JPH0421709Y2 - - Google Patents

Info

Publication number
JPH0421709Y2
JPH0421709Y2 JP1985094411U JP9441185U JPH0421709Y2 JP H0421709 Y2 JPH0421709 Y2 JP H0421709Y2 JP 1985094411 U JP1985094411 U JP 1985094411U JP 9441185 U JP9441185 U JP 9441185U JP H0421709 Y2 JPH0421709 Y2 JP H0421709Y2
Authority
JP
Japan
Prior art keywords
vehicle
oil passage
oil
rotating shaft
wheel drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985094411U
Other languages
Japanese (ja)
Other versions
JPS623326U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985094411U priority Critical patent/JPH0421709Y2/ja
Publication of JPS623326U publication Critical patent/JPS623326U/ja
Application granted granted Critical
Publication of JPH0421709Y2 publication Critical patent/JPH0421709Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は油圧ポンプを介して前輪と後輪とを同
一のエンジンで駆動する車両用四輪駆動装置に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a four-wheel drive system for a vehicle in which front wheels and rear wheels are driven by the same engine via a hydraulic pump.

<従来の技術> 車両用四輪駆動装置は同一のエンジンで前輪と
後輪とを同時に駆動するものであり、泥濘地や雪
上等の悪路での車両の走破性能に優れるばかり
か、前輪と後輪とから駆動力や制動力が路面に伝
えられるため、車両の急加速性能や急制動性能に
も優れている。
<Conventional technology> A four-wheel drive system for a vehicle uses the same engine to simultaneously drive the front wheels and rear wheels. Since driving force and braking force are transmitted from the rear wheels to the road surface, the vehicle's sudden acceleration and braking performance are excellent.

本出願人は、必要な場合には自動的に前後輪に
駆動トルクを伝達して、上記のような優れた性能
を発揮することができる車両用四輪駆動装置とし
て次のようなものを既に提案した。すなわち、前
輪側に連結された第1回転軸と後輪側に連結され
た第2回転軸との間に油圧ポンプを介装し、前輪
又は後輪がスリツプして第1回転軸と第2回転軸
との間に回転速度差(差動)が生じた場合に油圧
ポンプで発生される油圧の吐出を規制して、油圧
ポンプ内の静圧で第1回転軸と第2回転軸とを剛
体的に連結し、四輪駆動化を自動的に達成するも
のである。
The applicant has already developed the following four-wheel drive system for vehicles that can automatically transmit drive torque to the front and rear wheels when necessary and exhibit the excellent performance described above. Proposed. That is, a hydraulic pump is interposed between a first rotating shaft connected to the front wheel side and a second rotating shaft connected to the rear wheel side, so that when the front wheel or rear wheel slips, the first rotating shaft and the second rotating shaft The discharge of hydraulic pressure generated by the hydraulic pump is regulated when a rotational speed difference (differential) occurs between the first and second rotating shafts using the static pressure within the hydraulic pump. It is rigidly connected and automatically achieves four-wheel drive.

<考案が解決しようとする問題点> 上記した既提案の車両用四輪駆動装置にあつて
も、常時前後輪に駆動トルクを伝達する一般的な
四輪駆動装置と同様に、所謂コーナリングブレー
キ現象が生じてしまうという問題があつた。すな
わち、車両は旋回するときにその前輪と後輪との
間に軌道長の差が生じて前後輪間に差動が生じる
が、四輪駆動状態にあつてはこの差動が阻害され
回転速度の早い車輪が回転速度の遅い車輪により
制動されてしまう現象が生じていた。
<Problems to be solved by the invention> Even with the previously proposed vehicle four-wheel drive system described above, the so-called cornering braking phenomenon occurs, similar to a general four-wheel drive system that constantly transmits drive torque to the front and rear wheels. There was a problem that this occurred. In other words, when a vehicle turns, a difference in track length occurs between the front and rear wheels, creating a differential between the front and rear wheels, but in four-wheel drive, this differential is inhibited and the rotational speed is reduced. A phenomenon occurred in which a wheel with a faster rotation speed was braked by a wheel with a slower rotation speed.

本考案は上記した既提案のものを改良し、四輪
駆動による性能を維持しつつ所謂コーナリングブ
レーキ現象を防止した車両用四輪駆動装置を提供
することを目的とする。
An object of the present invention is to provide a four-wheel drive system for a vehicle that improves the previously proposed system described above and prevents the so-called cornering braking phenomenon while maintaining the performance of four-wheel drive.

<問題点を解決するための手段> 本考案の車両用四輪駆動装置は、車両の前輪側
に連結した第1回転軸と、車両の後輪側に連結し
た第2回転軸と、回転自在に支持され且つ前記第
1回転軸又は前記第2回転軸のいずれか一方に連
結されるケーシングと他方の回転軸に連結され且
つ該ケーシング内に回転自在に収容されるロータ
とを有して該第1回転軸と該第2回転軸との回転
速度差により駆動されて該回転速度差に応じた油
量を吐出する油圧ポンプと、前記油圧ポンプの吐
出口側油圧と吸込口側油路とを連通する副油路
と、車両の進行方向前後への加速度を検出して該
加速度が大きくなるに応じて前記副油路の流路を
絞る可変絞り機構とを備えたことを特徴とする。
<Means for Solving the Problems> The four-wheel drive system for a vehicle of the present invention has a first rotary shaft connected to the front wheels of the vehicle, a second rotary shaft connected to the rear wheels of the vehicle, and a rotatable four-wheel drive system for a vehicle of the present invention. The rotor has a casing supported by and connected to either the first rotating shaft or the second rotating shaft, and a rotor connected to the other rotating shaft and rotatably housed in the casing. a hydraulic pump that is driven by a rotational speed difference between a first rotating shaft and the second rotating shaft and discharges an amount of oil according to the rotational speed difference; and a hydraulic pressure on a discharge port side and an oil path on a suction port side of the hydraulic pump. The vehicle is characterized by comprising: a sub-oil passage that communicates with the sub-oil passage; and a variable throttling mechanism that detects acceleration in the forward and backward directions of the vehicle and throttles the passage of the sub-oil passage as the acceleration increases.

<作用> 副油路により定まる油量が油圧ポンプの吐出口
側油路から吸込口側油路へ流れるのを許容し、車
両旋回時に生ずる前後輪間の比較的小さな差動を
許容して所謂コーナリングブレーキ現象の発生を
防止する。一方、車両の進行方向前後への加速度
が大きくなる急加速時や急制動時には副油路の流
路を絞り、油圧ポンプの吐出口側油路から吸込口
側油路への圧油の流れを規制して前後輪にほぼ同
等な駆動トルクを伝達する。
<Function> The amount of oil determined by the auxiliary oil path is allowed to flow from the oil path on the discharge port side of the hydraulic pump to the oil path on the suction port side, allowing for a relatively small differential between the front and rear wheels that occurs when the vehicle turns. Prevent cornering brake phenomenon from occurring. On the other hand, during sudden acceleration or sudden braking, where the acceleration in the forward and backward direction of the vehicle increases, the flow of the auxiliary oil passage is throttled to reduce the flow of pressure oil from the oil passage on the discharge port side of the hydraulic pump to the oil passage on the suction port side. It controls and transmits almost equal drive torque to the front and rear wheels.

<実施例> 本考案の一実施例を図面に基づいて説明する。
第1図は本実施例の四輪駆動装置を適用した車両
の駆動系を表す構成図、第2図は本実施例の四輪
駆動装置を油圧ポンプを横断面した状態で表す構
成図、第3図はその油圧ポンプの縦断面図、第4
図はその可変絞り機構の断面図、第5図は作用を
説明するグラフである。
<Example> An example of the present invention will be described based on the drawings.
FIG. 1 is a configuration diagram showing the drive system of a vehicle to which the four-wheel drive device of this embodiment is applied, FIG. 2 is a configuration diagram showing the four-wheel drive device of this embodiment with a hydraulic pump in a cross section Figure 3 is a vertical cross-sectional view of the hydraulic pump, and Figure 4 is a vertical cross-sectional view of the hydraulic pump.
The figure is a sectional view of the variable diaphragm mechanism, and FIG. 5 is a graph explaining the action.

第1図に示すように、横置されたエンジン1に
変速機2が連結され、その出力軸3に取り付けた
ドライブギヤ4から駆動力が取り出されて、アイ
ドルギヤ5を介して両端部にギヤ6,7を備えた
中間伝達軸8に伝達される。
As shown in FIG. 1, a transmission 2 is connected to an engine 1 placed horizontally, and driving force is taken out from a drive gear 4 attached to an output shaft 3 of the engine 1, and is transmitted to both ends of the engine via an idle gear 5. 6, 7 is transmitted to an intermediate transmission shaft 8.

そして、この中間伝達軸8の一方のギヤ7から
前輪9用の差動装置10に駆動力が伝達されて前
輪9が駆動される一方、前輪9に伝達された駆動
力がそのまま第1の回転軸11にギヤ12を介し
て伝達され、さらに、四輪駆動装置13に伝達さ
れる。
Then, the driving force is transmitted from one gear 7 of this intermediate transmission shaft 8 to the differential device 10 for the front wheels 9 to drive the front wheels 9, while the driving force transmitted to the front wheels 9 is directly transmitted to the first rotation. The signal is transmitted to the shaft 11 via the gear 12 and further to the four-wheel drive device 13.

この四輪駆動装置13を経由した駆動力は、第
2の回転軸14に伝達されるようになつており、
回転取出方向を変換する歯車機構15を介して後
輪16用の差動装置17に駆動力が伝達され、後
輪16を駆動する。
The driving force via this four-wheel drive device 13 is transmitted to a second rotating shaft 14,
The driving force is transmitted to a differential device 17 for the rear wheels 16 via a gear mechanism 15 that changes the direction of rotation, and drives the rear wheels 16.

この四輪駆動装置13は、第2,3図に示すよ
うに、油圧ポンプとしてのベーンポンプVPとこ
れに付属する油圧回路21とで構成されており、
ベーンポンプVPのロータ19が、前輪9に駆動
力を伝達する第1の回転軸11に連結されるとと
もに、ケーシング20を構成するカムリング部2
0a、環状プレート20bおよび出力側プレート
20cが、後輪16に駆動力を伝達する第2の回
転軸14に連結されている。
As shown in FIGS. 2 and 3, this four-wheel drive device 13 is composed of a vane pump VP as a hydraulic pump and a hydraulic circuit 21 attached thereto.
A rotor 19 of the vane pump VP is connected to a first rotating shaft 11 that transmits driving force to the front wheel 9, and a cam ring portion 2 that constitutes a casing 20
0a, the annular plate 20b, and the output side plate 20c are connected to the second rotating shaft 14 that transmits driving force to the rear wheel 16.

このベーンポンプVPには、そのロータ19の
外周面19aに周方向に等間隔に多数(ここで
は、10個)の孔部19bが形成されていて、この
多数の孔部19bのそれぞれには、カムリング部
20aの内周面20dに摺接しうるベーン18が
嵌挿されている。
In this vane pump VP, a large number (10 holes in this case) of holes 19b are formed at equal intervals in the circumferential direction on the outer circumferential surface 19a of the rotor 19, and each of the large number of holes 19b is provided with a cam ring. A vane 18 that can be slidably contacted with the inner circumferential surface 20d of the portion 20a is fitted.

また、ベーンポンプVPは、その回転数に比例
した油量を吐出するものであり、ロータ19とカ
ムリング部20aとの間に相対回転、すなわち、
第1の回転軸11と第2の回転軸14との間に相
対回転が生ずると油圧ポンプとして機能して油圧
を発生する。
Further, the vane pump VP discharges an amount of oil proportional to its rotation speed, and there is a relative rotation between the rotor 19 and the cam ring part 20a, that is,
When relative rotation occurs between the first rotating shaft 11 and the second rotating shaft 14, it functions as a hydraulic pump and generates hydraulic pressure.

ベーンポンプVPの吐出口(ケーシング20に
対するベーン18の相対的回転方向先端の吸込吐
出口22〜27がこれに相当)を塞ぐことによ
り、油を介してその静圧でロータ19とカムリン
グ部20aとが剛体のようになつて一体に回転さ
れる。
By blocking the discharge ports of the vane pump VP (corresponding to the suction and discharge ports 22 to 27 at the tips of the vanes 18 in the relative rotational direction with respect to the casing 20), the rotor 19 and the cam ring portion 20a are connected to each other by the static pressure through the oil. It becomes like a rigid body and rotates as one.

このため、カムリング部20aとロータ19と
の間には等間隔に3つのポンプ室28,29,3
0が形成され、また、回転方向基端側に位置した
とき吸込口となり先端側に位置したとき吐出口と
なる6個の吸込吐出口22〜27がほぼ等間隔に
形成してあり、それぞれ同一機能をなす吸込吐出
口22,24,26と吸込吐出口23,25,2
7とが、それぞれカムリング部20aの回転状態
でも油を送通し得る機構を介して第1油路31と
第2油路32とで連通されている。
Therefore, there are three pump chambers 28, 29, 3 at equal intervals between the cam ring part 20a and the rotor 19.
0 is formed, and six suction and discharge ports 22 to 27, which are the suction port when located on the proximal side in the rotational direction and the discharge port when located on the distal side in the rotational direction, are formed at approximately equal intervals, and are identical to each other. Functional suction and discharge ports 22, 24, 26 and suction and discharge ports 23, 25, 2
7 are in communication with the first oil passage 31 and the second oil passage 32 via a mechanism that allows oil to flow even when the cam ring portion 20a is in rotation.

また、第1油路31と第2油路32との間に、
それぞれチエツク弁33,34を介してオイル溜
35が連通され、オイル溜35から各油路31,
32への流れのみが許容されるとともに、第1油
路31と第2油路32との間に流出のみを許容す
る相対向した2つのリリーフ弁36,37を介し
て両油路31,32が連通されている。尚、これ
らリリーフ弁36,37はそれぞれスプリング3
6a,37aにより常閉状態に付勢されており、
この付勢力に勝る或る一定以上の油圧が作用した
ときに開くようになつている。
Moreover, between the first oil passage 31 and the second oil passage 32,
An oil reservoir 35 is communicated through check valves 33 and 34, respectively, and the oil passages 31,
Both oil passages 31 and 32 are connected via two opposing relief valves 36 and 37 that allow only flow to 32 and allow only outflow between the first oil passage 31 and the second oil passage 32. are being communicated. Note that these relief valves 36 and 37 are each connected to a spring 3.
6a and 37a are biased to the normally closed state,
It is designed to open when a certain level of hydraulic pressure that exceeds this biasing force is applied.

このような油圧回路21とすることで、ロータ
19とカムリング部20aとの相対回転方向によ
らず、常に吐出圧がリリーフ弁36,37に作用
し、オイル溜35が吸込口と連通することにな
る。
With such a hydraulic circuit 21, the discharge pressure always acts on the relief valves 36 and 37 regardless of the relative rotational direction between the rotor 19 and the cam ring part 20a, and the oil reservoir 35 communicates with the suction port. Become.

また、吸込吐出口22,24,26を接続する
油路31と吸込吐出口23,25,27を接続す
る油路32とを連通する副油路38が設けられて
おり、副油路38には、第4図に示すように、車
両の進行方向前後への加速度が大きくなるに応じ
てその絞り径が小さくなる可変絞り機構Mが設け
られている。可変絞り機構Mは、副油路38が形
成されたケース39に摺動自在に収容されたスプ
ール40と、スプール40をその両端からそれぞ
れ付勢して中立位置に保持し該副油路38を所定
の絞りにて開通させる一対のスプリング41,4
2とを備えており、このスプール40は車両の増
速加速度や、減速加速度が作用して車両の進行方
向前後に摺動し得るように配設されている。従つ
て、進行方向前後への加速度が生じない車両の通
常走行時にはスプール40は中立位置にあり、副
油路38における圧油の所定量以下の流通を許容
する一方、急加速、急制動時のようにスプール4
0にスプリング41,42の付勢力に勝る加速度
が作用するときにはこの加速度の大きさに応じて
スプール40が移動し、副油路38の流路を絞つ
て流通する圧油の量を減少又は副油路38を遮断
する。
Further, an auxiliary oil passage 38 is provided that communicates an oil passage 31 connecting the suction and discharge ports 22, 24, and 26 with an oil passage 32 that connects the suction and discharge ports 23, 25, and 27. As shown in FIG. 4, a variable aperture mechanism M is provided whose aperture diameter becomes smaller as the acceleration in the forward and backward directions of the vehicle increases. The variable throttle mechanism M includes a spool 40 that is slidably housed in a case 39 in which an auxiliary oil passage 38 is formed, and a spool 40 that is biased from both ends of the spool 40 to maintain the spool 40 at a neutral position. A pair of springs 41, 4 that open at a predetermined aperture
2, and this spool 40 is arranged so as to be able to slide back and forth in the direction of travel of the vehicle in response to the acceleration and deceleration of the vehicle. Therefore, the spool 40 is in the neutral position during normal running of the vehicle where no acceleration occurs in the forward or backward direction of travel, allowing the flow of a predetermined amount of pressure oil or less in the auxiliary oil passage 38; Like spool 4
When an acceleration that exceeds the biasing force of the springs 41 and 42 acts on the spool 40, the spool 40 moves according to the magnitude of this acceleration and narrows the flow path of the auxiliary oil passage 38 to reduce or reduce the amount of pressure oil flowing through the auxiliary oil passage 38. The oil passage 38 is shut off.

上記のように構成された四輪駆動装置によれ
ば、前輪9と後輪16との間(第1の回転軸11
と第2の回転軸14との間)に回転速度差(差
動)がない場合には、ベーンポンプVPでの油圧
の発生はなく、後輪16に駆動力が伝達されず、
前輪9のみによる二輪駆動となる。また、車両旋
回時にあつては前輪9と後輪16との間にはわず
かに差動が生ずるが、急加速や急制動による進行
方向前後への大きな加速度が生じない場合にはこ
のわずかな差動によりベーンポンプVPに生ずる
油圧は副油路38を通つて第1油路31と第2油
路32との間を流通する圧油により解消され、上
記と同様な二輪駆動状態を維持し、コーナリング
ブレーキ現象の生ずることのない円滑な旋回が達
成される。
According to the four-wheel drive device configured as described above, between the front wheels 9 and the rear wheels 16 (first rotating shaft 11
If there is no rotational speed difference (differential) between the vane pump VP and the second rotating shaft 14, no hydraulic pressure is generated in the vane pump VP, and no driving force is transmitted to the rear wheels 16.
It is two-wheel drive using only the front wheels 9. Furthermore, when the vehicle is turning, a slight differential occurs between the front wheels 9 and the rear wheels 16, but this slight differential occurs when there is no large acceleration forward or backward in the direction of travel due to sudden acceleration or sudden braking. The hydraulic pressure generated in the vane pump VP due to the movement is canceled by the pressure oil flowing between the first oil passage 31 and the second oil passage 32 through the auxiliary oil passage 38, maintaining the same two-wheel drive state as described above, and cornering. Smooth turning without braking phenomena is achieved.

一方、例えば雪路等で前輪9にスリツプが生じ
た場合や制動時に後輪16がロツクしてしまつた
場合のように後輪16の回転速度に較べて前輪9
の回転速度が比較的大きくなる場合には、この回
転速度差に応じた油圧がベーンポンプVPに生ず
る。この場合の油圧は副油路38の流通許容量を
上回るものとなり、ロータ19とカムリング部2
0aが圧油を介して剛体のように一体回転し、前
輪9への駆動トルクが後輪16へも伝達される四
輪駆動状態となる。この場合、吐出油の流れを実
線矢印・吸込油の流れを破線矢印で表す第2図に
示すように、ベーンポンプVPにおける油の流れ
は、相対的にロータ19が回転することになり、
吸込吐出口23,25,27が吸込口となつてチ
エツク弁34を介してオイル溜35から油が吸込
まれる一方、吸込吐出口22,24,26が吐出
口となつてチエツク弁33を閉じると同時にリリ
ーフ弁36,37に油が導かれ、この吐出油の流
れはリリーフ弁36,37により阻止される。こ
れにより、ベーンポンプVP内の圧力が上昇して、
上記のようにロータ19とカムリング部20aと
が一体回転する。ここで、前輪9の回転速度が後
輪16に較べて非常に大きくなり、ベーンポンプ
VPでの発生油圧が所定値を上回る場合には、リ
リーフ弁36がスプリング36aに抗して開いて
吐出油圧をほぼ一定に制御し、後輪16に一定の
吐出油圧に対応した駆動トルクを伝達する四輪駆
動状態となる。上記の結果、前輪9の回転速度が
減少するとともに、後輪16の回転速度が増大す
ることとなつて回転速度差を縮小(ノンスリツプ
デフと同一機能)するようになり、前輪9のスリ
ツプ状態では後輪16への駆動トルクが増大され
て走行不能となることを回避できるとともに、後
輪16がロツク気味の場合には、前輪9のブレー
キトルクを増大して後輪16のロツクを防止す
る。
On the other hand, if the front wheels 9 slip on a snowy road, or if the rear wheels 16 lock up during braking, the front wheels 9 may
When the rotational speed of the vane pump VP becomes relatively large, a hydraulic pressure corresponding to this rotational speed difference is generated in the vane pump VP. In this case, the oil pressure exceeds the flow capacity of the auxiliary oil passage 38, and the rotor 19 and the cam ring part 2
0a rotates integrally like a rigid body via pressure oil, and the driving torque to the front wheels 9 is also transmitted to the rear wheels 16, resulting in a four-wheel drive state. In this case, as shown in FIG. 2, in which the flow of discharged oil is shown by a solid line arrow and the flow of suction oil is shown by a broken line arrow, the flow of oil in the vane pump VP is caused by the relative rotation of the rotor 19.
The suction and discharge ports 23, 25, and 27 function as suction ports, and oil is sucked in from the oil reservoir 35 through the check valve 34, while the suction and discharge ports 22, 24, and 26 function as discharge ports, and the check valve 33 is closed. At the same time, oil is guided to the relief valves 36, 37, and the flow of this discharged oil is blocked by the relief valves 36, 37. This increases the pressure inside the vane pump VP, causing
As described above, the rotor 19 and the cam ring portion 20a rotate together. Here, the rotation speed of the front wheel 9 becomes much larger than that of the rear wheel 16, and the vane pump
When the hydraulic pressure generated at VP exceeds a predetermined value, the relief valve 36 opens against the spring 36a to control the discharge hydraulic pressure to be approximately constant, and transmits a driving torque corresponding to the constant discharge hydraulic pressure to the rear wheels 16. The vehicle is in four-wheel drive mode. As a result of the above, the rotational speed of the front wheels 9 decreases and the rotational speed of the rear wheels 16 increases, reducing the rotational speed difference (same function as a non-slip differential), causing the front wheels 9 to slip. In this case, it is possible to avoid the situation where the drive torque to the rear wheels 16 is increased and the vehicle cannot run, and when the rear wheels 16 are a little locked, the brake torque of the front wheels 9 is increased to prevent the rear wheels 16 from locking. .

一方、前輪9の回転速度に比べ後輪16の回転
速度が大きくなる場合、例えば前輪9のブレーキ
状態でロツク気味となる場合では、四輪駆動装置
13に接続する第1の回転軸11と第2の回転軸
14との間に、上述とは逆方向に非常に大きな回
転速度が生じる。これにより、ベーンポンプVP
では、第2図に示す油の流れと逆方向の油の流れ
が生じ、吸込吐出口22,24,26が吸込口と
なり、チエツク弁33を介してオイル溜35から
油が吸込まれる一方、吸込吐出口23,25,2
7が吐出口となり第2油路32を経てチエツク弁
34を閉じ、リリーフ弁37に所定値を上回る油
圧が作用するときにはこの油圧もリリーフ弁37
により一定に保持され一定の駆動力が後輪16に
伝達されて四輪駆動状態となる。
On the other hand, when the rotational speed of the rear wheels 16 becomes higher than the rotational speed of the front wheels 9, for example, when the brake state of the front wheels 9 becomes slightly locked, the first rotating shaft 11 connected to the four-wheel drive device 13 A very large rotational speed is generated in the opposite direction to the above-mentioned direction between the rotational shaft 14 of No. This allows vane pump VP
In this case, an oil flow occurs in the opposite direction to the oil flow shown in FIG. Suction and discharge ports 23, 25, 2
7 becomes a discharge port and closes the check valve 34 via the second oil passage 32, and when hydraulic pressure exceeding a predetermined value acts on the relief valve 37, this hydraulic pressure is also discharged from the relief valve 37.
A constant driving force is transmitted to the rear wheels 16, resulting in a four-wheel drive state.

上記のように、前輪9と後輪16との間の回転
速度差の増大に応じて前輪9と後輪16との間の
伝達トルク量を徐々に増大させ、この回転速度差
が或る値以上となる場合には伝達トルクをほぼ一
定とする特性(第5図中に点線で示す)をもつ
て、二輪駆動状態と四輪駆動状態とが自動的に切
換る。
As described above, the amount of torque transmitted between the front wheels 9 and the rear wheels 16 is gradually increased in accordance with the increase in the rotational speed difference between the front wheels 9 and the rear wheels 16, and this rotational speed difference reaches a certain value. In this case, the two-wheel drive state and the four-wheel drive state are automatically switched with the characteristic that the transmitted torque is approximately constant (as shown by the dotted line in FIG. 5).

ところで、急加速時や急制動時のように車両に
進行方向前後への加速度が生ずる場合には、この
加速度の大きさに応じて副油路38の流路が絞ら
れる。従つて、前輪9と後輪16との間にわずか
な回転速度差が生じてもベーンポンプVPのロー
タ19とカムリング部20aとは圧油を介して一
体回転することとなつて四輪駆動化される。すな
わち、上記特性は、第5図中に実線で示すように
四輪駆動化の時期が早くなり、四輪駆動状態によ
る優れた急加速性能や急制動性能が効果的に発揮
される。
By the way, when acceleration occurs in the vehicle forward and backward in the traveling direction, such as during sudden acceleration or sudden braking, the flow path of the auxiliary oil passage 38 is narrowed depending on the magnitude of this acceleration. Therefore, even if there is a slight difference in rotational speed between the front wheels 9 and the rear wheels 16, the rotor 19 and cam ring portion 20a of the vane pump VP rotate together through pressure oil, resulting in four-wheel drive. Ru. That is, with the above characteristics, as shown by the solid line in FIG. 5, the timing of switching to four-wheel drive becomes earlier, and excellent rapid acceleration performance and sudden braking performance due to the four-wheel drive state are effectively exhibited.

上記実施例で示した可変絞り機構Mは車両の加
速度を慣性移動するスプール40で検出するもの
であるが、第6図に示すように、副油路38を互
いに並列な2つの油路38a,38bに分岐し、
一方の油路38aに固定絞り45を設けると共に
他方の油路38bにソレノイド作動する常開の2
位置切換弁46を設け、このソレノイドを車両進
行方向前後への加速度を検出する公知の加速度セ
ンサ47の出力信号に基づいて作動させ、切換弁
46を開閉するようにしても良い。尚、図中48
は加速度センサ47とソレノイドとの間に設けら
れた制御回路である。このように構成した場合に
あつても、加速度が生ずることにより副油路38
は両油路38a,38bで定まる流路抵抗かに油
路38aのみで定まる流路抵抗となり、上記実施
例と同様に加速度が所定値より大きくなると副油
路38の流路が絞られて早期に四輪駆動化され
る。尚、加速度を検出する手段としては、上記の
もの他に車輪の回転速度変化が利用するもの等
種々なものを用いることができる。また、上記実
施例では油圧ポンプとして吸込吐出口が6個の平
衡形ベーンポンプを用いて説明したが、吸込吐出
口が2個の不平衡形ベーンポンプや他の形式の油
圧ポンプ、例えば内接ギヤポンプ、トロコイドポ
ンプ、ハイポサイクロイドポンプ、アキシヤルお
よびラジアルプランジヤポンプ等、回転速度差に
応じて吐出油量が変化する形式のものであれば使
用することができる。また、ベーンポンプVPの
吐出油の流れを規制する弁機構としては、上記リ
リーフ弁36,37以外に例えばコンピユータに
よりデユーテイ制御や開閉制御されるソレノイド
弁等その他周知のものを用いることができる。
The variable throttle mechanism M shown in the above embodiment detects the acceleration of the vehicle using the spool 40 that moves inertia, but as shown in FIG. Branched into 38b,
One oil passage 38a is provided with a fixed throttle 45, and the other oil passage 38b is provided with a normally open valve operated by a solenoid.
A position switching valve 46 may be provided, and the switching valve 46 may be opened and closed by operating this solenoid based on an output signal of a known acceleration sensor 47 that detects acceleration in the longitudinal direction of the vehicle. In addition, 48 in the figure
is a control circuit provided between the acceleration sensor 47 and the solenoid. Even with this configuration, the auxiliary oil passage 38 is damaged due to acceleration.
is the flow path resistance determined by both oil paths 38a and 38b or the flow path resistance determined only by the oil path 38a.Similarly to the above embodiment, when the acceleration becomes larger than a predetermined value, the flow path of the auxiliary oil path 38 is constricted and early It will be equipped with four-wheel drive. In addition to the above-mentioned means, various means for detecting acceleration can be used, such as one that utilizes changes in the rotational speed of the wheels. Further, in the above embodiment, a balanced vane pump with six suction and discharge ports was used as the hydraulic pump, but an unbalanced vane pump with two suction and discharge ports, other types of hydraulic pumps, such as internal gear pumps, etc. It is possible to use any type of pump such as a trochoid pump, hypocycloid pump, axial or radial plunger pump, which can change the amount of oil discharged depending on the difference in rotational speed. In addition to the relief valves 36 and 37, other known valve mechanisms for regulating the flow of oil discharged from the vane pump VP, such as solenoid valves whose duty is controlled or opened/closed by a computer, can be used.

<考案の効果> 本考案の車両用四輪駆動装置によれば、四輪駆
動による優れた性能、特に急加速性能や急制動性
能を維持しつつコーナリングブレーキ現象の発生
を有効に防止することができる。
<Effects of the invention> According to the four-wheel drive device for a vehicle of the present invention, it is possible to effectively prevent the cornering braking phenomenon while maintaining the excellent performance of four-wheel drive, especially the sudden acceleration performance and sudden braking performance. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例としての四輪駆動車
の駆動系を示す概略構成図、第2図は本考案の一
実施例としての駆動連結装置に備えられた油圧ポ
ンプの横断面図、第3図はその縦断面図、第4図
は可変絞り機構の断面図、第5図は作用を説明す
るグラフ、第6図は可変絞り機構の他の態様を表
す概略構成図である。 図面中、9は前輪、11は第1回転軸、14は
第2回転軸、16は後輪、19はロータ、20は
ケーシング、22,23,24,25,26,2
7は吐出吸込口、36,37はリリーフ弁、38
は副油路、VPはベーンポンプ、Mは可変絞り機
構である。
Fig. 1 is a schematic configuration diagram showing a drive system of a four-wheel drive vehicle as an embodiment of the present invention, and Fig. 2 is a cross-sectional view of a hydraulic pump provided in a drive coupling device as an embodiment of the present invention. , FIG. 3 is a longitudinal sectional view thereof, FIG. 4 is a sectional view of the variable diaphragm mechanism, FIG. 5 is a graph explaining the operation, and FIG. 6 is a schematic configuration diagram showing another aspect of the variable diaphragm mechanism. In the drawing, 9 is a front wheel, 11 is a first rotating shaft, 14 is a second rotating shaft, 16 is a rear wheel, 19 is a rotor, 20 is a casing, 22, 23, 24, 25, 26, 2
7 is a discharge suction port, 36 and 37 are relief valves, 38
is an auxiliary oil passage, VP is a vane pump, and M is a variable throttle mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 車両の前輪側に連結した第1回転軸と、車両の
後輪側に連結した第2回転軸と、回転自在に支持
され且つ前記第1回転軸又は前記第2回転軸のい
ずれか一方に連結されるケーシングと他方の回転
軸に連結され且つ該ケーシング内に回転自在に収
容されるロータとを有して該第1回転軸と該第2
回転軸との回転速度差により駆動されて該回転速
度差に応じた油量を吐出する油圧ポンプと、前記
油圧ポンプの吐出口側油路と吸込口側油路とを連
通する副油路と、車両の進行方向前後への加速度
を検出して該加速度が大きくなるに応じて前記副
油路の流路を絞る可変絞り機構とを備えたことを
特徴とする車両用四輪駆動装置。
A first rotation shaft connected to the front wheel side of the vehicle, a second rotation shaft connected to the rear wheel side of the vehicle, and a rotary shaft rotatably supported and connected to either the first rotation shaft or the second rotation shaft. and a rotor connected to the other rotating shaft and rotatably housed within the casing, the first rotating shaft and the second rotating shaft are connected to each other.
a hydraulic pump that is driven by a rotational speed difference with a rotating shaft and discharges an amount of oil according to the rotational speed difference; and an auxiliary oil passage that communicates an oil passage on a discharge port side and an oil passage on a suction port side of the hydraulic pump. A four-wheel drive device for a vehicle, comprising: a variable throttle mechanism that detects acceleration in the forward and backward directions of the vehicle and throttles the flow path of the auxiliary oil path as the acceleration increases.
JP1985094411U 1985-06-24 1985-06-24 Expired JPH0421709Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985094411U JPH0421709Y2 (en) 1985-06-24 1985-06-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985094411U JPH0421709Y2 (en) 1985-06-24 1985-06-24

Publications (2)

Publication Number Publication Date
JPS623326U JPS623326U (en) 1987-01-10
JPH0421709Y2 true JPH0421709Y2 (en) 1992-05-18

Family

ID=30652928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985094411U Expired JPH0421709Y2 (en) 1985-06-24 1985-06-24

Country Status (1)

Country Link
JP (1) JPH0421709Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116529A (en) * 1983-11-30 1985-06-24 Mitsubishi Motors Corp Driving-coupling device for four-wheel driving

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116529A (en) * 1983-11-30 1985-06-24 Mitsubishi Motors Corp Driving-coupling device for four-wheel driving

Also Published As

Publication number Publication date
JPS623326U (en) 1987-01-10

Similar Documents

Publication Publication Date Title
US4676336A (en) Power transmission apparatus for vehicle
JP3943676B2 (en) Power transmission device for four-wheel drive vehicle
JPH0421709Y2 (en)
JPS647896B2 (en)
JPH038499Y2 (en)
JPH0344581Y2 (en)
JPH0423055Y2 (en)
KR920007462B1 (en) Power transmission apparatus for vehicle of four-wheeled drive type
JPH0511061Y2 (en)
JPH0440976Y2 (en)
JPH0435367B2 (en)
JPS6365533B2 (en)
JPH0215699Y2 (en)
JPH0512093Y2 (en)
JPH0139226Y2 (en)
JPH0610229Y2 (en) Torque transmission device for four-wheel drive vehicle
JPH0511060Y2 (en)
JPH0435366B2 (en)
JPH0512092Y2 (en)
JPH0324903Y2 (en)
JPS61102326A (en) Vehicle power transmission device
JPH076012Y2 (en) Vehicle differential limiting device
JPH059221Y2 (en)
JPH038498Y2 (en)
JPH0324904Y2 (en)