JPH0215699Y2 - - Google Patents

Info

Publication number
JPH0215699Y2
JPH0215699Y2 JP1984052650U JP5265084U JPH0215699Y2 JP H0215699 Y2 JPH0215699 Y2 JP H0215699Y2 JP 1984052650 U JP1984052650 U JP 1984052650U JP 5265084 U JP5265084 U JP 5265084U JP H0215699 Y2 JPH0215699 Y2 JP H0215699Y2
Authority
JP
Japan
Prior art keywords
rotating shaft
oil
vehicle
wheel drive
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984052650U
Other languages
Japanese (ja)
Other versions
JPS60165223U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5265084U priority Critical patent/JPS60165223U/en
Publication of JPS60165223U publication Critical patent/JPS60165223U/en
Application granted granted Critical
Publication of JPH0215699Y2 publication Critical patent/JPH0215699Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【考案の詳細な説明】 本考案は前輪及び後輪を同一のエンジンで駆動
する四輪駆動車用駆動連結装置に関する。
[Detailed Description of the Invention] The present invention relates to a drive coupling device for a four-wheel drive vehicle in which front wheels and rear wheels are driven by the same engine.

本考案に係る四輪駆動車用駆動連結装置は前輪
側に連結された第1回転軸と後輪側に連結した第
2回転軸との間に油圧ポンプを介装し、前輪又は
後輪がスリツプしている状態等において第1回転
軸と第2回転軸との間に回転速度差が生じた場合
には油圧ポンプの吐出油を規制して、油圧ポンプ
内の静圧で第1回転軸と第2回転軸とを剛体的に
連結し、四輪駆動化を自動的に達成するものであ
るが、一般的な四輪駆動車用駆動連結装置と同様
に次のような不具合があつた。
The drive coupling device for a four-wheel drive vehicle according to the present invention includes a hydraulic pump interposed between a first rotating shaft connected to the front wheel side and a second rotating shaft connected to the rear wheel side, so that the front wheel or the rear wheel If there is a difference in rotational speed between the first rotating shaft and the second rotating shaft, such as in a slipping state, the oil discharged from the hydraulic pump is regulated, and the static pressure inside the hydraulic pump is used to control the first rotating shaft. This system rigidly connects the drive and the second rotating shaft to automatically achieve four-wheel drive, but it has the following problems like the drive coupling device for general four-wheel drive vehicles. .

すなわち、四輪駆動車は前輪と後輪とを共に駆
動することにより、極めて高い加速性能や摩擦係
数の小さい路面(泥濘地、雪上等)の走破性を有
する反面、高速走行時においては、前輪と後輪の
タイヤ有効径の多少の相違や前輪及び後輪へのギ
ヤトレーンのバツクラツシユ等により元々僅かに
あつた前輪と後輪との回転速度差が無視できない
程になり、この結果、回転速度の遅い車輪によつ
て回転速度の速い車輪にブレーキがかかつた状態
となり、各車輪への駆動力の伝達効率が悪化して
しまつていた。
In other words, by driving both the front and rear wheels, a four-wheel drive vehicle has extremely high acceleration performance and the ability to travel on roads with a small coefficient of friction (mud, snow, etc.), but when driving at high speeds, the front wheels Due to the slight difference in the effective diameter of the tires between the front and rear wheels, the collision of the gear train between the front and rear wheels, etc., the difference in rotational speed between the front and rear wheels, which was originally slight, has become so large that it cannot be ignored, and as a result, the rotational speed has increased. The brakes were applied to the wheels that rotated faster by the slower wheels, and the efficiency of transmitting driving force to each wheel deteriorated.

本考案は上記従来の不具合に鑑みなされたもの
で、上記の如く四輪駆動状態で高速走行する場合
に生ずる不具合を自動的に解消する四輪駆動車用
駆動連結装置を提供することを目的とする。
The present invention was devised in view of the above-mentioned conventional problems, and its purpose is to provide a drive coupling device for four-wheel drive vehicles that automatically eliminates the problems that occur when driving at high speeds in four-wheel drive mode. do.

上記目的を達成する本考案の構成は、車両の前
輪側に連結した第1回転軸と、車両の後輪側に連
結した第2回転軸と、前記第1回転軸と第2回転
軸とを連結し且つ両回転軸の回転速度差によつて
駆動されると共に回転速度差に応じた油量を吐出
する油圧ポンプとからなる四輪駆動車用駆動連結
装置において、前記油圧ポンプの吐出口側通路と
吸込口側通路とを連通すると共に可変絞りが介装
された副油路と、車両の走行速度が高くなるに応
じて前記可変絞りを制御してその絞り量を減少す
る制御手段とを備えたことを特徴とする。
The configuration of the present invention that achieves the above object includes a first rotating shaft connected to the front wheels of the vehicle, a second rotating shaft connected to the rear wheels of the vehicle, and the first rotating shaft and the second rotating shaft connected to the front wheels of the vehicle. A drive coupling device for a four-wheel drive vehicle comprising a hydraulic pump coupled to each other and driven by a rotational speed difference between both rotating shafts and discharging an amount of oil according to the rotational speed difference, the discharge port side of the hydraulic pump. An auxiliary oil passage that communicates between the passage and the suction port side passage and is provided with a variable throttle, and a control means that controls the variable throttle to reduce the throttle amount as the traveling speed of the vehicle increases. It is characterized by having

以下、本考案の一実施例を図面に基づいて説明
する。第1図は本考案の一実施例としての四輪駆
動車の駆動系を示す概略構成図、第2図は本実施
例装置の油圧ポンプの横断面図、第3図はその縦
断面図、第4図a,b,cは本実施例装置の可変
絞り部の断面図、第5図は作用を説明するグラフ
である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 is a schematic configuration diagram showing the drive system of a four-wheel drive vehicle as an embodiment of the present invention, FIG. 2 is a cross-sectional view of a hydraulic pump of the device of this embodiment, and FIG. 3 is a longitudinal sectional view thereof. FIGS. 4a, b, and c are sectional views of the variable aperture section of the device of this embodiment, and FIG. 5 is a graph explaining the operation.

第1図に示すように、横置されたエンジン1に
変速機2が連結され、その出力軸3に取り付けた
ドライブギヤ4から駆動力が取り出されて、アイ
ドルギヤ5を介して両端部にギヤ6,7を具えた
中間伝達軸8に伝達される。
As shown in FIG. 1, a transmission 2 is connected to an engine 1 placed horizontally, and driving force is taken out from a drive gear 4 attached to an output shaft 3 of the engine 1, and is transmitted to both ends of the engine via an idle gear 5. 6, 7 is transmitted to an intermediate transmission shaft 8.

そして、この中間伝達軸8の一方のギヤ7から
前輪9用の差動装置10に駆動力が伝達されて前
輪9が駆動される一方、前輪9に伝達された駆動
力がそのまま第1の回転軸11にギヤ12を介し
て伝達され、さらに、ベーンポンプ型連結機構と
しての四輪駆動用駆動連結装置本体13に伝達さ
れる。
Then, the driving force is transmitted from one gear 7 of this intermediate transmission shaft 8 to the differential device 10 for the front wheels 9 to drive the front wheels 9, while the driving force transmitted to the front wheels 9 is directly transmitted to the first rotation. The power is transmitted to the shaft 11 via the gear 12, and further to the four-wheel drive drive coupling device main body 13, which is a vane pump type coupling mechanism.

この四輪駆動用駆動連結装置本体13を経由し
た駆動力は、第2の回転軸14に伝達されるよう
になつており、回転取出方向を変換する歯車機構
15を介して後輪16用の差動装置17に駆動力
が伝達され、後輪16を駆動する。
The driving force that has passed through the four-wheel drive drive coupling device main body 13 is transmitted to the second rotating shaft 14, and is transmitted to the rear wheel 16 via a gear mechanism 15 that changes the direction of rotation. The driving force is transmitted to the differential device 17 to drive the rear wheels 16.

この四輪駆動用駆動連結装置本体13は、第
2,3図に示すように、油圧ポンプとしてのベー
ンポンプVPとこれに付属する油圧回路21とで
構成されており、ベーンポンプVPのロータ19
が、前輪9に駆動力を伝達する第1の回転軸11
に連結されるとともに、ケーシング20を構成す
るカムリング部20a環状プレート20bおよび
出力側プレート20cが、後輪16に駆動力を伝
達する第2の回転軸14に連結されている。
As shown in FIGS. 2 and 3, this four-wheel drive drive coupling device body 13 is composed of a vane pump VP as a hydraulic pump and a hydraulic circuit 21 attached thereto, and a rotor 19 of the vane pump VP.
is the first rotating shaft 11 that transmits the driving force to the front wheels 9.
The cam ring portion 20a, the annular plate 20b, and the output side plate 20c, which constitute the casing 20, are connected to the second rotating shaft 14 that transmits driving force to the rear wheel 16.

この油圧ポンプとしてのベーンポンプVPには、
そのロータ19の外周面19aに周方向に等間隔
に多数(ここでは、8個)の孔部19bが形成さ
れていて、この多数の孔部19bのそれぞれに
は、カムリング部20aの内周面20dに摺接し
うるベーン18が嵌挿されている。
This vane pump VP as a hydraulic pump has
A large number (8 in this case) of holes 19b are formed at equal intervals in the circumferential direction on the outer circumferential surface 19a of the rotor 19, and each of the large number of holes 19b is provided on the inner circumferential surface of the cam ring portion 20a. A vane 18 that can be slidably contacted with 20d is fitted.

また、ベーンポンプVPは、その回転数に比例
した油量を吐出するものであり、ロータ19とカ
ムリング部20aとの間に相対回転、すなわち、
第1の回転軸11と第2の回転軸14との間に相
対回転が生ずると油圧ポンプとして機能して油圧
を発生する。
Further, the vane pump VP discharges an amount of oil proportional to its rotation speed, and there is a relative rotation between the rotor 19 and the cam ring part 20a, that is,
When relative rotation occurs between the first rotating shaft 11 and the second rotating shaft 14, it functions as a hydraulic pump and generates hydraulic pressure.

ベーンポンプVPの吐出口(ケーシング20に
対するベーン18の相対的回転方向先端の吸込吐
出口22〜25がこれに相当)を塞ぐことによ
り、油を介してその静圧でロータ19とカムリン
グ部20aとが剛体のようになつて一体に回転さ
れる。
By blocking the discharge ports of the vane pump VP (corresponding to the suction and discharge ports 22 to 25 at the tip of the vane 18 in the relative rotational direction with respect to the casing 20), the rotor 19 and the cam ring portion 20a are connected to each other by the static pressure through the oil. It becomes like a rigid body and rotates as one.

このため、カムリング部20aとロータ19と
の間には対角位置に2つのポンプ室36,37が
形成され、また、回転方向基端側に位置したとき
吸込口となり先端側に位置したとき吐出口となる
4個の吸込吐出口22〜25がほぼ対角位置に形
成してあり、それぞれ同一機能をなす対角位置の
吸込吐出口22,24と吸込吐出口23,25と
が、それぞれカムリング部20aの回転状態でも
油を送通し得る機構を介して第1油路26と第2
油路27とで連通されている。
Therefore, two pump chambers 36 and 37 are formed at diagonal positions between the cam ring part 20a and the rotor 19, and when it is located on the base end side in the rotational direction, it becomes a suction port, and when it is located on the distal end side, it becomes a discharge port. Four suction/discharge ports 22 to 25 serving as outlets are formed at substantially diagonal positions, and the diagonally positioned suction/discharge ports 22, 24 and suction/discharge ports 23, 25, each having the same function, are connected to the cam ring. The first oil passage 26 and the second oil passage are connected through a mechanism that allows oil to flow even when the portion 20a is in rotation.
It is communicated with the oil passage 27.

また、第1油路26と第2油路27との間に、
それぞれチエツク弁28,29,29′を介して
オイル溜30が連通され、オイル溜30から各油
路26,27への流れのみが許容されるととも
に、第1油路26と第2油路27との間に流出の
みを許容する相対向した2つのチエツク弁31,
32を介して両油路26,27が連通され、この
2つのチエツク弁31,32の中間部が油路40
を介してリリーフ弁33に連通している。
Moreover, between the first oil passage 26 and the second oil passage 27,
The oil reservoir 30 is communicated with each other through the check valves 28, 29, 29', and only the flow from the oil reservoir 30 to each oil passage 26, 27 is allowed, and the first oil passage 26 and the second oil passage 27 two opposing check valves 31 that allow only outflow between the
Both oil passages 26 and 27 communicate with each other via a check valve 32, and an intermediate portion between these two check valves 31 and 32 is connected to an oil passage 40.
It communicates with the relief valve 33 via.

このリリーフ弁33のスプリング34側である
中間部を通じて、オイル溜30およびチエツク弁
29′と2つのチエツク弁28,29との間には、
連通路35が設けられている。
Through the middle part of the relief valve 33 on the spring 34 side, there is a connection between the oil reservoir 30 and the check valve 29' and the two check valves 28 and 29.
A communication path 35 is provided.

このような油圧回路21とすることで、ロータ
19とカムリング部20aとの相対回転方向によ
らず、常に吐出圧がリリーフ弁33の弁体に作用
し、オイル溜30が吸込口と連通することにな
る。
With such a hydraulic circuit 21, the discharge pressure always acts on the valve body of the relief valve 33, regardless of the relative rotation direction between the rotor 19 and the cam ring portion 20a, and the oil reservoir 30 communicates with the suction port. become.

また、吸込吐出口24に接続する油路26と吸
込吐出口23に接続する油路27とを連通する副
油路38が設けられるとともに、吸込吐出口22
に接続する油路26と吸込吐出口25に接続する
油路27とを連通する副油路39が設けられてお
り、副油路38,39には、第4図に示すよう
に、車両の走行速度が高くなるに応じてその絞り
径が大きくなる可変絞りMがそれぞれ設けられて
いる。可変絞りMは副通路38,39が形成され
たケース45に摺動自在に収容されたスプール4
6と副通路38,39を閉じるよう常にスプール
46を押圧するスプリング47とを備えており、
例えば、ケース45を走行速度に応じて回転させ
ることにより発生する遠心力や自動変速機を備え
た車両のガバナ圧等のように走行速度に対応した
周知の作用力を生ずる制御手段でスプール46を
スプリング47に抗して移動させ、副通路38,
39の径を可変とするようになつている。尚、第
4図中の48はケース45内を外気に開放してス
プール46の移動を許容するための通路である
が、上記のようにガバナ圧をスプール46に作用
させる場合にはこのガバナ圧の導入路となる。
Further, an auxiliary oil passage 38 is provided which communicates the oil passage 26 connected to the suction discharge port 24 and the oil passage 27 connected to the suction discharge port 23.
An auxiliary oil passage 39 is provided that communicates the oil passage 26 connected to the suction and discharge port 25 with the oil passage 27 connected to the suction discharge port 25. Each vehicle is provided with a variable aperture M whose aperture diameter increases as the traveling speed increases. The variable throttle M is a spool 4 that is slidably housed in a case 45 in which sub passages 38 and 39 are formed.
6 and a spring 47 that always presses the spool 46 to close the sub passages 38 and 39.
For example, the spool 46 may be controlled by a control means that generates a known acting force corresponding to the traveling speed, such as centrifugal force generated by rotating the case 45 in accordance with the traveling speed or governor pressure of a vehicle equipped with an automatic transmission. It is moved against the spring 47, and the sub passage 38,
The diameter of 39 is made variable. Note that 48 in FIG. 4 is a passage for opening the inside of the case 45 to the outside air and allowing movement of the spool 46, but when applying governor pressure to the spool 46 as described above, this governor pressure This will be the introduction route for

上記のように構成された四輪駆動車用駆動連結
装置によれば、前輪9と後輪16との間(第1の
回転軸11と第2の回転軸14との間)に回転速
度差がない場合には、ベーンポンプVPでの油圧
の発生はなく、後輪16に駆動力が伝達されず、
前輪9のみによる二輪駆動となる。
According to the drive coupling device for a four-wheel drive vehicle configured as described above, there is a rotational speed difference between the front wheels 9 and the rear wheels 16 (between the first rotation shaft 11 and the second rotation shaft 14). If there is no oil pressure generated in the vane pump VP, no driving force is transmitted to the rear wheels 16,
It is two-wheel drive using only the front wheels 9.

しかし、車両の直進加速時のように、大きなス
リツプがなくても通常前輪9が約1%以内でスリ
ツプする状態では、これによる回転速度差が第1
の回転軸11と第2の回転軸14との間に生じる
と、ベーンポンプVPが機能してこの回転速度差
に応じた油圧が発生し、ロータ19とカムリング
部20aとが一体になつて回転し、この油圧とベ
ーンの受圧面積とに対応して駆動力が後輪16に
伝達されて四輪駆動状態になる。
However, in a situation where the front wheels 9 normally slip within about 1% even if there is no large slip, such as when the vehicle is accelerating straight ahead, the rotational speed difference due to this is the first.
When the rotational speed difference is generated between the rotational shaft 11 and the second rotational shaft 14, the vane pump VP functions to generate oil pressure corresponding to this rotational speed difference, and the rotor 19 and the cam ring part 20a rotate as one. A driving force is transmitted to the rear wheels 16 in accordance with this oil pressure and the pressure-receiving area of the vane, resulting in a four-wheel drive state.

この場合、ベーンポンプVPにおける油の流れ
は、相対的にロータ19が回転することになり
(第2図中の符号A参照)、吸込吐出口22,24
が吸込口となつてチエツク弁28を介してオイル
溜30から油が吸込まれる一方、吸込吐出口2
3,25が吐出口となつてチエツク弁29,31
を閉じると同時にチエツク弁32、油路40を介
してリリーフ弁33に油が導かれ、この吐出油の
流れはリリーフ弁33により阻止される。これに
より、ベーンポンプVP内の圧力が上昇して、上
記のようにロータ19とカムリング部20aとが
一体回転するのである。
In this case, the oil flow in the vane pump VP is caused by the relative rotation of the rotor 19 (see symbol A in FIG. 2), and the suction and discharge ports 22, 24
serves as a suction port and oil is sucked in from the oil reservoir 30 via the check valve 28, while the suction and discharge port 2
3 and 25 serve as discharge ports and check valves 29 and 31
At the same time as the valve is closed, oil is introduced to the relief valve 33 via the check valve 32 and the oil passage 40, and the flow of this discharged oil is blocked by the relief valve 33. As a result, the pressure inside the vane pump VP increases, and the rotor 19 and the cam ring portion 20a rotate together as described above.

なお、第2図中、実線矢印は吐出油の流れを示
しており、破線矢印は吸込油の流れを示してい
る。
In FIG. 2, solid line arrows indicate the flow of discharged oil, and broken line arrows indicate the flow of suction oil.

次に、後輪16の回転速度に比べ前輪9の回転
速度が非常に大きくなる場合、例えば雪路での前
輪のスリツプ時や急加速時あるいはブレーキ時の
後輪がロツク気味となる場合には、四輪駆動用駆
動連結装置本体13に接続する第1の回転軸11
と第2の回転軸14との間の回転速度差が非常に
大きくなる。
Next, when the rotational speed of the front wheels 9 becomes much higher than the rotational speed of the rear wheels 16, for example, when the front wheels slip on a snowy road, or when the rear wheels tend to lock up during sudden acceleration or braking, , a first rotating shaft 11 connected to the four-wheel drive drive coupling device main body 13
The rotational speed difference between the rotational speed and the second rotating shaft 14 becomes very large.

これにより、ベーンポンプVPでは、第2図に
示す状態の油の流れが生じて大きな油圧が発生す
るが、所定値を越えると、リリーフ弁33がスプ
リング34に抗して開き吐出圧がほぼ一定に制御
され、後輪16に一定の吐出圧に対応した一定の
駆動力が伝達された四輪駆動状態となる。
As a result, in the vane pump VP, an oil flow as shown in Fig. 2 occurs and a large hydraulic pressure is generated, but when a predetermined value is exceeded, the relief valve 33 opens against the spring 34 and the discharge pressure becomes almost constant. A four-wheel drive state is established in which a constant driving force corresponding to a constant discharge pressure is transmitted to the rear wheels 16.

そして、前輪9の回転速度が減少するととも
に、後輪16の回転速度が増大することとなる回
転速度差を縮少(ノンスリツプデフと同一機能)
するようになる。
This reduces the rotational speed difference that causes the rotational speed of the front wheels 9 to decrease and the rotational speed of the rear wheels 16 to increase (same function as a non-slip differential).
I come to do it.

このように、前輪9のスリツプ状態では後輪1
6への駆動トルクが増大されて走行不能となるこ
とを回避できるとともに、後輪16がロツク気味
の場合には、前輪9のブレーキトルクを増大して
後輪16のロツクを防止する。
In this way, when the front wheel 9 is in a slip state, the rear wheel 1
In addition, when the rear wheels 16 tend to lock up, the brake torque of the front wheels 9 is increased to prevent the rear wheels 16 from locking up.

一方、前輪9の回転速度に比べ後輪16の回転
速度が非常に大きくなる場合、例えば前輪9のブ
レーキ状態でロツク気味となる場合では、四輪駆
動用駆動連結装置本体13に接続する第1の回転
軸11と第2の回転軸14との間に、上述とは逆
方向に非常に大きな回転速度が生じる。
On the other hand, if the rotational speed of the rear wheels 16 becomes very large compared to the rotational speed of the front wheels 9, for example, if the brake state of the front wheels 9 becomes a little locked, the first A very large rotational speed occurs between the rotating shaft 11 and the second rotating shaft 14 in the opposite direction to that described above.

これにより、ベーンポンプVPでは、第2図に
示す油の流れと逆方向の油の流れが生じ、吸込吐
出口23,25が吸込口となり、チエツク弁2
9,29′を介してオイル溜30から油が吸込ま
れる一方、吸込吐出口22,24が吐出口となり
第2油路26を経てチエツク弁28,32を閉じ
て、チエツク弁32からリリーフ弁33に導かれ
た大きな油圧が作用するが、この油圧もリリーフ
弁33により一定に保持され一定の駆動力が後輪
16に伝達されて四輪駆動状態となる。
As a result, in the vane pump VP, an oil flow occurs in the opposite direction to the oil flow shown in FIG. 2, the suction and discharge ports 23 and 25 become suction ports, and the check valve 2
Oil is sucked in from the oil reservoir 30 through the oil reservoir 30 through the oil reservoir 30 through the oil passages 9 and 29', and the suction and discharge ports 22 and 24 serve as discharge ports, passing through the second oil passage 26, closing the check valves 28 and 32, and transferring the oil from the check valve 32 to the relief valve. A large hydraulic pressure guided to the rear wheels 16 is applied, but this hydraulic pressure is also held constant by the relief valve 33, and a constant driving force is transmitted to the rear wheels 16, resulting in a four-wheel drive state.

そして、後輪16へのブレーキトルクを増大し
て前輪9のロツクを防止する。
Then, the brake torque to the rear wheels 16 is increased to prevent the front wheels 9 from locking.

このように、四輪駆動用駆動連結装置本体13
で吐出圧をリリーフ弁33により一定値以上とな
らないように制御することで、従来パートタイム
四輪駆動車で四輪駆動状態を必要とする場合には
運転者の操作が必要であつたものが、自動的に四
輪駆動と二輪駆動との切換が行なわれるとともに
前輪9と後輪16との回転速度差に応じた駆動力
による四輪駆動状態が得られる。
In this way, the four-wheel drive drive coupling device main body 13
By controlling the discharge pressure so that it does not exceed a certain value using the relief valve 33, conventional part-time four-wheel drive vehicles that require operation by the driver when four-wheel drive is required can be removed. , automatic switching between four-wheel drive and two-wheel drive is performed, and a four-wheel drive state is obtained with a driving force according to the rotational speed difference between the front wheels 9 and the rear wheels 16.

ところで、本考案の装置は副通路38,39を
備えていると共に、前述のように(第4図参照)、
スプリング47のばね定数、スプール46の重量
や径及び作用力(遠心力、ガバナ圧等)の関係か
ら、可変絞りMにより副通路38,39の径は走
行速度が高くなるに応じて零から徐々に大きくな
り絞り量が減少される。[本実施例では走行速度
20Km/hで直径0mm(第4図a)、走行速度60
Km/hで直径2mm(第4図b)、走行速度100Km/
hで直径3mm(第4図c)]。すなわち、副通路3
8,39の径の変化により、第1の回転軸11と
第2の回転軸14との間に回転速度差が生じた場
合のベーンポンプVPの吐出油圧は第5図に示す
ように走行速度に応じて変化し、走行速度が高い
状態にあつては回転速度が比較的大きくなるまで
吐出油圧はあまり高くならず二輪駆動状態とな
る。従つて、この高速走行状態にあつては、前輪
と後輪のタイヤ有効径の差やギヤトレーンのバツ
クテツシユ等により、第1の回転軸11と第2の
回転軸14との回転速度差が生じたとしても許容
し得る範囲内であり、四輪駆動化することにより
生ずる駆動力の伝達効率の悪化は解消される。
By the way, the device of the present invention is equipped with sub passages 38 and 39, and as mentioned above (see FIG. 4),
Due to the relationship between the spring constant of the spring 47, the weight and diameter of the spool 46, and the acting forces (centrifugal force, governor pressure, etc.), the diameters of the sub passages 38 and 39 gradually change from zero as the running speed increases due to the variable throttle M. becomes larger and the amount of aperture is reduced. [In this example, the traveling speed
Diameter 0 mm at 20 km/h (Fig. 4 a), traveling speed 60
km/h, diameter 2mm (Figure 4 b), traveling speed 100km/h
h and a diameter of 3 mm (Fig. 4c)]. In other words, sub passage 3
When a difference in rotational speed occurs between the first rotating shaft 11 and the second rotating shaft 14 due to a change in the diameters of the vane pumps 8 and 39, the discharge oil pressure of the vane pump VP changes depending on the running speed as shown in FIG. When the traveling speed is high, the discharge oil pressure does not increase much until the rotational speed becomes relatively high, resulting in a two-wheel drive state. Therefore, in this high-speed running state, a difference in rotational speed between the first rotating shaft 11 and the second rotating shaft 14 occurs due to the difference in the effective tire diameters of the front and rear wheels, the backtexturing of the gear train, etc. However, this is within an acceptable range, and the deterioration in driving force transmission efficiency caused by four-wheel drive is eliminated.

一方、走行速度が低い状態にあつては回転速度
差が比較的小さくても吐出油圧が高くなつて四輪
駆動化し、発進加速時や、低速走行状態となる泥
濘地、雪上等の走行にあつては、車輪のスリツプ
状態に迅速に対応して四輪駆動化するため、極め
て高い加速性及び走破性を実現する。
On the other hand, when the running speed is low, even if the difference in rotational speed is relatively small, the discharge oil pressure increases and four-wheel drive is activated. The system quickly responds to wheel slippage and switches to four-wheel drive, achieving extremely high acceleration and all-terrain performance.

尚、一般的に四輪駆動による低速走行時に急旋
回しようとする場合に前輪と後輪との回転距離差
により車輪にブレーキ作用が生ずる現象、いわゆ
るタイトコーナブレーキング現象については、例
えばパワーステアリングの作動油圧をスプール4
6に作用させるよう構成して、この場合には副通
路38,39の径を大きくして車両を二輪駆動状
態となるようにしても良い。また、上記実施例で
は油圧ポンプとして吸込吐出口が4個の平衡形ベ
ーンポンプを用いて説明したが、吸込吐出口が2
個の不平衡形ベーンポンプや他の形式の油圧ポン
プ、例えば内接ギヤポンプ、トロコイドポンプ、
ハイポサイクロイドポンプ、アキシヤルおよびラ
ジアルプランジヤポンプ等、回転速度差に応じて
吐出油量が変化する形式のものであれば使用する
ことができる。また、ベーンポンプVPの吐出油
の流れを規制する弁機構としては、上記リリーフ
弁33以外に例えばコンピユータによりデユーテ
イ制御や開閉制御されるソレノイド弁等その他周
知のものを用いることができる。
Generally speaking, the so-called tight corner braking phenomenon, which is a phenomenon in which braking is applied to the wheels due to the difference in rotational distance between the front and rear wheels when attempting to make a sharp turn during low-speed driving with four-wheel drive, is explained, for example, by power steering. Spool 4 for operating hydraulic pressure
In this case, the diameters of the sub passages 38 and 39 may be increased to put the vehicle in a two-wheel drive state. In addition, in the above embodiment, a balanced vane pump with four suction and discharge ports was used as the hydraulic pump, but the hydraulic pump has two suction and discharge ports.
unbalanced vane pumps and other types of hydraulic pumps, such as internal gear pumps, trochoid pumps,
Hypocycloid pumps, axial pumps, radial plunger pumps, and the like can be used as long as the amount of oil discharged changes depending on the rotational speed difference. Further, as a valve mechanism for regulating the flow of oil discharged from the vane pump VP, in addition to the above-mentioned relief valve 33, other well-known mechanisms such as a solenoid valve whose duty is controlled or opened/closed by a computer can be used.

以上説明したように本考案によれば、前輪と後
輪とに駆動力を伝達する油圧ポンプの吐出口側通
路と吸込側通路とを連通する副通路に車両の走行
速度が高くなるに応じてその絞り量が減少される
可変絞りを設けたため、大きなスリツプ等がなく
高速走行する場合において無用に四輪駆動化して
しまうことがなくなり、駆動力の伝達効率悪化を
防止することができる。
As explained above, according to the present invention, as the traveling speed of the vehicle increases, the auxiliary passage that communicates the discharge port side passage and the suction side passage of the hydraulic pump that transmits driving force to the front wheels and the rear wheels. Since a variable throttle is provided to reduce the throttle amount, the vehicle does not needlessly switch to four-wheel drive when traveling at high speed without large slips, and it is possible to prevent deterioration of the driving force transmission efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例としての四輪駆動車
の駆動系を示す概略構成図、第2図は本考案の一
実施例としての駆動連結装置に備えられた油圧ポ
ンプの横断面図、第3図はその縦断面図、第4図
a,b,cは可変絞り部の断面図、第5図は作用
を説明するグラフである。 図面中、9は前輪、11は第1回転軸、14は
第2回転軸、16は後輪、19はロータ、20は
ケーシング、22,23,24,25は吐出吸込
口、33はリリーフ弁、38,39は副通路、
VPはベーンポンプ、Mは可変絞りである。
Fig. 1 is a schematic configuration diagram showing a drive system of a four-wheel drive vehicle as an embodiment of the present invention, and Fig. 2 is a cross-sectional view of a hydraulic pump provided in a drive coupling device as an embodiment of the present invention. , FIG. 3 is a longitudinal sectional view thereof, FIGS. 4 a, b, and c are sectional views of the variable aperture portion, and FIG. 5 is a graph explaining the operation. In the drawing, 9 is a front wheel, 11 is a first rotating shaft, 14 is a second rotating shaft, 16 is a rear wheel, 19 is a rotor, 20 is a casing, 22, 23, 24, 25 are discharge and suction ports, and 33 is a relief valve. , 38, 39 are sub passages,
VP is a vane pump, and M is a variable throttle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 車両の前輪側に連結した第1回転軸と、車両の
後輪側に連結した第2回転軸と、前記第1回転軸
と第2回転軸とを連結し且つ両回転軸の回転速度
差によつて駆動されると共に回転速度差に応じた
油量を吐出する油圧ポンプとからなる四輪駆動車
用駆動連結装置において、前記油圧ポンプの吐出
口側通路と吸込口側通路とを連通すると共に可変
絞りが介装された副油路と、車両の走行速度が高
くなるに応じて前記可変絞りを制御してその絞り
量を減少する制御手段とを備えたことを特徴とす
る四輪駆動車用駆動連結装置。
A first rotating shaft connected to the front wheel side of the vehicle, a second rotating shaft connected to the rear wheel side of the vehicle, and a second rotating shaft connecting the first rotating shaft and the second rotating shaft and adjusting the rotational speed difference between the two rotating shafts. A drive coupling device for a four-wheel drive vehicle comprising a hydraulic pump that is driven by a hydraulic pump and discharges an amount of oil according to a rotational speed difference, the hydraulic pump having a discharge port side passage and a suction port side passage connected to each other, and A four-wheel drive vehicle comprising: an auxiliary oil passage provided with a variable throttle; and a control means for controlling the variable throttle to reduce the throttle amount as the vehicle speed increases. drive coupling device.
JP5265084U 1984-04-12 1984-04-12 Drive coupling device for four-wheel drive vehicles Granted JPS60165223U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265084U JPS60165223U (en) 1984-04-12 1984-04-12 Drive coupling device for four-wheel drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265084U JPS60165223U (en) 1984-04-12 1984-04-12 Drive coupling device for four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JPS60165223U JPS60165223U (en) 1985-11-01
JPH0215699Y2 true JPH0215699Y2 (en) 1990-04-26

Family

ID=30572793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265084U Granted JPS60165223U (en) 1984-04-12 1984-04-12 Drive coupling device for four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JPS60165223U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950626A (en) * 1973-06-21 1974-05-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950626A (en) * 1973-06-21 1974-05-16

Also Published As

Publication number Publication date
JPS60165223U (en) 1985-11-01

Similar Documents

Publication Publication Date Title
US4727966A (en) Differential with differential motion limiting mechanism
US4676336A (en) Power transmission apparatus for vehicle
JPS60116529A (en) Driving-coupling device for four-wheel driving
JPH0215699Y2 (en)
JPH038499Y2 (en)
KR890001336B1 (en) Differential with differential motion limiting mechanism
JPH0139226Y2 (en)
EP0260496B1 (en) Power transmission apparatus for vehicle of four-wheel drive type
JPH0215698Y2 (en)
JPH038498Y2 (en)
JPH0567817B2 (en)
JPH0423055Y2 (en)
JPH0435367B2 (en)
JPH0118418Y2 (en)
JPH0344581Y2 (en)
JPS60104426A (en) Driving and coupling device for four-wheel drive
KR890000272B1 (en) Power transmission system for vehicles
JPH0435366B2 (en)
JPH0440976Y2 (en)
JPH0511061Y2 (en)
JPH0421709Y2 (en)
JPH0512092Y2 (en)
JPH0324904Y2 (en)
JPH0610229Y2 (en) Torque transmission device for four-wheel drive vehicle
JPS60176825A (en) Drive coupling device for four wheels drive vehicle