direction, it becomes a suction port, and when it is located on the distal end side, it becomes a discharge port. Four suction/discharge ports 22 to 25 serving as outlets are formed at substantially diagonal positions, and the diagonally positioned suction/discharge ports 22, 24 and suction/discharge ports 23, 25, each having the same function, are connected to the cam ring. The first oil passage 26 and the second oil passage are connected through a mechanism that allows oil to flow even when the portion 20a is in rotation.
It is communicated with the oil passage 27.

また、第1油路26と第2油路27との間に、
それぞれチエツク弁28,29,29′を介して
オイル溜30が連通され、オイル溜30から各油
路26,27への流れのみが許容されるととも
に、第1油路26と第2油路27との間に流出の
みを許容する相対向した2つのチエツク弁31,
32を介して両油路26,27が連通され、この
2つのチエツク弁31,32の中間部が油路40
を介してリリーフ弁33に連通している。
Moreover, between the first oil passage 26 and the second oil passage 27,
The oil reservoir 30 is communicated with each other through check valves 28, 29, 29', and only the flow from the oil reservoir 30 to each oil passage 26, 27 is allowed, and the first oil passage 26 and the second oil passage 27 two opposing check valves 31 that allow only outflow between the
Both oil passages 26 and 27 communicate with each other through a check valve 32, and an intermediate portion between these two check valves 31 and 32 is connected to an oil passage 40.
It communicates with the relief valve 33 via.

このリリーフ弁33のスプリング34側である
中間部を通じて、オイル溜30およびチエツク弁
29′と2つのチエツク弁28,29との間には、
連通路35が設けられている。
Through the middle part of the relief valve 33 on the spring 34 side, there is a connection between the oil reservoir 30 and the check valve 29' and the two check valves 28 and 29.
A communication path 35 is provided.

このような油圧回路21とすることで、ロータ
19とカムリング部20aとの相対回転方向によ
らず、常に吐出圧がリリーフ弁33の弁体に作用
し、オイル溜30が吸込口と連通することにな
る。
With such a hydraulic circuit 21, the discharge pressure always acts on the valve body of the relief valve 33, regardless of the relative rotation direction between the rotor 19 and the cam ring portion 20a, and the oil reservoir 30 communicates with the suction port. become.

また、吸込吐出口24に接続する油路26と吸
込吐出口23に接続する油路27とを連通する副
油路38が設けられるとともに、吸込吐出口22
に接続する油路26と吸込吐出口25に接続する
油路27とを連通する副油路39が設けられてお
り、副油路38,39には、第4図に示すよう
に、車両の速度に応じて絞り量が変えられる可変
絞り機構Mがそれぞれ設けられている。可変絞り
機構Mは、副油路38,39のケース45に摺動
自在に収納されたスプール46と、副油路38,
39を開くように常にスプール46を押圧するス
プリング47等からなる。スプール46は車両の
走行速度に比例して副油路38,39を絞るよう
に制御される。その制御装置としては、当該連結
装置をオートマチツクトランスミツシヨンに搭載
した場合には、トランスミツシヨン用のガバナ圧
をスプール46の一端側の通路48に導く機構な
どが考えられる。又、通路48にガバナ圧をかけ
る代わりに、車速に応じてデユーテイ制御した油
圧を通路48にかけるようにしてもよい。更に
又、スプリング47を設けず、スプール46に直
接ステツピングモータを連結し、車速を検出し、
それに基づきコンピユータでステツピングモータ
に作動指令を出すようにしてもよく、そのほかに
も遠心力を利用したもの、吸気負圧を利用したも
のなどいろいろの制御方式が考えられる。
Further, an auxiliary oil passage 38 is provided which communicates the oil passage 26 connected to the suction discharge port 24 and the oil passage 27 connected to the suction discharge port 23.
An auxiliary oil passage 39 is provided that communicates the oil passage 26 connected to the suction and discharge port 25 with the oil passage 27 connected to the suction discharge port 25. A variable aperture mechanism M that can change the amount of aperture depending on the speed is provided. The variable throttle mechanism M includes a spool 46 that is slidably housed in a case 45 of the sub oil passages 38 and 39, and a spool 46 that is slidably housed in a case 45 of the sub oil passages 38 and 39.
It consists of a spring 47 etc. that always presses the spool 46 so as to open the spool 39. The spool 46 is controlled so as to throttle the auxiliary oil passages 38 and 39 in proportion to the traveling speed of the vehicle. As the control device, when the coupling device is mounted on an automatic transmission, a mechanism for guiding transmission governor pressure to the passage 48 at one end of the spool 46 can be considered. Furthermore, instead of applying governor pressure to the passage 48, hydraulic pressure may be applied to the passage 48 with duty controlled according to the vehicle speed. Furthermore, the stepping motor is directly connected to the spool 46 without providing the spring 47, and the vehicle speed is detected.
Based on this, a computer may issue an operating command to the stepping motor, and various other control methods are possible, such as one using centrifugal force and one using negative intake pressure.

車両の直進加速時のように、大きなスリツプが
なくても通常前輪9が約1%以内でスリツプする
状態では、これによる回転速度差が第1の回転軸
11と第2の回転軸14との間に生じると、ベー
ンポンプVPが機能してこの回転速度差に応じた
油圧が発生し、ロータ19とカムリング部20a
とが一体になつて回転し、この油圧とベーンの受
圧面積とに対応した駆動力が後輪16に伝達され
て4輪駆動状態になる。
When the front wheels 9 normally slip within about 1%, such as when the vehicle is accelerating straight ahead, even if there is no large slip, the difference in rotational speed caused by this causes the difference in rotational speed between the first rotational shaft 11 and the second rotational shaft 14 If this occurs between the rotor 19 and the cam ring portion 20a, the vane pump VP functions to generate oil pressure according to this rotational speed difference.
The two rotate as one, and a driving force corresponding to this oil pressure and the pressure receiving area of the vane is transmitted to the rear wheels 16, resulting in a four-wheel drive state.

この場合、ベーンポンプVPにおける油の流れ
は、相対的にロータ19が回転することになり
(第2図中の符号A参照)、吸込吐出口22,24
が吸込口となつてチエツク弁28を介してオイル
溜30から油が吸込まれる一方、吸込吐出口2
3,25が吐出口となつてチエツク弁29,31
を閉じると同時にチエツク弁32、油路40を介
してリリーフ弁33に油が導かれる。
In this case, the oil flow in the vane pump VP is caused by the relative rotation of the rotor 19 (see symbol A in FIG. 2), and the suction and discharge ports 22, 24
serves as a suction port and oil is sucked in from the oil reservoir 30 via the check valve 28, while the suction and discharge port 2
3 and 25 serve as discharge ports and check valves 29 and 31
At the same time as the valve is closed, oil is introduced to the relief valve 33 via the check valve 32 and the oil passage 40.

なお、第2図中、実線矢印は吐出油の流れを示
しており、破線矢印は吸込油の流れを示してい
る。
In FIG. 2, solid line arrows indicate the flow of discharged oil, and broken line arrows indicate the flow of suction oil.

次に、後輪16の回転速度に比べ前輪9の回転
速度が非常に大きくなる場合、例えば雪路での前
輪のスリツプ時や急加速時あるいはブレーキ時の
後輪がロツク気味となる場合には、4輪駆動用駆
動連結装置本体13に接続する第1の回転軸11
と第2の回転軸14との間の回転速度差が非常に
大きくなる。
Next, when the rotational speed of the front wheels 9 becomes very large compared to the rotational speed of the rear wheels 16, for example, when the front wheels slip on a snowy road, or when the rear wheels tend to lock up during sudden acceleration or braking, , a first rotating shaft 11 connected to the four-wheel drive drive coupling device main body 13
The rotational speed difference between the rotational speed and the second rotating shaft 14 becomes very large.

これにより、ベーンポンプVPでは、第2図に
示す状態の油の流れが生じて大きな油圧が発生す
るが、所定値を起えると、リリーフ弁33がスプ
リング34に抗して開き吐出圧がほぼ一定に制御
され、後輪16に一定の吐出圧に対応した一定の
駆動力が伝達された4輪駆動状態となる。
As a result, in the vane pump VP, the oil flow shown in Figure 2 occurs and a large hydraulic pressure is generated, but when a predetermined value occurs, the relief valve 33 opens against the spring 34 and the discharge pressure remains almost constant. A four-wheel drive state is established in which a constant driving force corresponding to a constant discharge pressure is transmitted to the rear wheels 16.

そして、前輪9の回転速度が減少するととも
に、後輪16の回転速度が増大することとなり回
転速度差を縮少(ノンスリツプデフと同一機能)
するようになる。
Then, as the rotational speed of the front wheels 9 decreases, the rotational speed of the rear wheels 16 increases, reducing the rotational speed difference (same function as a non-slip differential).
I come to do it.

このように、前輪9のスリツプ状態では後輪1
6への駆動トルクが増大されて走行不能となるこ
とを回避できるとともに、後輪16がロツク気味
の場合には、前輪9のブレーキトルクを増大して
後輪16のロツクを防止する。
In this way, when the front wheel 9 is in a slip state, the rear wheel 1
In addition, when the rear wheels 16 tend to lock up, the brake torque of the front wheels 9 is increased to prevent the rear wheels 16 from locking up.

一方、前輪9の回転速度に比べ後輪16の回転
速度が非常に大きくなる場合、例えば前輪9のブ
レーキ状態でロツク気味となる場合では、4輪駆
動用駆動連結装置本体13に接続する第1の回転
軸11と第2の回転軸14との間に、上述とは逆
方向に非常に大きな回転速度差が生じる。
On the other hand, if the rotational speed of the rear wheels 16 becomes very large compared to the rotational speed of the front wheels 9, for example, if the brakes of the front wheels 9 tend to lock up, the first A very large rotational speed difference occurs between the rotating shaft 11 and the second rotating shaft 14 in the opposite direction to that described above.

これにより、ベーンポンプVPでは、第2図に
示す油の流れと逆方向の流れが生じ、吸込吐出口
23,25が吸込口となり、チエツク弁29,2
9′を介してオイル溜30から油が吸込まれる一
方、吸込吐出口22,24が吐出口となり第2油
路26を経てチエツク弁28,32を閉じて、チ
エツク弁32からリリーフ弁33に導かれた大き
な油圧が作用するが、この油圧もリリーフ弁33
により一定に保持され一定の駆動力が後輪16に
伝達された4輪駆動状態となる。
As a result, in the vane pump VP, a flow occurs in the opposite direction to the oil flow shown in FIG.
Oil is sucked in from the oil reservoir 30 through the oil reservoir 30 through the oil tank 9', while the suction and discharge ports 22 and 24 become discharge ports, passing through the second oil passage 26, closing the check valves 28 and 32, and flowing from the check valve 32 to the relief valve 33. The introduced large hydraulic pressure acts on the relief valve 33.
A four-wheel drive state is established in which the driving force is maintained constant and a constant driving force is transmitted to the rear wheels 16.

そして、後輪16へのブレーキトルクを増大し
て前輪9のロツクを防止する。
Then, the brake torque to the rear wheels 16 is increased to prevent the front wheels 9 from locking.

また、通常の旋回走行時には、前輪9の回転速
度が後輪16の回転速度よりわずかに大きく、前
輪9にブレーキトルクが作用し、後輪16に駆動
トルクが作用した4輪駆動状態となつて旋回走行
がなされる。
Furthermore, during normal cornering, the rotational speed of the front wheels 9 is slightly higher than the rotational speed of the rear wheels 16, resulting in a four-wheel drive state in which brake torque is applied to the front wheels 9 and drive torque is applied to the rear wheels 16. A turning run is made.

このように、4輪駆動用駆動連結装置本体13
で吐出圧をリリーフ弁33により一定値以上とな
らないように制御することで、従来パートタイム
4輪駆動車で4輪駆動状態を必要とする場合には
運転者の操作が必要であつたものが、自動的に4
輪駆動と2輪駆動との切換が行なわれるとともに
前輪9と後輪16との回転速度差に応じた駆動力
による4輪駆動状態が得られる。
In this way, the four-wheel drive drive coupling device main body 13
By controlling the discharge pressure using the relief valve 33 so that it does not exceed a certain value, conventional part-time 4-wheel drive vehicles that require operation by the driver when 4-wheel drive is required can be removed. , automatically 4
Switching between wheel drive and two-wheel drive is performed, and a four-wheel drive state is obtained with a driving force according to the rotational speed difference between the front wheels 9 and the rear wheels 16.

ところで、4輪駆動車において、前後輪駆動の
状態できついコーナを回ろうとすると、内輪差に
よつて前後輪の速度差が大きくなつて、タイトコ
ーナブレーキング現象が生じる。つまり、前輪が
速く回ろうとするのに対し後輪が遅く回ろうと
し、前輪が遅く回ろうとする後輪の方にひきずら
れて回らなくなるのである。従つて、きついコー
ナを回るときには、2輪駆動になつている必要が
ある。
By the way, when a four-wheel drive vehicle tries to turn a tight corner with front and rear wheel drive, the speed difference between the front and rear wheels increases due to the difference between the inner wheels, resulting in a tight corner braking phenomenon. In other words, while the front wheels try to turn quickly, the rear wheels try to turn slowly, and the front wheels are dragged by the rear wheels, which try to turn slowly, and stop turning. Therefore, when going around tight corners, you need to be in two-wheel drive.

第5図には、ある車両における車速V(Km/
h)、旋回半径R(m)、連結装置における第1回
転軸11と第2回転軸14との回転速度差ΔN
(rpm)の関係を示す。通常旋回時の横Gは0.5G
(G=9.8m/s2)以下と考えられるので、この車
両においてはそのときの回転速度差ΔNは最大
60rpm(R=6m,V=20Km/h)程度となる。
従つて、車速20Km/hまでは、60rpmの回転速度
差が生じても、吐出圧が高くならないように可変
絞り機構Mを設定しておけば、後輪にはトルクは
伝達されず、つまり4輪駆動は達成されず、タイ
トコーナブレーキング現象の発生を回避できるの
である。第4図に示すような絞り機構Mでは、車
速に応じて油路の大きさ(流通抵抗)が決まるよ
うに、スプリング47のばね力とスプール46の
大きさを決定すればよい。例えば、車速が20Km/
h以下のときには油路の大きさがオリフイス径で
φ3(全開)となり、40Km/hのときφ2に相当し、
60Km/hでφ1となるようにすれば、そのときの
車速に対する回転速度差ΔNとベーンポンプVP
の吐出圧P(Kg/cm2)との関係は第6図に示す如
くなる。通路48にガバナ圧が作用しても、車速
20Km/h以下のときのガバナ圧ではスプール46
は移動せず、油路は開放したままで、吐出側の油
は吸込側に流れて吐出圧は上がらず、4輪駆動は
達成されないのである。このように制御した場合
の回転速度差と伝達トルク(Kgm)、吐出圧との
関係を第7図中太実線で示す。他の曲線はそれぞ
れ異なる径の固定オリフイスを副油路38,39
に設けた場合を示す。
Figure 5 shows the vehicle speed V (Km/
h), turning radius R (m), rotational speed difference ΔN between the first rotating shaft 11 and the second rotating shaft 14 in the coupling device
(rpm). Lateral G during normal turning is 0.5G
(G = 9.8m/s 2 ) or less, so in this vehicle, the rotational speed difference ΔN at that time is the maximum
It will be about 60 rpm (R = 6 m, V = 20 Km/h).
Therefore, if the variable throttle mechanism M is set so that the discharge pressure does not increase even if there is a rotational speed difference of 60 rpm up to a vehicle speed of 20 km/h, no torque will be transmitted to the rear wheels, that is, the torque will not be transmitted to the rear wheels. Wheel drive is not achieved and tight corner braking phenomena can be avoided. In the throttle mechanism M as shown in FIG. 4, the spring force of the spring 47 and the size of the spool 46 may be determined so that the size of the oil passage (flow resistance) is determined according to the vehicle speed. For example, if the vehicle speed is 20km/
When the speed is less than h, the oil passage size is the orifice diameter and becomes φ3 (fully open), and when the speed is 40km/h, it corresponds to φ2,
If φ1 is set at 60km/h, the rotational speed difference ΔN and vane pump VP for the vehicle speed at that time
The relationship between the discharge pressure P (Kg/cm 2 ) and the discharge pressure P (Kg/cm 2 ) is shown in FIG. Even if governor pressure acts on the passage 48, the vehicle speed
Spool 46 at governor pressure below 20Km/h
does not move, the oil passage remains open, the oil on the discharge side flows to the suction side, the discharge pressure does not increase, and four-wheel drive is not achieved. The relationship between the rotational speed difference, transmitted torque (Kgm), and discharge pressure when controlled in this way is shown by the thick solid line in FIG. The other curves have fixed orifices of different diameters in the auxiliary oil passages 38 and 39.
The case where it is set is shown below.

一方、高速走行時には、4輪駆動とした方が走
行安定性が増し、ふらつき等が少なくなる。よつ
て、車速が大きくなつた場合には、前述の如く、
可変絞り機構Mの絞り量は大きくとられ、つまり
副油路38,39は狭められ、副油路38,39
を通じて流通する油量は少なくなり、吐出圧が高
くなつて駆動力伝達効率が上昇し、4輪駆動が達
成されるのである。尚、第5図からわかるよう
に、高速時に許容される旋回半径は大きいのでブ
レーキング現象はごくわずかであり、4輪駆動に
よる操縦安定性が確保されるのである。
On the other hand, when driving at high speeds, four-wheel drive increases driving stability and reduces wobbling. Therefore, as mentioned above, when the vehicle speed increases,
The amount of throttle of the variable throttle mechanism M is set large, that is, the auxiliary oil passages 38, 39 are narrowed, and the auxiliary oil passages 38, 39 are narrowed.
The amount of oil flowing through the cylinders decreases, the discharge pressure increases, the driving force transmission efficiency increases, and four-wheel drive is achieved. As can be seen from FIG. 5, the allowable turning radius at high speeds is large, so braking phenomena are negligible, and the four-wheel drive ensures stable handling.

尚、低速時(ここでは20Km/h以下)でも、回
転速度差が60rpm以上になつた場合には油圧が発
生し後輪にも動力が伝達される。つまり、車輪の
スタツク等に対処できるようになつているのであ
る。
Furthermore, even at low speeds (here below 20 km/h), if the rotational speed difference exceeds 60 rpm, hydraulic pressure is generated and power is also transmitted to the rear wheels. In other words, it is designed to deal with problems such as wheel stacking.

以上、一実施例に基づき詳細に説明したように
本考案に係る4輪駆動用駆動連結装置によれば、
前輪と後輪とに駆動力を伝達する油圧ポンプの吐
出口側油路と吸込口側油路とを連通する副油路を
設け、同副油路に同副油路の流通抵抗を変え得る
可変絞り機構を設け、車速に比例させて可変絞り
機構の絞り量を増大制御するようにしたので、車
速が低いときには回転速度差がある回転数になる
まで、4輪駆動とはならないので、タイトコーナ
ブレーキング現象が防止でき、又高速時には4輪
駆動となつて操縦安定性が確保される。
As described above in detail based on one embodiment, according to the four-wheel drive drive coupling device according to the present invention,
An auxiliary oil passage is provided that communicates the outlet side oil passage and the suction side oil passage of a hydraulic pump that transmits driving force to the front wheels and rear wheels, and the flow resistance of the auxiliary oil passage can be changed in the auxiliary oil passage. A variable throttle mechanism is installed, and the throttle amount of the variable throttle mechanism is controlled to increase in proportion to the vehicle speed, so when the vehicle speed is low, four-wheel drive is not activated until the rotation speed reaches a certain rotational speed difference, so it is tight. Corner braking phenomenon can be prevented, and at high speeds, four-wheel drive is used to ensure steering stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例としての4輪駆動車
の駆動系を示す概略構成図、第2図は本考案の一
実施例としての駆動連結装置に備えられた油圧ポ
ンプの横断面図、第3図はその縦断面図、第4図
a,b,cは可変絞り機構の断面図、第5図は車
速、旋回半径、回転速度差の関係を示すグラフ、
第6図は副油路の大きさの違いによる一定車速に
おける回転速度差と吐出圧との関係を示すグラ
フ、第7図は本考案に係る4輪駆動用駆動連結装
置により副油路を制御した場合の回転速度差と伝
達トルクとの関係を示すグラフである。 図面中、1は横置きエンジン、2は変速機、1
0は差動装置、11は第1回転軸、13は4輪駆
動用連結装置本体、14は第2回転軸、18はベ
ーン、19はロータ、20はケーシング、21は
油圧回路、22〜25は吸込吐出口、29,2
9′,31,32はチエツク弁、33はリリーフ
弁、38,39は副油路、46はスプール、47
はスプリング、48は通路、Mは可変絞り機構で
ある。
Fig. 1 is a schematic configuration diagram showing a drive system of a four-wheel drive vehicle as an embodiment of the present invention, and Fig. 2 is a cross-sectional view of a hydraulic pump provided in a drive coupling device as an embodiment of the present invention. , FIG. 3 is a longitudinal sectional view thereof, FIG. 4 a, b, and c are sectional views of the variable throttle mechanism, and FIG. 5 is a graph showing the relationship between vehicle speed, turning radius, and rotational speed difference.
Fig. 6 is a graph showing the relationship between the rotational speed difference and discharge pressure at a constant vehicle speed due to the difference in the size of the auxiliary oil passage, and Fig. 7 shows the control of the auxiliary oil passage by the four-wheel drive drive coupling device according to the present invention. It is a graph which shows the relationship between the rotational speed difference and the transmission torque in the case. In the drawing, 1 is a horizontal engine, 2 is a transmission, 1
0 is a differential gear, 11 is a first rotating shaft, 13 is a four-wheel drive coupling device body, 14 is a second rotating shaft, 18 is a vane, 19 is a rotor, 20 is a casing, 21 is a hydraulic circuit, 22 to 25 is the suction and discharge port, 29,2
9', 31, 32 are check valves, 33 is a relief valve, 38, 39 are auxiliary oil passages, 46 is a spool, 47
48 is a spring, 48 is a passage, and M is a variable throttle mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 前輪に駆動力を伝達する第1回転軸と、後輪に
駆動力を伝達する第2回転軸と、前記第1回転軸
と第2回転軸とを連結し且つ両回転軸の回転速度
差によつて駆動されると共に回転速度差に応じた
油量を吐出する油圧ポンプとを備えた4輪駆動用
駆動連結装置において、前記油圧ポンプの吐出口
側油路と吸込口側油路とを連通する副油路と、同
副油路に設けられ同副油路の流通抵抗を変え得る
可変絞り機構と、車速に比例して前記可変絞り機
構の絞り量を増大する制御手段とを設けたことを
特徴とする4輪駆動用駆動連結装置。
a first rotating shaft that transmits driving force to the front wheels; a second rotating shaft that transmits driving force to the rear wheels; A four-wheel drive drive coupling device comprising a hydraulic pump that is driven by a hydraulic pump and discharges an amount of oil according to a rotational speed difference, in which an oil passage on a discharge port side and an oil passage on a suction port side of the hydraulic pump are communicated. A variable throttle mechanism provided in the subsidiary oil passage and capable of changing the flow resistance of the subsidiary oil passage, and a control means for increasing the throttle amount of the variable throttle mechanism in proportion to vehicle speed. A four-wheel drive drive coupling device characterized by:
JP5264984U 1984-04-12 1984-04-12 4-wheel drive drive coupling device Granted JPS60165222U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264984U JPS60165222U (en) 1984-04-12 1984-04-12 4-wheel drive drive coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264984U JPS60165222U (en) 1984-04-12 1984-04-12 4-wheel drive drive coupling device

Publications (2)

Publication Number Publication Date
JPS60165222U JPS60165222U (en) 1985-11-01
JPH0215698Y2 true JPH0215698Y2 (en) 1990-04-26

Family

ID=30572791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264984U Granted JPS60165222U (en) 1984-04-12 1984-04-12 4-wheel drive drive coupling device

Country Status (1)

Country Link
JP (1) JPS60165222U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950626A (en) * 1973-06-21 1974-05-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950626A (en) * 1973-06-21 1974-05-16

Also Published As

Publication number Publication date
JPS60165222U (en) 1985-11-01

Similar Documents

Publication Publication Date Title
US4676336A (en) Power transmission apparatus for vehicle
US4727966A (en) Differential with differential motion limiting mechanism
JPS60252026A (en) Transfer clutch apparatus for 4-wheel driving car
JPH0215698Y2 (en)
JPS60116529A (en) Driving-coupling device for four-wheel driving
JPH038499Y2 (en)
JPH0139226Y2 (en)
JPH0215699Y2 (en)
KR890001336B1 (en) Differential with differential motion limiting mechanism
JPH038498Y2 (en)
JPH0435367B2 (en)
JPS60104426A (en) Driving and coupling device for four-wheel drive
JPH0567817B2 (en)
JPH0512092Y2 (en)
JPH0511061Y2 (en)
JPH0440976Y2 (en)
JPH029210B2 (en)
JPH0118418Y2 (en)
JPH059221Y2 (en)
JPH0423055Y2 (en)
JPH0512093Y2 (en)
JPH0473006B2 (en)
JPH0610229Y2 (en) Torque transmission device for four-wheel drive vehicle
JPH0511060Y2 (en)
JPH0435366B2 (en)