JP3198794B2 - Four-wheel drive vehicles - Google Patents

Four-wheel drive vehicles

Info

Publication number
JP3198794B2
JP3198794B2 JP09254594A JP9254594A JP3198794B2 JP 3198794 B2 JP3198794 B2 JP 3198794B2 JP 09254594 A JP09254594 A JP 09254594A JP 9254594 A JP9254594 A JP 9254594A JP 3198794 B2 JP3198794 B2 JP 3198794B2
Authority
JP
Japan
Prior art keywords
fluid pressure
drive
driven
pressure
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09254594A
Other languages
Japanese (ja)
Other versions
JPH07304345A (en
Inventor
純 渡辺
建郎 高橋
頼人 中尾
茂 亀ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP09254594A priority Critical patent/JP3198794B2/en
Priority to US08/405,673 priority patent/US5687808A/en
Priority to DE19510046A priority patent/DE19510046C2/en
Publication of JPH07304345A publication Critical patent/JPH07304345A/en
Application granted granted Critical
Publication of JP3198794B2 publication Critical patent/JP3198794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主原動機の回転駆動力
を前輪及び後輪に伝達するようにした四輪駆動車に係
り、特に駆動力の伝達を流体圧伝動機構で行うようにし
た四輪駆動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel drive vehicle in which the rotational driving force of a main engine is transmitted to a front wheel and a rear wheel, and in particular, the driving force is transmitted by a hydraulic pressure transmission mechanism. It relates to a four-wheel drive vehicle.

【0002】[0002]

【従来の技術】この種の四輪駆動車にあっては、パート
タイム式のように手動で二輪駆動と四輪駆動との機械的
な連結を切換える四輪駆動車の場合、その切換え操作が
面倒である他、タイトコーナーブレーキング現象などの
不具合を生じ乗用車には不向きである。これに対してフ
ルタイム式四輪駆動車はタイトコーナーブレーキング現
象は解消できるが、センタデフに差動制限装置が必要と
なり装置が複雑になる。また、パートタイム式及びフル
タイム式にかかわらず現在の乗用車に用いられている駆
動方式ではプロペラシャフトを有することから、これが
前輪駆動車に対する重量の増加、車室内スペースへの悪
影響、燃費の悪化、騒音や振動の悪化をもたらし、後輪
駆動車の場合でも重量増、燃費の悪化を免れない。
2. Description of the Related Art In a four-wheel drive vehicle of this type, in the case of a four-wheel drive vehicle in which the mechanical connection between two-wheel drive and four-wheel drive is manually switched as in a part-time system, the switching operation is performed. In addition to being troublesome, it has problems such as tight corner braking and is not suitable for passenger cars. On the other hand, a full-time four-wheel drive vehicle can eliminate the tight corner braking phenomenon, but requires a differential limiting device in the center differential, which complicates the device. In addition, regardless of the part-time type and full-time type, the current drive system used for passenger cars has a propeller shaft, which increases the weight of the front-wheel drive vehicle, adversely affects the cabin space, deteriorates fuel efficiency, Noise and vibration deteriorate, and even in the case of rear-wheel-drive vehicles, weight increase and fuel economy are inevitable.

【0003】そこで、従来、構成部材の重量軽減を図る
目的で、例えば特開平3−224830号公報(以下、
第1従来例と称す)に記載されているように、原動機で
直接的に駆動される前輪と、流体圧で作動するクラッチ
を介して駆動される後輪とを有する四輪駆動車両の動力
伝達装置であって、前記前輪に連動して駆動される第1
流体圧ポンプと、前記後輪に連動して駆動される第2流
体圧ポンプと、前記第1流体圧ポンプの吐出ポートと前
記第2流体圧ポンプの吸入ポートとを連通接続する連結
油路と、この連結油路と前記流体圧クラッチの作動油圧
室とを連通接続する油圧供給油路とを備えた構成を有
し、前輪側及び後輪側の回転速度差による第1流体圧ポ
ンプ及び第2流体圧ポンプの流量差に応じてクラッチを
制御することにより、駆動力の伝達を制御するようにし
た四輪駆動車が提案されている。
Therefore, conventionally, for the purpose of reducing the weight of constituent members, for example, Japanese Patent Laid-Open Publication No.
Power transmission of a four-wheel drive vehicle having front wheels driven directly by a prime mover and rear wheels driven through a clutch operated by fluid pressure, as described in the first conventional example). A first device driven in conjunction with the front wheel
A fluid pressure pump, a second fluid pressure pump driven in conjunction with the rear wheel, and a connecting oil passage communicating and connecting a discharge port of the first fluid pressure pump and a suction port of the second fluid pressure pump. A hydraulic supply oil passage for connecting and connecting the connecting oil passage and an operating hydraulic chamber of the fluid pressure clutch, wherein the first hydraulic pump and the second hydraulic pump are driven by a rotational speed difference between a front wheel side and a rear wheel side. There has been proposed a four-wheel drive vehicle in which transmission of driving force is controlled by controlling a clutch in accordance with a flow difference between two fluid pressure pumps.

【0004】また、プロペラシャフトに代えて油圧伝動
装置を利用して駆動力の伝達を行う目的で、例えば特開
平1−223030号公報(以下、第2従来例と称す)
に記載されているように、前輪と連動回転し、回転速度
に応じた油圧を発生する例えばベーンポンプで構成され
る第1の油圧ポンプと、後輪と連動回転し、回転速度に
応じた油圧を発生する同様にベーンポンプで構成される
第2の油圧ポンプと、前記第1,第2の油圧ポンプの一
方の吐出口と他方の吸込口とを夫々連通する油路とを備
えた構成を有するものが提案されている。
For the purpose of transmitting a driving force by using a hydraulic transmission instead of a propeller shaft, for example, Japanese Patent Laid-Open No. 1-223030 (hereinafter referred to as a second conventional example).
As described in, a first hydraulic pump that is configured to rotate in conjunction with the front wheels and generates a hydraulic pressure according to the rotation speed, for example, a vane pump, and that rotates in conjunction with the rear wheels to generate hydraulic pressure according to the rotation speed A second hydraulic pump which is also formed by a vane pump, and an oil passage which communicates one of the discharge ports and the other of the first and second hydraulic pumps with each other. Has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記第
1従来例の四輪駆動車にあっては、伝達トルクを制限す
ることにより、プロペラシャフトを軽量化することはで
きるが、プロペラシャフトを省略することはできないの
で、軽量化には一定の限度があり、また車室内スペース
への悪影響に対しては全く改善することができないとい
う未解決の課題がある。
However, in the first prior art four-wheel drive vehicle, the propeller shaft can be reduced in weight by limiting the transmission torque, but the propeller shaft is omitted. Therefore, there is an unsolved problem that there is a certain limit to weight reduction and no improvement can be made against the adverse effect on the vehicle interior space.

【0006】また、第2従来例の四輪駆動車にあって
は、油圧伝動装置を利用しているので、プロペラシャフ
トを省略して軽量化、車室内スペースの確保、燃費の向
上、騒音や振動の低下等を図ることができるが、高速走
行時には前後輪が共に高速回転することにより、油圧ポ
ンプの吐出流量が多くなり、これによって配管抵抗が増
大し、そのためシステムの引きずり抵抗が増大して圧力
損失が増大することにより、燃費の悪化を招く他、シス
テムにおける油温の上昇や第2の油圧ポンプの吸入口で
作動油の吸込みが追いつかなくなり圧力が異常に低下す
ることにより気泡が発生するキャビテーションを起こし
易くなるという未解決の課題がある。ここで、流量増大
時の配管抵抗を減じるには配管を大径化すればよいが、
スペースやコスト等を考えるとそれにも一定の限度があ
る。
In the second prior art four-wheel drive vehicle, since the hydraulic transmission is used, the propeller shaft is omitted to reduce the weight, secure the interior space of the vehicle, improve fuel efficiency, reduce noise and noise. Although vibration can be reduced, the front and rear wheels rotate at high speed during high-speed running, which increases the discharge flow rate of the hydraulic pump, thereby increasing piping resistance, and thus increasing drag resistance of the system. The increase in pressure loss causes deterioration of fuel efficiency, and also causes an increase in oil temperature in the system and an increase in oil pressure at the suction port of the second hydraulic pump, so that air bubbles are generated due to an abnormal decrease in pressure and pressure. There is an unsolved problem that cavitation is likely to occur. Here, in order to reduce the pipe resistance when the flow rate is increased, the diameter of the pipe may be increased,
Considering space, cost, etc., it also has certain limits.

【0007】このような高速走行時の燃費悪化を抑制す
るために、図12に示すように、駆動側の第1の油圧ポ
ンプを可変容量化し、その流量特性を特性曲線L11で示
すように四輪駆動状態を必要としない高速走行時に相当
する回転数NF2で流量を頭打ちにさせて最大流量Q1MAX
に制限したり、従動側の第2の油圧ポンプも可変容量化
して、その流量特性を特性曲線L12で示すように最大流
量Q1MAXより高い最大流量Q2MAXに制限することが考え
られるが、このような流量特性をもたせた場合トルクを
伝達させるためには、第1の油圧ポンプ流量が第2の油
圧ポンプ流量を上回る必要があるが従動側の第2の油圧
ポンプ流量が駆動側となる第1の油圧ポンプの最大流量
2MAXに達した回転数NR1で最大伝達トルクは、図12
で特性曲線L13で示すように、急激に減少するため運転
者に違和感を与える可能性があるという新たな課題を生
じる。
In order to suppress deterioration of fuel consumption during such a high speed, as shown in FIG. 12, a first hydraulic pump driven side variable capacity, shows the flow characteristic at the characteristic curve L 11 The maximum flow rate Q 1MAX is reached by flattening the flow rate at a rotation speed N F2 corresponding to high-speed running that does not require a four-wheel drive state.
Or limited to, the second hydraulic pump driven by a variable capacity, it is conceivable to limit its maximum flow characteristics higher than the maximum flow rate Q 1MAX as indicated by the characteristic curve L 12 flow Q 2MAX, In order to transmit torque when such flow characteristics are provided, the first hydraulic pump flow needs to exceed the second hydraulic pump flow, but the driven second hydraulic pump flow is the drive side. The maximum transmission torque at the rotation speed N R1 that has reached the maximum flow rate Q 2MAX of the first hydraulic pump is as shown in FIG.
In as indicated by the characteristic curve L 13, results in a new problem that there is a possibility that a driver feels discomfort due to decrease rapidly.

【0008】そこで、本発明は、上記従来例の未解決の
課題に着目してなされたものであり、最大伝達トルクを
緩やかに低下させて運転者に違和感を生じさせることな
く高速走行時の燃費悪化を抑制することができる四輪駆
動車を提供することを目的としている。
Therefore, the present invention has been made in view of the above-mentioned unsolved problems of the prior art, and the fuel consumption during high-speed traveling without causing the driver to feel uncomfortable by gradually lowering the maximum transmission torque. An object is to provide a four-wheel drive vehicle that can suppress deterioration.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る四輪駆動車は、主原動機により駆動
される駆動車軸と、該駆動車軸に連動して駆動される駆
動側流体圧駆動手段と、従動車軸に連動して駆動される
従動側流体圧駆動手段とを有し、前記駆動側流体圧駆動
手段及び従動側流体圧駆動手段を互いの吐出口と吸込口
とを連通する流路を設けて流体圧伝動機構を構成し、前
記駆動側流体圧駆動手段の流量を前記従動側流体圧駆動
手段の流量未満に設定した四輪駆動車において、前記従
動側流体圧駆動手段の容量が最大伝達トルクを低下させ
始める第1の回転数より容量を減少させ、且つ前記駆動
側流体圧駆動手段のの容量を前記第1の回転数より高く
伝達トルクの必要がなくなる第2の回転数で最大値とな
るように設定されていることを特徴としている。
According to a first aspect of the present invention, there is provided a four-wheel drive vehicle including: a drive axle driven by a main motor; and a drive side driven in conjunction with the drive axle. A fluid pressure driving means, and a driven fluid pressure driving means driven in conjunction with a driven axle, wherein the driving fluid pressure driving means and the driven fluid pressure driving means each have a discharge port and a suction port. In a four-wheel drive vehicle in which a fluid passage is provided by providing a communicating flow path and a flow rate of the driving fluid pressure driving means is set to be less than a flow rate of the driven fluid pressure driving means, the driven fluid pressure driving means The capacity of the means decreases the capacity from the first rotation speed at which the maximum transmission torque starts to decrease, and the capacity of the drive-side fluid pressure driving means is higher than the first rotation speed. Set to the maximum value at the second rotation speed where It is characterized in that it is.

【0010】また、請求項2に係る四輪駆動車は、主原
動機により駆動される駆動車軸と、該駆動車軸に連動し
て駆動される駆動側流体圧駆動手段と、従動車軸に連動
して駆動される従動側流体圧駆動手段とを有し、前記駆
動側流体圧駆動手段及び従動側流体圧駆動手段を互いの
吐出口と吸込口とを連通する流路を設けて流体圧伝動機
構を構成し、前記駆動側流体圧駆動手段の流量を前記従
動側流体圧駆動手段の流量未満に設定した四輪駆動車に
おいて、前記従動側流体圧駆動手段の容量が最大伝達ト
ルクを低下させ始める第1の回転数より容量を減少さ
せ、且つ前記駆動側流体圧駆動手段の容量を前記従動側
流体圧駆動手段の容量特性に合わせて第1の回転数より
く第2の回転数より低い回転数より容量を減少させ、
さらに伝達トルクの必要のなくなる第2の回転数で最大
値となるように設定されていることを特徴としている。
According to a second aspect of the present invention, there is provided a four-wheel drive vehicle, wherein a drive axle driven by a main motor, drive-side fluid pressure drive means driven in conjunction with the drive axle, and a driven axle in association with the driven axle. A driven hydraulic pressure driving means having a driven hydraulic pressure driving means, wherein the driving fluid pressure driving means and the driven fluid pressure driving means are provided with a flow path communicating between the discharge port and the suction port, and a fluid pressure transmission mechanism is provided. In a four-wheel drive vehicle, wherein the flow rate of the drive-side fluid pressure driving means is set to be less than the flow rate of the driven-side fluid pressure drive means, the capacity of the driven-side fluid pressure drive means begins to decrease the maximum transmission torque. reducing the volume from 1 rpm, and the driving-side fluid pressure capacity of the first rotary rotation speed higher rather of the 2 <br/> than in accordance with the capacitance characteristic of the driven-side fluid pressure driving means of the driving means Reduce the capacity from lower than the number of revolutions ,
Further, it is characterized in that the maximum value is set at the second rotation speed at which the transmission torque is not required.

【0011】さらに、請求項3に係る四輪駆動車は、主
原動機により駆動される駆動車軸と、該駆動車軸に連動
して駆動される駆動側流体圧駆動手段と、従動車軸に連
動して駆動される従動側流体圧駆動手段とを有し、前記
駆動側流体圧駆動手段及び従動側流体圧駆動手段を互い
の吐出口と吸込口とを高圧側流路及び低圧側流路で連通
して流体圧伝動機構を構成し、前記駆動側流体圧駆動手
段の流量を前記従動側流体圧駆動手段の流量未満に設定
した四輪駆動車において、前記従動側流体圧駆動手段の
容量が最大伝達トルクを低下させ始める第1の回転数よ
り容量を減少させ、且つ前記駆動側流体圧駆動手段の容
量を前記第1の回転数より高く伝達トルクの必要がなく
なる第2の回転数で最大値となるように設定すると共
に、前記高圧流路及び低圧流路間に開弁圧を前記第1の
回転数及び第2の回転数間で回転数の増加に対して減少
させるリリーフ弁を介挿したことを特徴としている。
Further, the four-wheel drive vehicle according to claim 3 is a drive axle driven by a main motor, drive-side fluid pressure drive means driven in conjunction with the drive axle, and a drive axle in conjunction with a driven axle. The driven fluid pressure driving means and the driven fluid pressure driving means communicate with each other through a discharge port and a suction port through a high pressure side flow path and a low pressure side flow path. In a four-wheel drive vehicle in which the fluid pressure transmission mechanism is configured to set the flow rate of the driving fluid pressure driving means to be less than the flow rate of the driven fluid pressure driving means, the capacity of the driven fluid pressure driving The capacity is reduced from the first rotation speed at which the torque starts to decrease, and the capacity of the drive-side fluid pressure driving means is increased to a maximum value at the second rotation speed at which the transmission torque is no longer required higher than the first rotation speed. And the high-pressure flow path and It is characterized in that the valve opening pressure was interposed a relief valve to reduce with increasing rotational speed between the first speed and the second rotational speed between the low-pressure line.

【0012】さらにまた、請求項4に係る四輪駆動車
は、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを高圧側流路及び低圧側流
路で連通して流体圧伝動機構を構成し、前記駆動側流体
圧駆動手段の流量を前記従動側流体圧駆動手段の流量
に設定した四輪駆動車において、前記従動側流体圧駆
動手段の容量が最大伝達トルクを低下させ始める第1の
回転数より容量を減少させ、且つ前記駆動側流体圧駆動
手段の流量を前記第1の回転数より高く伝達トルクの必
要のなくなる第2の回転数で最大値となるように設定
し、さらに前記高圧流路及び低圧流路間に開弁圧を前記
第1の回転数及び第2の回転数間で回転数の増加に対し
て減少させるリリーフ弁を介挿すると共に、前記駆動側
流体圧駆動手段の吐出圧が前記リリーフ弁の最大開弁圧
より低い設定圧を越えたときに当該駆動側流体圧駆動手
段の吸入量を減少させる吸入量制限手段を設けたことを
特徴としている。
Further, a four-wheel drive vehicle according to a fourth aspect is a drive axle driven by a main prime mover, drive-side fluid pressure drive means driven in conjunction with the drive axle, and a driven axle. And a driven fluid pressure driving means, which is driven by the hydraulic fluid, wherein the driving fluid pressure driving means and the driven fluid pressure driving means communicate their discharge ports and suction ports with each other through a high pressure side flow path and a low pressure side flow path. and by a fluid pressure transmission kinematic mechanism, the flow rate Not of the driven-side fluid pressure drive means the flow rate of the driving-side hydraulic drive means
In four-wheel drive vehicle which is set to full, the capacity of the driven side hydraulic drive means decreases the first capacitor from the rotational speed of the start to reduce the maximum transmission torque, and wherein the flow rate of the driving-side hydraulic drive means It is set to be a maximum value at a second rotation speed that is higher than the first rotation speed and does not require transmission torque, and further , the valve opening pressure is increased between the high-pressure flow path and the low-pressure flow path. A discharge valve of the driving fluid pressure driving means has exceeded a set pressure lower than a maximum valve opening pressure of the relief valve while a relief valve for decreasing the rotation speed is increased between the second rotation speeds. In some cases, suction amount limiting means for reducing the suction amount of the drive-side fluid pressure driving means is provided.

【0013】なおさらに、請求項5に係る四輪駆動車
は、請求項3又は4に記載の四輪駆動車において前記リ
リーフ弁の開弁圧を第2の回転数において略零となるよ
うに設定したことを特徴としている。また、請求項6に
係る四輪駆動車は、請求項3乃至5の何れかに記載の四
輪駆動車において前記リリーフ弁は、その開弁圧が従動
側流体圧駆動手段と低圧側流路との間に介挿した絞りの
従動側流体圧駆動手段側圧力により開弁圧を制御するよ
うに構成されていることを特徴としている。
Still further, in the four-wheel drive vehicle according to the fifth aspect, in the four-wheel drive vehicle according to the third or fourth aspect, the valve opening pressure of the relief valve may be substantially zero at the second rotation speed. It is characterized by having been set. In the four-wheel drive vehicle according to claim 6, in the four-wheel drive vehicle according to any one of claims 3 to 5, the relief valve is configured such that the valve opening pressure is controlled by the driven-side fluid pressure driving means and the low-pressure side flow passage. The valve opening pressure is controlled by the pressure on the driven fluid pressure driving means side of the restrictor inserted between the throttle valve and the throttle valve.

【0014】さらに、請求項7に係る四輪駆動車は、請
求項3乃至6の何れかに記載の四輪駆動車において前記
駆動側流体圧駆動手段は、回転数に対する流量特性の異
なる複数のポンプを組み合わせて構成されていることを
特徴としている。
According to a seventh aspect of the present invention, there is provided a four-wheel drive vehicle according to any one of the third to sixth aspects, wherein the drive-side fluid pressure drive means has a plurality of different flow rate characteristics with respect to rotation speed. It is characterized by being configured by combining pumps.

【0015】[0015]

【作用】請求項1に係る四輪駆動車においては、主原動
機により駆動される駆動車軸の回転によって駆動側流体
圧駆動手段から回転速度に応じた流量の作動流体が吐出
され、これが一方の連通流路を通じて従動車軸の回転に
よって駆動される従動側流体圧駆動手段の吸込側に供給
され、この従動側流体圧駆動手段から吐出される作動流
体が他方の連通流路を通じて駆動側流体圧駆動手段に戻
される。このとき、駆動車軸及び従動車軸の回転数差が
小さいときには、伝達トルクは殆どなく二輪駆動状態を
維持するが、回転数差が大きくなるに従って、伝達トル
クが大きくなって四輪駆動状態に移行する。このとき、
従動側流体圧駆動手段の容量を、最大伝達トルクを低下
させ始める第1の回転数より減少させ、且つ前記駆動側
流体圧駆動手段の容量を第1の回転数より高く伝達トル
クの必要のなくなる第2の回転数で最大値となるように
設定しているので、従動側流体圧駆動手段が第1の回転
数を越えた場合でも、従動側流体圧駆動手段の流量が駆
動側流体圧駆動手段の最大流量に達するまでは最大伝達
トルクを徐々に減少させる。
In the four-wheel drive vehicle according to the first aspect, the rotation of the drive axle driven by the main prime mover discharges the working fluid of a flow rate corresponding to the rotation speed from the drive-side fluid pressure drive means, which is connected to one of the communicating means. The working fluid supplied to the suction side of the driven fluid pressure driving means driven by the rotation of the driven axle through the flow path, and the working fluid discharged from the driven fluid pressure driving means is supplied to the driving fluid pressure driving means through the other communication flow path. Is returned to. At this time, when the rotational speed difference between the drive axle and the driven axle is small, there is almost no transmission torque and the two-wheel drive state is maintained, but as the rotational speed difference increases, the transfer torque increases and the vehicle shifts to the four-wheel drive state. . At this time,
The capacity of the driven fluid pressure driving means is reduced below the first rotation speed at which the maximum transmission torque starts to decrease, and the capacity of the driving fluid pressure driving means is higher than the first rotation speed, so that transmission torque is not required. Since the setting is made to be the maximum value at the second rotation speed, even when the driven fluid pressure driving means exceeds the first rotation speed, the flow rate of the driven fluid pressure driving means is maintained at the driving fluid pressure driving means. until the maximum flow rate of the means reduces gradually the maximum transmission torque.

【0016】請求項2に係る四輪駆動車においては、上
記請求項1の作用に加えて、駆動側流体圧駆動手段の流
量が従動側流体圧駆動手段の流量特性に合わせて第1の
回転数より高く第2の回転数より低い回転数より容量が
減少するため、駆動側流体圧駆動手段及び従動側駆動手
段の流量差を少なくして伝達トルクを発生し易くし、最
大伝達トルクの急減を抑制する。
In the four-wheel drive vehicle according to the second aspect, in addition to the operation of the first aspect, the flow rate of the drive-side fluid pressure drive means is adjusted in accordance with the flow rate characteristic of the driven-side fluid pressure drive means. since the capacity of a high Ku lower rotational speed than the second rotational speed than the number decreases, and easily generate a transmission torque by reducing the flow rate difference between the drive-side hydraulic drive means and the driven side means, the maximum torque transfer Suppress sharp decline.

【0017】請求項3に係る四輪駆動車においては、請
求項1の作用に加えて、高圧側流路及び低圧側流路間に
介挿したリリーフ弁の開弁圧が第1の回転数に達するま
では所定設定圧を維持するが、第1の回転数及び第2の
回転数間にあっては、回転数の増加に応じて減少し、こ
れによって、駆動側流体圧駆動手段及び従動側流体圧駆
動手段間における高圧側流路の圧力が低下して、第2の
回転数に向かってより滑らかに伝達トルクを減少させ
る。
In the four-wheel drive vehicle according to the third aspect, in addition to the function of the first aspect, the valve opening pressure of the relief valve interposed between the high-pressure side flow path and the low-pressure side flow path is increased to the first rotation speed. Is maintained until reaching the first rotation speed, but between the first rotation speed and the second rotation speed, the pressure decreases as the rotation speed increases, whereby the driving fluid pressure driving means and the driven fluid The pressure in the high-pressure side passage between the pressure driving means decreases, and the transmission torque decreases more smoothly toward the second rotation speed.

【0018】請求項4に係る四輪駆動車においては、請
求項3の作用に加えて、リリーフ弁が開弁状態となる前
に、駆動側流体圧駆動手段の作動流体吸入量が吸入量制
限手段によって制限され、これによって駆動側流体圧駆
動手段の吐出流量が減少することになり、リリーフ弁が
開弁して高圧側流路から低圧側流路に作動油が放出する
場合の作動油の温度上昇を抑制する。
In the four-wheel drive vehicle according to the fourth aspect, in addition to the effect of the third aspect, before the relief valve is opened, the working fluid suction amount of the drive-side fluid pressure drive means is limited to the suction amount. Means, the discharge flow rate of the drive side fluid pressure drive means will be reduced, and the relief valve will open to release the hydraulic oil from the high pressure side flow path to the low pressure side flow path. Suppress temperature rise.

【0019】請求項5に係る四輪駆動車においては、第
2の回転数に達するとリリーフ弁の開弁圧が略零となっ
て、駆動側流体圧駆動手段及び従動側流体圧駆動手段間
を連通する高圧側流路の圧力がゲージ圧となり、伝達ト
ルクを段差を生じることなく滑らかに零とすることがで
きる。請求項6に係る四輪駆動車においては、従動側流
体圧駆動手段と低圧側流路との間に設けた絞りの従動側
流体圧駆動手段側圧に基づいてリリーフ弁の開弁圧が制
御されるため、別途他のセンサ等を設けずに開弁圧の制
御を行える。
In the four-wheel drive vehicle according to the fifth aspect, when the second rotational speed is reached, the valve opening pressure of the relief valve becomes substantially zero, and the pressure between the driving fluid pressure driving means and the driven fluid pressure driving means is reduced. The pressure in the high pressure side flow path communicating with the pressure becomes the gauge pressure, and the transmission torque can be smoothly reduced to zero without generating a step. In the four-wheel drive vehicle according to the sixth aspect, the opening pressure of the relief valve is controlled based on the pressure on the driven fluid pressure driving means side of the throttle provided between the driven fluid pressure driving means and the low pressure flow path. Therefore, the valve opening pressure can be controlled without providing another sensor or the like separately.

【0020】請求項7に係る四輪駆動車においては、駆
動側流体圧駆動手段が、回転数に対する流量特性の異な
る複数のポンプを組み合わせて構成することにより、単
独では多段回の流量制御が難しいポンプであっても流量
特性を多段回に設定することができる。
In the four-wheel drive vehicle according to the seventh aspect, since the drive-side fluid pressure drive means is configured by combining a plurality of pumps having different flow rate characteristics with respect to the number of revolutions, it is difficult to control the flow rate in multiple stages by itself. Even with a pump, the flow characteristics can be set in multiple stages.

【0021】[0021]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明を前輪駆動車をベースとした四輪駆
動車に適用した場合の第1実施例を示す概略構成図であ
って、図中、1は主原動機としてのエンジンであって、
このエンジン1の回転駆動力が変速機2を介して前輪側
差動装置3に入力され、この差動装置3の出力側に駆動
車軸としての前車軸4を介して前輪5が連結されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a first embodiment in which the present invention is applied to a four-wheel drive vehicle based on a front-wheel drive vehicle. In the drawing, reference numeral 1 denotes an engine as a main engine,
The rotational driving force of the engine 1 is input to a front wheel differential 3 via a transmission 2, and a front wheel 5 is connected to an output side of the differential 3 via a front axle 4 as a drive axle. .

【0022】前輪側差動装置3は、デファレンシャギヤ
ケース3aに形成されたリングギヤ3bが変速機2の出
力側に連結されたギヤ2aに噛合されて回転駆動され、
このディファレンシャルギヤケース3a内に形成された
一対のピニオンシャフト3cにピニオン3dが取付けら
れ、これらピニオン3dに一対のサイドギヤ3eが噛合
し、これらサイドギヤ3eに前車軸4が連結されてい
る。
The front wheel differential 3 is rotated by a ring gear 3b formed on a differential gear case 3a meshed with a gear 2a connected to the output side of the transmission 2.
A pinion 3d is attached to a pair of pinion shafts 3c formed in the differential gear case 3a. A pair of side gears 3e mesh with the pinion 3d, and the front axle 4 is connected to the side gears 3e.

【0023】また、ディファレンシャルギヤケース3a
にリングギヤ3bと並列に形成されたリングギヤ3fが
これに噛合するギヤ3gを介して流体圧ポンプとしての
吸入絞り型ピストンポンプ6の回転軸6aに連結されて
いる。この吸入絞り型ピストンポンプ6は、その吸込口
6bがリザーバタンク7内に配設されたストレーナ7a
に連結されていると共に、低圧流路としての低圧配管8
Lを通じて2位置4ポートの電磁方向切換弁9のタンク
ポートTに接続され、吐出口6cが高圧流路としての高
圧配管8Hを通じて前後進切換用の電磁方向切換弁9の
ポンプポートPに接続されている。
Also, a differential gear case 3a
A ring gear 3f formed in parallel with the ring gear 3b is connected to a rotary shaft 6a of a suction throttle type piston pump 6 as a fluid pressure pump via a gear 3g meshing with the ring gear 3f. The suction throttle type piston pump 6 has a suction port 6b having a strainer 7a provided in a reservoir tank 7.
And a low-pressure pipe 8 as a low-pressure flow path
The discharge port 6c is connected to the pump port P of the electromagnetic directional control valve 9 for forward / reverse switching through a high-pressure pipe 8H as a high-pressure flow path through L. ing.

【0024】ここで、吸入絞り型ピストンポンプ6は、
回転軸6aの回転方向によって吸入口と吐出口とが入れ
替わることがなく、その吐出流量は、図2で特性曲線L
1 で示すように、前車軸4の回転数が“0”から後述す
る最大伝達トルクが減少し始める後車軸18の回転数N
R1より高い所定値NF1に達するまでの間では、回転数の
増加に比例して比較的大きな増加率で増加し、所定値N
F1以上では回転数の増加に比例して比較的小さな増加率
で増加し、高速走行状態となって四輪駆動状態を必要と
しない前車軸4の回転数(第2の回転数)F2で最大吐
出流量Q1MAXで飽和するように設定されている。
Here, the suction throttle type piston pump 6
The suction port and the discharge port are not interchanged depending on the rotation direction of the rotating shaft 6a, and the discharge flow rate is represented by the characteristic curve L in FIG.
As shown by 1 , the rotation speed N of the rear axle 18 starts to decrease after the rotation speed of the front axle 4 is “0”.
Until the predetermined value N F1 higher than R1 is reached, the rotation speed increases at a relatively large increase rate in proportion to the increase of the rotation speed, and the predetermined value N
At F1 or higher, the rotation speed increases at a relatively small rate of increase in proportion to the rotation speed, and the rotation speed of the front axle 4 (second rotation speed) N F2 which does not require the four-wheel drive state due to the high-speed running state It is set to be saturated at the maximum discharge flow rate Q 1MAX .

【0025】前後進切換用の電磁方向切換弁9は、ソレ
ノイド9aが非通電状態であるノーマル位置でポンプポ
ートPを出力ポートAに、タンクポートTを出力ポート
Bに夫々連通し、ソレノイド9aが通電状態であるオフ
セット位置でポンプポートPを出力ポートBに、タンク
ポートTを出力ポートAに夫々連通し、出力ポートA及
びBが流体圧ポンプモータとしての斜板型可変容量ポン
プモータ10の吸入・吐出口10a及び10bに接続さ
れており、ノーマル位置で高圧配管8Hの高圧油を可変
容量ポンプモータ10の吸入・吐出口10aに、低圧配
管8Lを吸入・吐出口10bに連通させて回転軸10c
を前進走行時の回転方向例えば左側面からみて時計方向
に回転駆動し、逆にオフセット位置で高圧配管8Hの高
圧油を可変容量ポンプモータ10の吸入・吐出口10b
に、低圧配管8Lを吸入・吐出口10aに連通させて回
転軸10cを前進走行時の回転方向例えば左側面からみ
て反時計方向に回転駆動する。
The electromagnetic directional control valve 9 for forward / reverse switching connects the pump port P to the output port A and the tank port T to the output port B at the normal position where the solenoid 9a is not energized. The pump port P communicates with the output port B and the tank port T communicates with the output port A at the offset position where the power is supplied, and the output ports A and B draw the swash plate type variable displacement pump motor 10 as a fluid pressure pump motor. The rotary shaft is connected to the discharge ports 10a and 10b, and connects the high pressure oil of the high pressure pipe 8H to the suction / discharge port 10a of the variable displacement pump motor 10 and the low pressure pipe 8L to the suction / discharge port 10b at the normal position. 10c
Is rotated clockwise when viewed from the left side, for example, when viewed from the left side. On the contrary, the high pressure oil of the high pressure pipe 8H is supplied to the suction / discharge port 10b of the variable displacement pump motor 10 at the offset position.
Then, the low-pressure pipe 8L is communicated with the suction / discharge port 10a, and the rotating shaft 10c is rotationally driven in the direction of rotation during forward running, for example, counterclockwise as viewed from the left side.

【0026】なお、電磁方向切換弁9は、斜板型可変容
量ポンプモータ10に内蔵され、出力ポートA及びBが
配管を介することなくポンプモータ10の吸入・吐出口
10a及び10bに連結されている。また、電磁方向切
換弁9のソレノイド9aへの通電、ソレノイド9aが図
示しないがシフトレバーで後進を選択したときに、オン
状態となるシフト位置検出スイッチ9bを介して直流電
源9cに接続されることにより、前進走行時には非通電
状態に、後進走行時には通電状態に夫々制御される。
The directional control valve 9 is built in the swash plate type variable displacement pump motor 10, and the output ports A and B are connected to the suction / discharge ports 10a and 10b of the pump motor 10 without passing through piping. I have. Also, the solenoid 9a of the electromagnetic direction switching valve 9 is energized, and is connected to the DC power supply 9c via the shift position detection switch 9b which is turned on when the reverse is selected by a shift lever (not shown). Accordingly, the vehicle is controlled to be in the non-energized state when traveling forward and to be in the energized state when traveling backward.

【0027】この可変容量ポンプモータ10の流量は、
電磁方向切換弁9のタンクポートT近傍の低圧配管8L
に介挿された差圧検出用オリフィス11の両端に発生す
る差圧で油圧シリンダ12aを含んで構成される可変制
御機構としての斜板可変機構12を制御することによ
り、図2で特性曲線L2 で示すように、後車軸回転数が
最大伝達トルクが減少し始める前車軸4の回転数N F1
り低い第1の回転数NR1に達するまでの間では回転数の
増加に比例して駆動側のピストンポンプ6の増加率より
高い増加率で増加して第1の回転数NR1に達したとき
に、ピストンポンプ6の最大吐出流量Q1MAXより低い吐
出流量Q21となり、その後回転数の増加に伴って前述し
たピストンポンプ6の回転数NF1〜NF2間の増加率と略
等しい比較的低い増加率で増加するように設定されてい
る。
The flow rate of the variable displacement pump motor 10 is
8L low pressure pipe near the tank port T of the electromagnetic directional control valve 9
By controlling the swash plate variable mechanism 12 as a variable control mechanism including the hydraulic cylinder 12a by the differential pressure generated at both ends of the differential pressure detecting orifice 11 inserted in the As shown by 2 , the rear axle rotation speed is lower than the rotation speed N F1 of the front axle 4 when the maximum transmission torque starts to decrease .
Until the first rotation speed N R1 becomes lower, the rotation speed increases in proportion to the increase of the rotation speed at an increase rate higher than the increase rate of the piston pump 6 on the drive side, and reaches the first rotation speed N R1 . At this time, the discharge flow rate Q 21 becomes lower than the maximum discharge flow rate Q 1MAX of the piston pump 6, and thereafter, as the rotational speed increases, the increase rate between the rotational speeds N F1 and N F2 of the piston pump 6 is substantially equal to the above-described increase rate. It is set to increase at a low rate.

【0028】ここで、可変容量ポンプモータ10の吐出
流量とピストンポンプ6の吐出流量とは、図2に示すよ
うに、同一車軸回転数に対して可変容量ポンプモータ1
0の吐出流量がピストンポンプ6の吐出流量より多くな
るように固有吐出流量、回転軸に連結されたギヤのギヤ
比が設定され、回転数が“0”から所定値NF2に達する
までの可変容量ポンプモータ10及びピストンポンプ6
の吐出流量差が数%程度に設定することが伝達トルクを
良好に発生させる意味で好ましく、両者の流量差が大き
すぎるとそれだけ伝達トルクを発生しずらくなる。
Here, the discharge flow rate of the variable displacement pump motor 10 and the discharge flow rate of the piston pump 6 are, as shown in FIG.
0 Many made as specific discharge rate discharge flow rate from the discharge flow rate of the piston pump 6, is set a gear ratio of the gear connected to the rotary shaft, the variable from the rotational speed is "0" until a predetermined value N F2 Displacement pump motor 10 and piston pump 6
It is preferable to set the discharge flow rate difference to about several percent in terms of favorably generating transmission torque. If the flow rate difference between the two is too large, it becomes difficult to generate the transmission torque.

【0029】また、吸入絞り型ピストンポンプ6の吸込
口6b及び吐出口6c間にトルク制限手段としてのピス
トンポンプ6の吐出圧の上限を定めるリリーフ弁13が
介挿されていると共に、油圧ポンプ6及び電磁方向切換
弁9間における高圧配管8H及び低圧配管8L間を連通
する連通配管14Aに低圧配管8L側から高圧配管8H
側への流体流れを許容する逆止弁15が介挿されている
と共に、連通配管14Aと並列に配設された連通配管1
4Bに逆止弁15と並列関係に固定オリフィス16が接
続されている。
A relief valve 13 for limiting the discharge pressure of the piston pump 6 as a torque limiting means is interposed between the suction port 6b and the discharge port 6c of the suction throttle type piston pump 6. And a high pressure pipe 8H from the low pressure pipe 8L side to a communication pipe 14A communicating between the high pressure pipe 8H and the low pressure pipe 8L between the electromagnetic directional switching valves 9.
A check valve 15 that allows fluid flow to the side is interposed, and a communication pipe 1 disposed in parallel with the communication pipe 14A.
A fixed orifice 16 is connected to 4B in parallel with the check valve 15.

【0030】一方、斜板型可変容量ポンプモータ10の
回転軸10cにギヤ10dが取付けられ、このギヤ10
dに後輪側差動装置17のディファレンシャルギヤケー
ス17aに形成されたリングギヤ17bが噛合されてい
る。この後輪側差動装置17は、前述した前輪側差動装
置3と略同様の構成を有し、ディファレンシャルギヤケ
ース17a内に形成された一対のピニオンシャフト17
cにピニオン17dが取付けられ、これらピニオン17
dに一対のサイドギヤ17eが噛合し、これらサイドギ
ヤ17eに後車軸18が連結され、この後車軸18に後
輪19が連結されている。
On the other hand, a gear 10d is mounted on a rotating shaft 10c of the swash plate type variable displacement pump motor 10, and this gear 10d
A ring gear 17b formed on a differential gear case 17a of the rear wheel differential 17 is meshed with d. The rear wheel differential 17 has substantially the same configuration as the front differential 3 described above, and includes a pair of pinion shafts 17 formed in a differential gear case 17a.
The pinion 17d is attached to the pinion 17c.
A pair of side gears 17e mesh with d, a rear axle 18 is connected to the side gears 17e, and a rear wheel 19 is connected to the rear axle 18.

【0031】次に、上記実施例の動作を説明する。今、
車両が乾燥路面等の高摩擦係数路で停車して、エンジン
1がアイドリング状態にある制動状態で、前進走行を開
始する場合には、シフトレバーを前進走行側に切換える
ことにより、発進可能状態とすることができるが、この
とき後進走行側のシフト位置検出スイッチ9bはオフ状
態を維持するため、前後進切換用電磁方向切換弁9のソ
レノイド9aは非通電状態を維持して、切換位置が図1
に示すノーマル位置を継続する。この状態で、ブレーキ
ペダルを解放してアクセルペダルを踏込むことにより、
エンジン1の回転力が変速機2を介して前輪側差動装置
3に伝達され、この前輪側作動装置3で前輪5を前進方
向に回転駆動することにより、前進を開始する。
Next, the operation of the above embodiment will be described. now,
When the vehicle is stopped on a high friction coefficient road such as a dry road surface, and the engine 1 is in a braking state in an idling state, and the vehicle starts to travel forward, the shift lever is switched to the forward traveling side to change to a startable state. At this time, the shift position detection switch 9b on the reverse traveling side maintains the off state, so that the solenoid 9a of the forward / reverse switching electromagnetic directional switching valve 9 maintains the non-energized state, and the switching position is as shown in FIG. 1
The normal position shown in is continued. In this state, release the brake pedal and depress the accelerator pedal,
The rotational force of the engine 1 is transmitted to the front-wheel-side differential 3 via the transmission 2, and the front-wheel operating device 3 drives the front wheels 5 to rotate in the forward direction, thereby starting forward.

【0032】このとき、吸入絞り型ピストンポンプ6の
回転軸6aが左側面からみて時計方向に回転駆動される
ことにより、このピストンポンプ6から回転速度に応じ
た吐出流量の作動油が吐出され、これが高圧配管8Hを
介し、前後進切換用電磁方向切換弁9を介して斜板型可
変容量ポンプモータ10の吸入・吐出口10aに供給さ
れるが、車両の発進により後輪19も前輪5と同方向に
同一回転速度で回転駆動されるので、後輪側差動装置1
7を介して斜板型可変容量ポンプモータ10の回転軸1
0cが左側面からみて時計方向に回転し、これによって
吸入・吐出口10aから作動油が吸入され、吸入・吐出
口10bから作動油が吐出される。
At this time, the rotating shaft 6a of the suction throttle type piston pump 6 is driven to rotate clockwise as viewed from the left side, so that hydraulic oil having a discharge flow rate corresponding to the rotation speed is discharged from the piston pump 6. This is supplied to the suction / discharge port 10a of the swash plate type variable displacement pump motor 10 through the high-pressure pipe 8H and the forward / backward switching electromagnetic direction switching valve 9, and the rear wheel 19 is also connected to the front wheel 5 by the start of the vehicle. The rear differential 1 is driven in the same direction at the same rotational speed.
Rotating shaft 1 of swash plate type variable displacement pump motor 10 through 7
0c rotates clockwise as viewed from the left side, whereby hydraulic oil is sucked from the suction / discharge port 10a and hydraulic oil is discharged from the suction / discharge port 10b.

【0033】ここで、吸入絞り型ピストンポンプ6と斜
板型可変容量ポンプモータ10の吐出流量は、図2に示
すように、同一回転数では、可変容量ポンプモータ10
の吐出流量が常にピストンポンプ6に比較して多くなる
ように設定されているので、ピストンポンプ6から吐出
された高圧作動油は可変容量ポンプモータ10により吸
い込まれてしまうため、高圧配管8Hの圧力は上がらな
い。即ち、可変容量ポンプモータ10は油圧モータとし
て作用せず後輪19に駆動力が伝達されることはなく、
前輪駆動車と同様な状態で前進走行する。このとき、可
変容量ポンプモータ10の吸入流量は、ピストンポンプ
6の吐出流量を上回ることになるため、不足分は低圧配
管8L、連通配管14A、逆止弁15を介して補給され
る。
Here, as shown in FIG. 2, the discharge flow rates of the suction throttle type piston pump 6 and the swash plate type variable displacement pump motor 10 are varied at the same rotational speed as shown in FIG.
Is set to be always larger than that of the piston pump 6, the high-pressure hydraulic oil discharged from the piston pump 6 is sucked by the variable displacement pump motor 10, so that the pressure of the high-pressure pipe 8H Does not go up. That is, the variable displacement pump motor 10 does not act as a hydraulic motor, and no driving force is transmitted to the rear wheels 19.
The vehicle travels forward in the same state as the front wheel drive vehicle. At this time, since the suction flow rate of the variable displacement pump motor 10 exceeds the discharge flow rate of the piston pump 6, the shortage is replenished via the low pressure pipe 8L, the communication pipe 14A, and the check valve 15.

【0034】このピストンポンプ6及び可変容量ポンプ
モータ10の吐出流量差は、タイヤの摩耗による径変化
などにより生じる前後車軸4,18の回転数差を許容す
ることにもなり、異径タイヤで生じる回転数差程度では
駆動力は伝達されず、前輪駆動車状態が維持され、燃費
を悪化させることを抑制することができる。次に、凍結
路、降雪路等の低摩擦係数路で発進する場合には、前述
したように、先ず前輪5が回転駆動されるが、低摩擦係
数路であるため、前輪5がスリップして、前輪5及び後
輪19との間に前輪5が高回転数となる回転数差が生じ
て、吸入絞り型ピストンポンプ6の吐出流量が斜板型可
変容量ポンプモータ10の吐出流量を上回ることになる
と、可変容量ポンプモータ10の抵抗が負荷となり高圧
配管8Hの作動油圧が上昇することになるため、可変容
量ポンプモータ10が油圧モータとして作動すること
なって、高圧配管8Hの圧力に応じた駆動力が後輪側差
動装置17を介して後輪19に伝達される。
The difference between the discharge flow rates of the piston pump 6 and the variable displacement pump motor 10 allows a difference in the rotational speeds of the front and rear axles 4 and 18 caused by a change in diameter due to wear of the tires, and is caused by different diameter tires. The driving force is not transmitted at about the rotational speed difference, the front wheel drive vehicle state is maintained, and deterioration of fuel efficiency can be suppressed. Next, when starting on a low friction coefficient road such as a frozen road or a snowfall road, the front wheel 5 is first driven to rotate as described above. However, since the road is a low friction coefficient road, the front wheel 5 slips. A difference in rotation speed between the front wheel 5 and the rear wheel 19 at which the front wheel 5 has a high rotation speed occurs, and the discharge flow rate of the suction throttle type piston pump 6 exceeds the discharge flow rate of the swash plate type variable displacement pump motor 10. When becomes, the resistance of the variable displacement pump motor 10 is that the hydraulic pressure of the high-pressure pipe 8H becomes load increases, the variable displacement pump motor 10 becomes <br/> and to operate as a hydraulic motor, the high-pressure pipe 8H Is transmitted to the rear wheels 19 via the rear wheel differential 17.

【0035】すなわち、後輪19側に伝達されるトルク
は、図3に示すように、前後輪にある回転数差が生じて
初めて発生し、回転数差の増大と共に急増し、リリーフ
弁13による圧力制限によって最大トルクTMAX が規制
されることになる。このトルク制限作用により、後輪側
差動装置17、ドライブシャフトなどの構成部材の強度
を従来の四輪駆動車に比べて下げることが可能となり、
重量、燃費、コストの低減を図ることができる。
That is, as shown in FIG. 3, the torque transmitted to the rear wheel 19 is generated only when a rotational speed difference is generated between the front and rear wheels, and increases rapidly with the increase in the rotational speed difference. The maximum torque TMAX is regulated by the pressure limitation. This torque limiting action makes it possible to reduce the strength of components such as the rear wheel differential 17 and the drive shaft as compared to a conventional four-wheel drive vehicle.
Weight, fuel consumption, and cost can be reduced.

【0036】また、後輪19側に伝達されるトルクは、
図3に示すように、低速時ほど少ない回転数差で駆動力
を発生し易い特性を有し、これは図2に示すように、吸
入絞り型ピストンポンプ6と斜板型可変容量ポンプモー
タ10の吐出流量特性の固有域における流量が、車輪速
がVR1に達するまでの間で車輪速が高いほどその流量差
が大きくなることにより起因している。
The torque transmitted to the rear wheel 19 is
As shown in FIG. 3, the lower the speed, the easier it is to generate a driving force with a smaller difference in the number of rotations. As shown in FIG. 2, the suction throttle type piston pump 6 and the swash plate type variable displacement pump motor 10 have a characteristic. The flow rate in the characteristic region of the discharge flow rate characteristic is caused by that the flow rate difference increases as the wheel speed increases until the wheel speed reaches VR1 .

【0037】一方、図2に示すように、斜板型可変容量
ポンプモータ10の容量は、後輪車輪速VR がVR1即ち
後輪回転数が第1の回転数NR1に達した後には徐々に減
少し、このため、最大伝達トルクも図2で特性曲線L3
で示すように、車輪速が増加するにしたがって減少する
ことになり、後輪車輪速VR が所定値VR2即ち後輪車軸
回転数NR が回転数NR2に達すると、可変容量ポンプモ
ータ10の吐出流量がピストンポンプ6の最大流量Q
1MAXを越えることになって、伝達トルクを発生できなく
なり、最大伝達トルクが零となる。
On the other hand, as shown in FIG. 2, the capacity of the swash plate type variable displacement pump motor 10, after the rear wheel speed V R is V R1 i.e. the rear wheel rotational speed has reached the first rotational speed N R1 Gradually decreases, so that the maximum transmission torque is also reduced by the characteristic curve L 3 in FIG.
As shown in, will be reduced in accordance with the wheel speed is increased, the rear wheel speed V R is the predetermined value V R2 namely the rear axle rotational speed N R reaches the rotational number N R2, variable displacement pump The discharge flow rate of the motor 10 is the maximum flow rate Q of the piston pump 6.
When it exceeds 1MAX , the transmission torque cannot be generated, and the maximum transmission torque becomes zero.

【0038】このように、ピストンポンプ6及び可変容
量ポンプモータ10の流量特性を図2の特性曲線L1
びL2 のように設定することにより、最大伝達トルクが
車輪速VR1即ち第1の回転数NR1を越えたときに徐々に
低下することになり、従来例のように最大伝達トルクが
急激に低下することを確実に防止することができ、四輪
駆動状態から急激に二輪駆動状態に変化することを抑制
して、運転者に違和感を生じさせることを確実に防止す
ることができる。
[0038] Thus, by setting the flow characteristics of the piston pump 6 and a variable displacement pump motor 10 as the characteristic curve L 1 and L 2 in FIG. 2, the maximum transmission torque wheel speed V R1 or first When the rotational speed exceeds N R1 , the torque gradually decreases, and it is possible to reliably prevent the maximum transmission torque from suddenly decreasing as in the conventional example. , The occurrence of discomfort to the driver can be reliably prevented.

【0039】さらに、図3におけるトルクの立ち上がり
は、高圧配管8H及び低圧配管8Lを連通する連通配管
14Bに介挿された固定オリフィス16により高圧配管
8Hから低圧配管8Lへの漏れ量を管理し、圧力の立ち
上がりを変えることで特性を任意に設定可能である。そ
して、オリフィスが有する作動油の粘性変化に伴う温度
特性により高温時に比べて低温時は漏れ量が減り駆動力
が発生し易い特性になるため、四輪駆動車としての機能
を要求される機会の多い冬期に四輪駆動になり易くなる
という利点がある。
Further, the rise of the torque in FIG. 3 is controlled by controlling the amount of leakage from the high-pressure pipe 8H to the low-pressure pipe 8L by the fixed orifice 16 inserted in the communication pipe 14B communicating the high-pressure pipe 8H and the low-pressure pipe 8L. The characteristics can be arbitrarily set by changing the rise of the pressure. And, due to the temperature characteristic of the orifice due to the viscosity change of the hydraulic oil, the amount of leakage decreases at low temperatures compared to high temperatures and the driving force is easily generated, so that there is an opportunity to be required to function as a four-wheel drive vehicle. There is an advantage that four-wheel drive is likely to occur during winter months.

【0040】次に、車両を後進させる場合には、シフト
レバーを後進位置に切換えることにより、シフト位置検
出スイッチ9bがオン状態となるため、前後進切換用電
磁方向切換弁9のソレノイド9aが通電状態となり、図
4に示すように、切換位置がノーマル位置からオフセッ
ト位置に切換えられ、これによって高圧配管8Hの作動
油を斜板型可変容量ポンプモータ10の吸入・吐出口1
0bに供給し、吸入・吐出口10aから吐出される作動
油を低圧配管8L側に戻すことにより、可変容量ポンプ
モータ10の回転軸10cを前進走行時とは逆転させ
て、後輪19を逆回転させる。このため、後進時におい
ても、駆動力の伝達については前進時と全く同様であ
り、前輪5がスリップして前後車軸4,18にある回転
数差が生じた時のみ高圧配管8Hに圧力が発生し、駆動
力が後輪19に伝達されると共に、前後車軸4,18の
回転数差が小さい場合における斜板型可変容量ポンプモ
ータ10の吸入量不足分は低圧配管8L、連通配管14
A及び逆止弁15を介して補給される。
Next, when the vehicle is moved backward, the shift position switch 9b is turned on by switching the shift lever to the reverse position, so that the solenoid 9a of the forward / reverse switching electromagnetic directional switching valve 9 is energized. As shown in FIG. 4, the switching position is switched from the normal position to the offset position, whereby the hydraulic oil of the high pressure pipe 8H is supplied to the suction / discharge port 1 of the swash plate type variable displacement pump motor 10.
0b, and the hydraulic oil discharged from the suction / discharge port 10a is returned to the low-pressure pipe 8L side, so that the rotating shaft 10c of the variable displacement pump motor 10 is rotated in the reverse direction to that during forward running, and the rear wheel 19 is rotated in the reverse direction. Rotate. For this reason, even when the vehicle is moving backward, the transmission of the driving force is exactly the same as when the vehicle is moving forward, and pressure is generated in the high-pressure pipe 8H only when the front wheel 5 slips and a rotational speed difference occurs between the front and rear axles 4, 18. In addition, when the driving force is transmitted to the rear wheel 19 and the difference in rotation speed between the front and rear axles 4 and 18 is small, the shortage of the suction amount of the swash plate type variable displacement pump motor 10 is reduced by the low pressure pipe 8L and the communication pipe 14.
A and is supplied via the check valve 15.

【0041】このとき、前輪側の吸入絞り型ピストンポ
ンプ6は、前述したように、回転方向が逆転してもポン
プの吸入口と吐出口とが入れ替わることはないと共に、
前後進切換用電磁方向切換弁9が可変容量ポンプモータ
10に内蔵されているため、高価な高耐圧配管は高圧配
管8Hに使用するだけで済むと共に、リリーフ弁13、
逆止弁15、オリフィス16なども一方向の流れのみに
対応できるように設ければよいので、他の方式のポンプ
を用いた場合に比べて油路構成を極めて簡略化すること
ができる。
At this time, the suction throttle type piston pump 6 on the front wheel side does not interchange the suction port and the discharge port of the pump even if the rotation direction is reversed, as described above.
Since the forward / reverse switching electromagnetic directional control valve 9 is built in the variable displacement pump motor 10, the expensive high pressure pipe can be used only for the high pressure pipe 8H.
Since the check valve 15, the orifice 16, and the like may be provided so as to be able to cope with only one-way flow, the configuration of the oil passage can be extremely simplified as compared with the case where another type of pump is used.

【0042】また、前輪駆動車ベースのアンチスキッド
制御装置装着車においては、制動時に前輪の回転数は後
輪の回転数より小さくなるため、油圧伝達機構による駆
動力は発生されず、アンチスキッド制御装置との干渉を
小さくすることができる利点がある。なお、上記第1実
施例においては、駆動側流体圧駆動手段としての吸入絞
り型ピストンポンプ6の流量特性を図2の特性曲線L1
で示すように、2段折れ線状に設定した場合について説
明したが、これに限定されるものではなく、図2で一点
鎖線図示の特性線L21に示すように、回転数が“0”か
ら所定値NF2までの間で回転数の増加に応じて増加する
特性とすることもでき、要は図2の斜線を施した範囲内
で任意の流量特性を設定することができる。この場合、
ピストンポンプ6と可変容量ポンプモータ10の吐出流
量差が大きすぎると伝達トルクを生じづらくすることに
なるため、現実的には特性線L21より特性曲線L2 側の
範囲内で設定することが好ましい。
In a vehicle equipped with an anti-skid control device based on a front-wheel drive vehicle, the rotation speed of the front wheels is smaller than the rotation speed of the rear wheels during braking, so that no driving force is generated by the hydraulic transmission mechanism, and anti-skid control is not performed. There is an advantage that interference with the device can be reduced. In the first embodiment, the flow characteristic of the suction throttle type piston pump 6 as the driving fluid pressure driving means is represented by a characteristic curve L 1 in FIG.
As shown in, has been described as being set in two stages polygonal line, is not limited to this, as shown by the characteristic line L 21 of the one-dot chain line shown in FIG. 2, the rotation speed is from "0" it is possible to increase characteristics in accordance with the increase in the rotational speed between the up to a predetermined value N F2, short can set an arbitrary flow characteristics within the range shaded in FIG. in this case,
Since the discharge flow rate difference piston pump 6 and a variable displacement pump motor 10 will hardly occur and the transmission torque is too large, in practice be set in a range from the characteristic line L 21 of the characteristic curve L 2 side preferable.

【0043】また、上記第1実施例においては、駆動側
流体圧駆動手段として吸入絞り型ピストンポンプ6を適
用した場合について説明したが、これに限定されるもの
ではなく、他の形式の可変容量ポンプを適用することも
でき、さらには、単独のポンプでは図2の特性曲線L1
の流量特性を得ることができない場合には、図4に示す
ように、特性曲線L13で示すように回転数NF1で飽和す
る例えばラジアルピストンポンプと、特性曲線L14で示
すように回転数NF2で飽和するラジアルピストンポンプ
とを前車軸4に並列に接続して、両者の吐出流量を加算
することにより、特性曲線L1 の特性を実現するように
してもよい。
Further, in the first embodiment, the case where the suction throttle type piston pump 6 is applied as the driving fluid pressure driving means has been described. However, the present invention is not limited to this. It is also possible to apply a pump, and in the case of a single pump, the characteristic curve L 1 of FIG.
If the inability to obtain flow characteristics, as shown in FIG. 4, the rotational speed N F1 saturated for example a radial piston pump as indicated by the characteristic curve L 13, rotational speed as indicated by a characteristic curve L 14 a radial piston pump is saturated at N F2 connected in parallel to the front axle 4, by adding the discharge flow rate of both may be realized the characteristics of the characteristic curve L 1.

【0044】さらに、上記実施例においては、差圧検出
用オリフィス11の前後の差圧を斜板可変機構12に供
給する場合について説明したが、これに限定されるもの
ではなく、低圧配管8L側に差圧検出用オリフィス11
を介挿した場合には、差圧検出用オリフィス11の出側
の圧力は大気圧となるので、可変容量ポンプ10内のド
レーン圧と同一であるため、図5に示すように、差圧検
出用オリフィス11の高圧側即ち電磁方向切換弁9のタ
ンクポートT側の圧力のみを斜板可変機構12の油圧シ
リンダ12aのヘッドカバー側油圧室12bに導入する
ようにしてもよい。
Further, in the above embodiment, the case where the differential pressure before and after the differential pressure detecting orifice 11 is supplied to the swash plate variable mechanism 12 has been described. However, the present invention is not limited to this. Orifice 11 for detecting differential pressure
Is inserted, the pressure at the outlet side of the differential pressure detecting orifice 11 becomes the atmospheric pressure, and is the same as the drain pressure in the variable displacement pump 10. Therefore, as shown in FIG. Only the pressure on the high pressure side of the orifice 11, that is, the pressure on the tank port T side of the electromagnetic directional switching valve 9 may be introduced into the head cover side hydraulic chamber 12 b of the hydraulic cylinder 12 a of the swash plate variable mechanism 12.

【0045】また、上記第1実施例においては、伝達ト
ルク制限手段としてリリーフ弁13を適用した場合につ
いて説明したが、これに限らず図6に示すように、ピス
トンポンプ6の吐出圧を容量制御圧として入力し、これ
に応じてピストンポンプ6の吸入口6b側の吸入通路の
開度を吐出圧が所定圧以上となったときに小さく制御す
る吸入絞り弁21を設けるようにしてもよく、この場合
にはポンプ吐出流量が規定の圧力以上となるとポンプ吸
入量が減少することにより、ポンプ吐出圧が減少してト
ルク制限を行うことができ、これと同時にリリーフ弁を
用いた場合には連続高負荷使用時に油温上昇を生じる
が、吸入絞り弁21を設けた場合には、吐出流量が減少
することから発熱の抑制を図ることができる。
In the first embodiment, the case where the relief valve 13 is applied as the transmission torque limiting means has been described. However, the present invention is not limited to this, and the discharge pressure of the piston pump 6 is controlled by displacement as shown in FIG. A suction throttle valve 21 that inputs the pressure as a pressure and controls the opening degree of the suction passage on the suction port 6b side of the piston pump 6 to be small when the discharge pressure becomes equal to or higher than a predetermined pressure. In this case, when the pump discharge flow rate exceeds the specified pressure, the pump suction amount decreases, so that the pump discharge pressure decreases and torque can be limited. Although the oil temperature increases when a high load is used, when the suction throttle valve 21 is provided, the discharge flow rate is reduced, so that heat generation can be suppressed.

【0046】さらに、上記第1実施例においては、後輪
側差動装置17を設けた場合について説明したが、これ
に限定されるものではなく、図7に示すように、後輪差
動装置17を省略し、これに代えて左右後輪19L,1
9Rの左右車軸18L,18Rに個別に斜板型可変容量
ポンプモータ10L及び10Rを設けるように構成して
もよく、この場合には、旋回時などで左右輪で異なる負
荷となるときに、各可変容量ポンプモータ10L,10
Rで自然にその差に応じた吐出流量差を生じることから
差動装置と同等の差動機能を発揮することができ、この
場合もトルク制限手段としては、図示のリリーフ弁13
でも図6に示す吸入絞り弁21の何れであってもよい。
Further, in the first embodiment, the case where the rear wheel differential 17 is provided has been described. However, the present invention is not limited to this, and as shown in FIG. 17 is omitted and the left and right rear wheels 19L, 1
The swash plate type variable displacement pump motors 10L and 10R may be separately provided on the left and right axles 18L and 18R of the 9R. In this case, when different loads are applied to the left and right wheels during turning, etc. Variable displacement pump motor 10L, 10
R naturally produces a discharge flow rate difference corresponding to the difference, so that a differential function equivalent to that of a differential device can be exhibited. In this case, the relief valve 13 shown in FIG.
However, any of the intake throttle valves 21 shown in FIG. 6 may be used.

【0047】さらにまた、流体圧ポンプとして回転軸6
aの回転方向にかかわらず吸入口6bと吐出口6cとが
変化しない吸入絞り型ピストンポンプ6を適用した場合
について説明したが、これに限定されるものではなく、
図8に示すように、回転軸30aがギヤ3gに連結され
た油圧ポンプ30の吸込口30b及び吐出口30cに夫
々ポンプポートP及びタンクポートTを接続し、出力ポ
ートA及びBを高圧配管8H及び8Lに接続した前後進
切換用電磁方向切換弁9と同様の前後進切換用電磁方向
切換弁31を設けるようにすれば、前後進で吐出方向が
切り換わるギヤポンプやベーンポンプ等の他の油圧ポン
プを適用することができ、この場合の油圧ポンプは前述
した図1に示す固定容量式や、図8に示すように低圧配
管8Lに介挿された差圧発生用オリフィス32の前後差
圧が入力される油圧シリンダ33aを含む可変機構33
を備えた可変容量式の何れであってもよい。
Further, the rotary shaft 6 is used as a fluid pressure pump.
Although the case where the suction throttle type piston pump 6 in which the suction port 6b and the discharge port 6c do not change regardless of the rotation direction of a has been described, the present invention is not limited to this.
As shown in FIG. 8, a pump port P and a tank port T are respectively connected to a suction port 30b and a discharge port 30c of a hydraulic pump 30 in which a rotary shaft 30a is connected to a gear 3g, and output ports A and B are connected to a high pressure pipe 8H. And a hydraulic pump, such as a gear pump or a vane pump, in which the discharge direction is switched between forward and backward by providing a forward / backward switching electromagnetic directional switching valve 31 similar to the forward / backward switching electromagnetic directional switching valve 9 connected to 8L. In this case, the hydraulic pump receives the fixed displacement type shown in FIG. 1 and the differential pressure before and after the differential pressure generating orifice 32 inserted in the low pressure pipe 8L as shown in FIG. Mechanism 33 including hydraulic cylinder 33a
Any of the variable capacity types provided with

【0048】また、上記第1実施例においては、駆動側
流体圧駆動手段と従動側流体圧駆動手段とを高圧流路8
H及び低圧流路8Lで連通する場合について説明した
が、これに限定されるものではなく、前後進切換用電磁
方向切換弁9及び31を省略して、高圧流路と低圧流路
とを切り分けない場合でも本発明を適用し得る。次に、
本発明の第2実施例を図9及び図10について説明す
る。
In the first embodiment, the driving fluid pressure driving means and the driven fluid pressure driving means are connected to the high pressure passage 8.
Although the case of communicating with the H and the low pressure passage 8L has been described, the present invention is not limited to this, and the high pressure passage and the low pressure passage are separated by omitting the forward / backward switching electromagnetic directional switching valves 9 and 31. The present invention can be applied even in the absence. next,
A second embodiment of the present invention will be described with reference to FIGS.

【0049】この第2実施例は、回転数NR2以上となっ
たときの伝達トルクの減少をより滑らかに行えるように
したものである。すなわち、第2実施例では、図9に示
すように、リリーフ弁13がパイロット作動形リリーフ
弁13Pで構成され、このリリーフ弁13Pが高圧配管
8H及び低圧配管8L間に連通配管14A及び14Bと
並列に接続された連通配管14Cの途中に介挿され、こ
のリリーフ弁13Pのベントポートに差圧検出用オリフ
ィス11の高圧側即ち電磁方向切換弁9のタンクポート
T側の圧力でなる斜板型可変容量ポンプモータ10の吐
出圧がパイロット圧として入力されていることを除いて
は、前述した図5の実施例と同様の構成を有し、図5と
の対応部分には同一符号を付し、その詳細説明はこれを
省略する。
[0049] The second embodiment is obtained by the reduction of the transmission torque when a rotation number N R2 above more smoothly performed so. That is, in the second embodiment, as shown in FIG. 9, the relief valve 13 is constituted by a pilot-operated relief valve 13P, and the relief valve 13P is connected in parallel with the communication pipes 14A and 14B between the high-pressure pipe 8H and the low-pressure pipe 8L. A swash plate type variable valve which is inserted in the middle of a communication pipe 14C connected to the pressure relief valve 13P and has a pressure on the high pressure side of the differential pressure detecting orifice 11, that is, on the tank port T side of the electromagnetic direction switching valve 9, Except that the discharge pressure of the displacement pump motor 10 is input as a pilot pressure, it has the same configuration as that of the embodiment of FIG. 5 described above, and the same reference numerals are given to portions corresponding to FIG. The detailed description is omitted.

【0050】ここで、パイロット作動形リリーフ弁13
Pの開弁圧は、図10に示すように、斜板型可変容量ポ
ンプモータ10の吐出流量Q2 が吐出流量Q21となる第
1の回転数NR1に達するまでの間は、特性曲線L24で示
すように予め設定されたピストンポンプ6の最大吐出圧
を規制する最大設定圧PRMAXに維持されるが、この状態
から後輪車軸回転数NR が増加、これに応じて斜板型
可変容量ポンプモータ10の吐出流量Q2 が特性曲線L
2 に示すように緩やかに上昇すると、これに応じて差圧
検出用オリフィス11の高圧側の圧力が上昇し、これが
パイロット圧としてベントポートに供給されるため、後
輪車軸回転数NR の増加に反比例して減少し、回転数N
R2に達すると最小リリーフ圧PRMINに達し、回転数NR2
以上で最小リリーフ圧PRMINを維持する。
Here, the pilot operated relief valve 13
Opening pressure of P, as shown in FIG. 10, the until discharge flow rate Q 2 of the swash plate type variable displacement pump motor 10 reaches the first rotational speed N R1 as a discharge flow rate Q 21, the characteristic curve While being maintained at the maximum setting pressure P RMAX, the rear wheel axle rotation speed N R is increased from this state, in response to this oblique regulating the maximum delivery pressure of the piston pump 6 which is set in advance as shown by L 24 discharge flow rate Q 2 is a characteristic curve L of the plate-type variable displacement pump motor 10
When gradually rises as shown in 2, the pressure of the high pressure side of the differential pressure detection orifice 11 increases in response to this, since it is supplied to the vent port as a pilot pressure, an increase of the rear wheel axle rotation speed N R decreases in inverse proportion to, rotation number N
R2 is reached when reaching the minimum relief pressure P RMIN, rotational speed N R2
Thus, the minimum relief pressure PRMIN is maintained.

【0051】この第2実施例によると、車両が前進走行
又は後進走行を開始して、後輪車軸回転数NR が第1の
回転数NR1に達するまでの間は、パイロット作動形リリ
ーフ弁13Pの開弁圧が最大リリーフ圧PRMAXに設定さ
れていることから、前述した第1実施例と同様に、高摩
擦係数路を走行している状態では前後輪5及び19間に
回転数差を殆ど生じないので、可変容量ポンプ10は油
圧モータとして作動せず、後輪19に駆動力が伝達され
ずに、前輪駆動車と同様な二輪駆動状態を維持し、低摩
擦係数路では、前後輪5及び19間に回転数差を生じる
ことから可変容量ポンプ10が油圧モータとして作動し
て四輪駆動状態に移行し、そのときの最大伝達トルクT
MAX が図10の特性曲線L23で示すように最大リリーフ
圧PRMAXで規制されることになる。
According to the second embodiment, the pilot-operated relief valve is used until the rear axle rotation speed N R reaches the first rotation speed N R1 after the vehicle starts running forward or backward. Since the valve opening pressure of 13P is set to the maximum relief pressure P RMAX , the rotational speed difference between the front and rear wheels 5 and 19 when traveling on the road with a high friction coefficient as in the first embodiment described above. , The variable displacement pump 10 does not operate as a hydraulic motor, the driving force is not transmitted to the rear wheel 19, and the two-wheel drive state similar to that of the front wheel drive vehicle is maintained. Since a rotational speed difference is generated between the wheels 5 and 19, the variable displacement pump 10 operates as a hydraulic motor and shifts to a four-wheel drive state, at which time the maximum transmission torque T
MAX is to be regulated at the maximum relief pressure P RMAX as indicated by the characteristic curve L 23 in FIG. 10.

【0052】ところが、後輪車軸回転数NR が第1の回
転数NR1を越えると、可変容量ポンプモータ10の吐出
流量が設定値Q21を越えることになり、差圧検出用オリ
フィス11の高圧側の圧力が上昇することにより、パイ
ロット作動形リリーフ弁13Pの開弁圧が図10の特性
曲線L24で示すように後輪車軸回転数NR の増加に反比
例して減少することになる。このため、前輪側のピスト
ンポンプ6の吐出側と後輪側の可変容量ポンプモータ1
0の吸入側に接続される前後進切換用電磁方向切換弁9
のポンプポートPとの間を連通する高圧配管8Hの圧力
が制限されることにより、ピストンポンプ6及び可変容
量ポンプモータ10間の伝達トルクTも図10の特性曲
線L23で示すように前述した第1実施例における図2の
特性曲線L3 に比較して伝達トルクTの減少率が大きく
なり、可変容量ポンプモータ10の吐出流量Q2 がピス
トンポンプ6の最大吐出流量Q1MAXに達して伝達トルク
Tを発生できなくなる回転数NR2に達する直前で略零近
傍の値となり、この間の伝達トルクTの減少が滑らかに
行われると共に、回転数NR2に達したときに伝達トルク
Tが急に零となるが、このときの伝達トルクTの減少量
は極めて少ないので、運転者に違和感を与えることを確
実に防止することができる。
However, when the rear wheel axle rotation speed N R exceeds the first rotation speed N R1 , the discharge flow rate of the variable displacement pump motor 10 exceeds the set value Q 21 , and the differential pressure detecting orifice 11 by the pressure of the high pressure side is increased, it will be reduced in inverse proportion to the increase of the rear wheel axle rotation speed N R opening pressure of the pilot actuated type relief valve 13P is as indicated by a characteristic curve L 24 in FIG. 10 . For this reason, the discharge side of the piston pump 6 on the front wheel side and the variable displacement pump motor 1 on the rear wheel side
Electromagnetic switching valve 9 for forward / reverse switching connected to the suction side
By the pressure of the high-pressure pipe 8H communicating between the pump port P of is limited, the transmission torque T between the piston pump 6 and a variable displacement pump motor 10 is also described above as shown by the characteristic curve L 23 in FIG. 10 compared to the reduction rate of the transmission torque T to the characteristic curve L 3 of Figure 2 increases in the first embodiment, transfer discharge flow rate Q 2 of the variable displacement pump motor 10 reaches the maximum discharge flow rate Q 1MAX piston pump 6 becomes a value substantially close to zero just before reaching that such can not generate torque T rotational speed N R2, with decreasing during this time of the transmission torque T is smoothly performed, the transmitted torque when reaching the rotational speed N R2 Although T suddenly becomes zero, the amount of decrease in the transmission torque T at this time is extremely small, so that it is possible to reliably prevent the driver from feeling uncomfortable.

【0053】しかも、第1の回転数NR1からパイロット
作動形リリーフ弁13Pの開弁圧が後輪車軸回転数NR
の増加に反比例して減少することにより、ピストンポン
プ6の吐出側及び可変容量ポンプモータ10の吸入側を
前後方向切換用電磁方向切換弁9を介して連通する高圧
配管8Hの最高圧使用範囲が第1の回転数NR1までとな
り、前述した第1実施例のようにリリーフ弁13の開弁
圧が一定であって、最高圧使用範囲が回転数NR2までと
なる場合に比較して最大圧力の作用頻度及び高圧運転領
域を減少させることができ、高圧配管8Hの耐久性を確
保するために必要とされる高耐圧材料の使用や表面処理
などによるコスト増を伴うことなく、低コスト化を図る
ことができる。
Further, the valve opening pressure of the pilot-operated relief valve 13P is increased from the first rotational speed N R1 to the rear wheel axle rotational speed N R.
Decreases in inverse proportion to the increase of the pressure, the maximum pressure use range of the high-pressure pipe 8H that communicates the discharge side of the piston pump 6 and the suction side of the variable displacement pump motor 10 via the electromagnetic directional switching valve 9 for front-rear direction switching. be up to the first rotational speed N R1, a valve opening pressure of the relief valve 13 as in the first embodiment described above is constant, as compared with the case where the maximum pressure range of use is up to rotational speed N R2 The operation frequency of the maximum pressure and the high-pressure operation area can be reduced, and the cost can be reduced without using a high-pressure material required for securing the durability of the high-pressure pipe 8H or increasing the cost due to surface treatment. Can be achieved.

【0054】また、可変容量ポンプ10の斜板可変機構
12用の差圧検出オリフィス11の上流側圧力を利用し
てパイロット作動形リリーフ弁13Pの開弁圧を制御す
るようにしているので、別途圧力センサ等を設ける必要
がなく、この分構成を簡略化することができる。さら
に、パイロット作動形リリーフ弁13Pの開弁圧を回
数NR2に達したときに零即ちゲージ圧となるように設定
することにより、回転数NR2以上となったときに、伝達
トルクTに段差を全く生じることがなく、四輪駆動状態
から二輪駆動状態への移行をより円滑に行うことができ
る。
Further, since the upstream pressure of the differential pressure detecting orifice 11 for the swash plate variable mechanism 12 of the variable displacement pump 10 is utilized to control the valve opening pressure of the pilot operated relief valve 13P, it is separately provided. There is no need to provide a pressure sensor or the like, and the configuration can be simplified accordingly. Further, by setting such that zero i.e. gauge pressure upon reaching the opening pressure of the pilot actuated type relief valve 13P to rotation number N R2, when a rotational speed N R2 above, transmission torque There is no step at T, and the transition from the four-wheel drive state to the two-wheel drive state can be performed more smoothly.

【0055】次に、本発明の第3実施例を図11につい
て説明する。この第3実施例は、前述した第2実施例に
おいて、リリーフ弁13Pが開弁状態となったときに、
リリーフ弁13Pを通じて高圧側から低圧側に放出され
る作動油の温度上昇を防止するようにしたものである。
すなわち、第3実施例では、図11に示すように、ピス
トンポンプ6の吐出圧を容量制御圧として入力し、これ
に応じてピストンポンプ6の吸入口6b側の吸入通路の
開度を、吐出圧が前述した第2実施例におけるパイロッ
ト作動形リリーフ弁13Pの最大開弁圧より低い予め設
定された設定圧を越えたときに小さく制御する吸入量制
限手段としての吸入絞り弁40を、ピストンポンプ6の
吸入口6b側に介挿することを除いては前述した第2実
施例を示す図9と同様の構成を有し、図9との対応部分
には同一符号を付しその詳細説明はこれを省略する。
Next, a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, when the relief valve 13P is opened in the second embodiment described above,
This prevents the temperature of the hydraulic oil discharged from the high pressure side to the low pressure side through the relief valve 13P from rising.
That is, in the third embodiment, as shown in FIG. 11, the discharge pressure of the piston pump 6 is input as the displacement control pressure, and the opening degree of the suction passage on the suction port 6b side of the piston pump 6 is changed accordingly. When the pressure exceeds a preset pressure which is lower than the maximum valve opening pressure of the pilot-operated relief valve 13P in the second embodiment described above, a suction throttle valve 40 serving as a suction amount limiting means for controlling the pressure is reduced by a piston pump. 6, except that it is interposed on the suction port 6b side of FIG. 6, showing the same configuration as in FIG. 9 showing the above-described second embodiment, and the parts corresponding to FIG. This is omitted.

【0056】この第3実施例によると、車両が前進走行
又は後進走行を開始したときに、後輪車軸回転数NR
第1の回転数NR1に達するまでの間において、低摩擦係
数路を走行する場合のように、前後輪間に回転数差を生
じて後輪側への伝達トルクTを増加させる際には、ピス
トンポンプ6の吐出流量の増加によって、高圧配管8H
の圧力が上昇し、この圧力がパイロット作動形リリーフ
弁13Pの最大開弁圧PRMAXに達する直前の圧力に達し
たときに、吸入絞り弁40の弁開度が減少されてピスト
ンポンプ6の吐出流量が減少することにより、高圧配管
8Hの内圧の上昇が抑制されることになり、パイロット
作動形リリーフ弁13Pを通じて低圧配管8L側に放出
される流量を抑制することができるので、リリーフ弁1
3Pを通過することによる作動油の温度上昇を確実に防
止することができる。
According to the third embodiment, when the vehicle starts traveling forward or backward, the low-friction coefficient road is maintained until the rear wheel axle rotation speed N R reaches the first rotation speed N R1. When the transmission torque T to the rear wheel side is increased by generating a rotational speed difference between the front and rear wheels as in the case of traveling
When the pressure reaches a pressure immediately before reaching the maximum valve opening pressure P RMAX of the pilot-operated relief valve 13P, the valve opening of the suction throttle valve 40 is reduced, and the discharge of the piston pump 6 is reduced. By reducing the flow rate, an increase in the internal pressure of the high-pressure pipe 8H is suppressed, and the flow rate discharged to the low-pressure pipe 8L through the pilot-operated relief valve 13P can be suppressed.
It is possible to reliably prevent the temperature of the hydraulic oil from rising due to passing through 3P.

【0057】なお、上記第2及び第3実施例において
は、差圧検出用オリフィス11の上流側圧力に基づいて
パイロット作動形リリーフ弁13Pの開弁圧を制御する
場合について説明したが、これに限定されるものではな
く、車軸回転数と車速とが比例関係にあることから、自
動変速機のガバナ圧をパイロット作動形リリーフ弁13
のベントポートに供給して開弁圧を制御しても、上記と
同様の作用を得ることができる。また、リリーフ弁とし
て比例電磁式リリーフ弁を適用すると共に、例えば変速
機2の出力軸の回転数に基づいて車速を検出し、この車
速検出値をもとに比例電磁式リリーフ弁の開弁圧を制御
する励磁電流を形成することにより、リリーフ弁の開弁
圧を電気的に制御するようにしてもよく、また車速検出
値に代えて、後輪の車輪速度を車輪速センサで検出し、
この車輪速検出値をもとに比例電磁式リリーフ弁の開弁
圧を制御する励磁電流を形成するようにしてもよい。
In the second and third embodiments, the case where the opening pressure of the pilot operated relief valve 13P is controlled based on the pressure on the upstream side of the differential pressure detecting orifice 11 has been described. The governor pressure of the automatic transmission is controlled by the pilot-operated relief valve 13 because the axle rotation speed and the vehicle speed are proportional to each other.
Even if the valve opening pressure is controlled by supplying to the vent port, the same operation as described above can be obtained. In addition, a proportional electromagnetic relief valve is applied as the relief valve, and the vehicle speed is detected based on, for example, the rotation speed of the output shaft of the transmission 2. Based on the detected vehicle speed, the valve opening pressure of the proportional electromagnetic relief valve is determined. By forming an exciting current to control the opening pressure of the relief valve may be electrically controlled, and instead of the vehicle speed detection value, the wheel speed of the rear wheel is detected by a wheel speed sensor,
An exciting current for controlling the valve opening pressure of the proportional electromagnetic relief valve may be formed based on the wheel speed detection value.

【0058】さらに、上記第2及び第3実施例において
も、前述した第1実施例と同様に、後輪側作動装置17
を省略して、左右後輪19L,19Rの左右車軸18
L,18Rに個別に斜板型可変容量ポンプモータ10L
及び10Rを設けるように構成することができると共
に、前輪側ポンプ側に前後進切換用電磁方向切換弁を設
けて前後進で吐出方向が切換わるギヤポンプやベーンポ
ンプ等の他の油圧ポンプを適用することもでる。
Further, in the above-described second and third embodiments, similarly to the above-described first embodiment, the rear wheel operating device 17 is provided.
Is omitted, the left and right axles 18 of the left and right rear wheels 19L, 19R are omitted.
Swash plate type variable displacement pump motor 10L for L and 18R individually
And 10R, and a hydraulic pump, such as a gear pump or a vane pump, in which a forward / reverse switching electromagnetic direction switching valve is provided on the front wheel side pump side and the discharge direction is switched between forward and backward. Get out.

【0059】さらにまた、上記第1〜第3実施例におい
ては、前後進切換用電磁方向切換弁9をポンプモータ1
0に内蔵させた場合について説明したが、これに限定さ
れるものではなく、ポンプモータ10の外側に別設する
ようにしてもよい。さらにまた、上記第1〜第3実施例
においては、前輪駆動車をベースとした実施例について
説明したが、これに限らず後輪駆動車をベースとした場
合にも、ポンプ6を後輪側に、ポンプモータ10を前輪
側に配置することで、上記実施例と同様の作用効果を得
ることができる。
Further, in the first to third embodiments, the forward / backward switching electromagnetic directional control valve 9 is connected to the pump motor 1.
Although the case where it is built in 0 has been described, the present invention is not limited to this, and it may be separately provided outside the pump motor 10. Furthermore, in the first to third embodiments, the embodiment based on the front wheel drive vehicle has been described. However, the present invention is not limited to this. By arranging the pump motor 10 on the front wheel side, it is possible to obtain the same operation and effect as in the above embodiment.

【0060】[0060]

【発明の効果】以上説明したように、請求項1に係る四
輪駆動車によれば、主原動機により駆動される駆動車軸
と、該駆動車軸に連動して駆動される駆動側流体圧駆動
手段と、従動車軸に連動して駆動される従動側流体圧駆
動手段とを有し、前記駆動側流体圧駆動手段及び従動側
流体圧駆動手段を互いの吐出口と吸込口とを連通する流
路を設けて流体圧伝動機構を構成し、前記駆動側流体圧
駆動手段の流量を前記従動側流体圧駆動手段の流量未満
に設定した四輪駆動車において、前記従動側流体圧駆動
手段の容量が最大伝達トルクを低下させ始める第1の回
転数より容量を減少させ、且つ前記駆動側流体圧駆動手
段の容量を第1の回転数より高く伝達トルクの必要がな
くなる第2の回転数で最大値となるように設定する構成
としたので、駆動側流体圧駆動手段の最大流量と従動側
流体圧駆動手段の流量との差が徐々に小さくなるように
することができ、これによって、第1の回転数より回転
数が増加したときに、最大伝達トルクを徐々に低下させ
て、最大伝達トルクが急激に低下することを確実に防止
することができ、四輪駆動状態から二輪駆動状態に緩や
かに変化させることにより、運転者に違和感を与えるこ
とを確実に防止することができるという効果が得られ
る。
As described above, according to the four-wheel drive vehicle of the first aspect, the drive axle driven by the main motor and the drive fluid pressure drive means driven in conjunction with the drive axle are provided. And a driven fluid pressure driving means driven in conjunction with a driven axle, wherein the driving fluid pressure driving means and the driven fluid pressure driving means communicate with each other through a discharge port and a suction port. A four-wheel drive vehicle in which a fluid pressure transmission mechanism is provided and the flow rate of the driving fluid pressure driving means is set to be less than the flow rate of the driven fluid pressure driving means. A second rotation in which the capacity of the means is reduced from the first rotation speed at which the maximum transmission torque starts to decrease, and the capacity of the drive-side fluid pressure driving means is higher than the first rotation speed and no transmission torque is required. Because it was set to be the maximum value in number, The difference between the maximum flow rate of the driving-side fluid pressure driving means and the flow rate of the driven-side fluid pressure driving means can be gradually reduced, whereby when the rotation speed increases from the first rotation speed, By gradually lowering the maximum transmission torque, it is possible to reliably prevent the maximum transmission torque from suddenly lowering, and to give a sense of incongruity to the driver by gradually changing from the four-wheel drive state to the two-wheel drive state. That is, the effect of being able to surely prevent this is obtained.

【0061】また、請求項2に係る四輪駆動車によれ
ば、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを連通する流路を設けて流
体圧伝動機構を構成し、前記駆動側流体圧駆動手段の流
量を前記従動側流体圧駆動手段の流量未満に設定した四
輪駆動車において、前記従動側流体圧駆動手段の容量が
最大伝達トルクを低下させ始める第1の回転数より容量
を減少させ、且つ前記駆動側流体圧駆動手段の容量を前
記従動側流体圧駆動手段の容量特性に合わせて第1の回
転数より高く第2の回転数より低い回転数より容量を減
少させ、さらに伝達トルクの必要のなくなる第2の回転
数で最大値となるように設定する構成としたので、駆動
側流体圧駆動手段と従動側流体圧駆動手段の流量差大き
くなることを抑制して最大伝達トルクの減少変化を緩や
かに行うことができるという効果が得られる。
According to the four-wheel drive vehicle of the present invention, the drive axle driven by the main motor, the drive fluid pressure drive means driven in conjunction with the drive axle, and the driven axle And a driven fluid pressure driving means that is driven in a hydraulically driven manner, wherein the driving fluid pressure driving means and the driven fluid pressure driving means are provided with a flow path for communicating the discharge port and the suction port with each other. In a four-wheel drive vehicle that constitutes a mechanism and sets the flow rate of the drive-side fluid pressure drive means to less than the flow rate of the driven-side fluid pressure drive means, the capacity of the drive-side fluid pressure drive means reduces the maximum transmission torque. reducing the first volume than the rotational speed of the start, and more EVEN second rotational speed than the first rotational speed in accordance with the capacitance characteristic of the driven-side fluid pressure drive means the capacity of the drive-side hydraulic drive means to reduce the volume lower rotational speed, further transmitted DOO In this configuration, the maximum value is set at the second rotation speed that eliminates the need for torque, so that the flow rate difference between the driving fluid pressure driving means and the driven fluid pressure driving means is prevented from increasing and the maximum transmission torque is reduced. The effect of being able to make the decrease change of gradually is obtained.

【0062】さらに、請求項3に係る四輪駆動車によれ
ば、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを高圧側流路及び低圧側流
路で連通して流体圧伝動機構を構成し、前記駆動側流体
圧駆動手段の流量を前記従動側流体圧駆動手段の流量
に設定した四輪駆動車において、前記従動側流体圧駆
動手段の容量が最大伝達トルクを低下させ始める第1の
回転数より容量を減少させ、且つ前記駆動側流体圧駆動
手段の容量を前記第1の回転数より高く伝達トルクの必
要がなくなる第2の回転数で最大値となるように設定す
ると共に、前記高圧流路及び低圧流路間に開弁圧を前記
第1の回転数及び第2の回転数間で回転数の増加に対し
て減少させるリリーフ弁を介挿した構成としたので、第
1の回転数から第2の回転数までの間における伝達トル
クの減少率を大きくして、第2の回転数における伝達ト
ルクの急激な減少を抑制して伝達トルクの減少変化をよ
り滑らかに行うことができ、しかも、高圧流路の最大圧
の作用頻度を減少させると共に、高圧運転領域を狭める
ことができ、耐久性を確保するために必要とする高耐圧
材料の使用や表面処理などによるコスト増を抑制して低
コスト化を図ることができるという効果が得られる。
Further, according to the four-wheel drive vehicle according to the third aspect, the drive axle driven by the main prime mover, the drive fluid pressure drive means driven in conjunction with the drive axle, and the driven axle Driven-side fluid pressure driving means, which is driven in such a manner that the driving-side fluid pressure driving means and the driven-side fluid pressure driving means are connected to each other by a discharge port and a suction port in a high-pressure flow path and a low-pressure flow path. and a fluid pressure transmission kinematic mechanism communicating, the flow rate of the driving-side hydraulic drive means flow rate Not of the driven-side fluid pressure drive means
In four-wheel drive vehicle which is set to full, the capacity of the driven side hydraulic drive means decreases the first capacitor from the rotational speed of the start to reduce the maximum transmission torque, and wherein the capacitance of the drive-side hydraulic drive means The second rotation speed is higher than the first rotation speed and the transmission torque is not required. The second rotation speed is set to the maximum value, and the valve opening pressure between the high-pressure flow passage and the low-pressure flow passage is set to the first rotation speed and the second rotation speed. Since the relief valve that reduces the increase in the number of rotations between the second number of rotations is interposed, the reduction rate of the transmission torque between the first number of rotations and the second number of rotations is increased. As a result, it is possible to suppress a sudden decrease in the transmission torque at the second rotational speed, thereby making the transmission torque decrease change more smoothly, and to reduce the frequency of the maximum pressure in the high-pressure flow path, The area can be narrowed and durable Effect that it is possible to suppress the increase in cost due to use and surface treatment of the high withstand voltage materials required to ensure cost reduction.

【0063】さらにまた、請求項4に係る四輪駆動車に
よれば、主原動機により駆動される駆動車軸と、該駆動
車軸に連動して駆動される駆動側流体圧駆動手段と、従
動車軸に連動して駆動される従動側流体圧駆動手段とを
有し、前記駆動側流体圧駆動手段及び従動側流体圧駆動
手段を互いの吐出口と吸込口とを高圧側流路及び低圧側
流路で連通して流体圧伝動機構を構成し、前記駆動側流
体圧駆動手段の流量を前記従動側流体圧駆動手段の流量
未満に設定した四輪駆動車において、前記従動側流体圧
駆動手段の容量が最大伝達トルクを低下させ始める第1
の回転数より容量を減少させ、且つ前記駆動側流体圧駆
動手段の流量を前記第1の回転数より高く伝達トルクの
必要のなくなる第2の回転数で最大値となるように設定
し、さらに前記高圧流路及び低圧流路間に開弁圧を前記
第1の回転数及び第2の回転数間で回転数の増加に対し
て減少させるリリーフ弁を介挿すると共に、前記駆動側
流体圧駆動手段の吐出圧が前記リリーフ弁の最大開弁圧
より低い設定圧を越えたときに当該駆動側流体圧駆動手
段の吸入量を減少させる吸入量制限手段を設けた構成と
したので、請求項3による効果に加えて、高圧側流路か
ら低圧側流路にリリーフ弁を通じて放出される作動流体
量を抑制して作動流体の温度上昇を抑制することができ
るという効果が得られる。
Further, according to the four-wheel drive vehicle of the fourth aspect, the drive axle driven by the main motor, the drive fluid pressure drive means driven in conjunction with the drive axle, and the driven axle Driven fluid pressure driving means driven in conjunction with each other, wherein the driving fluid pressure driving means and the driven fluid pressure driving means are connected to each other by a discharge port and a suction port of a high pressure side flow path and a low pressure side flow path. And a fluid pressure transmission mechanism, and the flow rate of the drive-side fluid pressure drive means is controlled by the flow rate of the driven-side fluid pressure drive means.
In the four-wheel drive vehicle set to be less than the first , the capacity of the driven fluid pressure driving means starts to decrease the maximum transmission torque.
And the flow rate of the drive-side fluid pressure driving means is set to be a maximum value at a second rotational speed which is higher than the first rotational speed and does not require transmission torque, and A relief valve for reducing the valve opening pressure between the first rotation speed and the second rotation speed with respect to an increase in the rotation speed is interposed between the high-pressure flow passage and the low-pressure flow passage, and the drive-side fluid pressure When the discharge pressure of the drive means exceeds a set pressure lower than the maximum valve opening pressure of the relief valve, suction amount limiting means for reducing the suction amount of the drive side fluid pressure drive means is provided. In addition to the effect of 3, the effect of suppressing the amount of working fluid discharged from the high-pressure side flow passage to the low-pressure side flow passage through the relief valve and suppressing the temperature rise of the working fluid can be obtained.

【0064】また、請求項5に係る四輪駆動車によれ
ば、請求項3及び4の発明において、前記リリーフ弁の
開弁圧を第2の回転数において略零となるように設定し
たので、第2の回転数において駆動側流体圧駆動手段及
び従動側流体圧駆動手段間を連通する高圧側流路の圧力
がゲージ圧となり、伝達トルクを段差を生じることなく
滑らかに零とすることができ、運転者に違和感を全く与
えることなく、四輪駆動状態から二輪駆動状態に移行さ
せることができるという効果が得られる。
According to the four-wheel drive vehicle of the fifth aspect, in the invention of the third and fourth aspects, the valve opening pressure of the relief valve is set to be substantially zero at the second rotation speed. At the second rotational speed, the pressure in the high-pressure side passage communicating between the driving fluid pressure driving means and the driven fluid pressure driving means becomes the gauge pressure, and the transmission torque can be smoothly reduced to zero without generating a step. It is possible to obtain an effect that it is possible to shift from the four-wheel drive state to the two-wheel drive state without giving the driver any uncomfortable feeling.

【0065】さらに、請求項6に係る四輪駆動車によれ
ば、請求項3〜5の発明において、前記リリーフ弁は、
その開弁圧が従動側流体圧駆動手段と低圧側流路との間
に介挿した差圧検出用オリフィスの従動側流体圧駆動手
段側圧力により開弁圧を制御するように構成したので、
別途車速センサ等の他のセンサを設けることなく、流体
圧回路内にパイロット流路を形成するだけで、容易にリ
リーフ弁の開弁圧を制御することができるという効果が
得られる。
Further, according to the four-wheel drive vehicle according to claim 6, in the invention according to claims 3 to 5, the relief valve is
Since the valve opening pressure is configured to control the valve opening pressure by the driven fluid pressure driving means side pressure of the differential pressure detecting orifice inserted between the driven fluid pressure driving means and the low pressure side flow path,
The effect that the valve opening pressure of the relief valve can be easily controlled only by forming the pilot flow path in the fluid pressure circuit without providing another sensor such as a vehicle speed sensor separately is obtained.

【0066】またさらに、請求項7に係る四輪駆動車に
よれば、請求項1〜6の発明において、前記駆動側流体
圧駆動手段が、回転数に対する流量特性の異なる複数の
ポンプを組み合わせて構成するようにしているので、流
量特性を単独で多段回に変化させることができないポン
プを使用した場合でも、所望の流量特性を確実に得るこ
とができるという効果が得られる。
Further, according to the four-wheel drive vehicle of the seventh aspect, in the invention of the first to sixth aspects, the drive-side fluid pressure drive means combines a plurality of pumps having different flow rate characteristics with respect to rotation speed. With this configuration, even when a pump whose flow characteristics cannot be changed in multiple stages by itself is used, an effect that a desired flow characteristics can be surely obtained can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】第1実施例に適用した吸入絞り型ピストンポン
プ及び斜板型可変容量ポンプモータの吐出流量特性及び
最大伝達トルク特性を示す特性線図である。
FIG. 2 is a characteristic diagram showing a discharge flow rate characteristic and a maximum transmission torque characteristic of a suction throttle type piston pump and a swash plate type variable displacement pump motor applied to the first embodiment.

【図3】第1実施例の前後車軸回転数差と伝達トルクと
の関係を示す特性線図である。
FIG. 3 is a characteristic diagram showing a relationship between a front-rear axle rotational speed difference and a transmission torque according to the first embodiment.

【図4】駆動側流体圧駆動手段として流量特性を多段回
に変化できないポンプを複数使用する場合の流量特性を
示す特性線図である。
FIG. 4 is a characteristic diagram showing flow characteristics when a plurality of pumps whose flow characteristics cannot be changed in multiple stages are used as drive-side fluid pressure driving means.

【図5】可変容量ポンプモータの他の実施例を示す概略
構成図である。
FIG. 5 is a schematic configuration diagram showing another embodiment of the variable displacement pump motor.

【図6】トルク制限手段の他の実施例を示す概略構成図
である。
FIG. 6 is a schematic configuration diagram showing another embodiment of the torque limiting means.

【図7】差動装置を省略した場合の実施例を示す概略構
成図である。
FIG. 7 is a schematic configuration diagram showing an embodiment in which a differential device is omitted.

【図8】流体圧ポンプとして回転方向によって吐出口が
変更される流体圧ポンプを適用した場合の実施例を示す
概略構成図である。
FIG. 8 is a schematic configuration diagram showing an embodiment in which a fluid pressure pump whose discharge port is changed depending on the rotation direction is applied as the fluid pressure pump.

【図9】本発明の第2実施例を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a second embodiment of the present invention.

【図10】第2実施例に適用した吸入絞り型ピストンポ
ンプ及び斜板型可変容量ポンプモータの吐出流量特性、
最大伝達トルク特性、リリーフ圧特性を示す特性線図で
ある。
FIG. 10 shows a discharge flow rate characteristic of a suction throttle type piston pump and a swash plate type variable displacement pump motor applied to the second embodiment;
FIG. 3 is a characteristic diagram showing a maximum transmission torque characteristic and a relief pressure characteristic.

【図11】本発明の第3実施例を示す概略構成図であ
る。
FIG. 11 is a schematic configuration diagram showing a third embodiment of the present invention.

【図12】従来の駆動側油圧ポンプと従動側油圧ポンプ
との流量特性を示す特性線図である。
FIG. 12 is a characteristic diagram showing flow characteristics of a conventional drive side hydraulic pump and a driven side hydraulic pump.

【符号の説明】[Explanation of symbols]

1 エンジン 2 変速機 3 前輪側差動装置 4 前車軸 5 前輪 6 吸込絞り型ピストンポンプ 7 リザーバタンク 8H 高圧配管 8L 低圧配管 9 前後進切換用電磁方向切換弁 10 斜板型可変容量ポンプモータ 11 差圧発生用オリフィス 12 斜板可変機構 13 リリーフ弁 15 逆止弁 16 オリフィス 17 後輪側差動装置 18 後輪車軸 19 後輪 21 吸入絞り弁 10L,10R 斜板型可変容量ポンプモータ 31 前後進切換用電磁方向切換弁 13P パイロット作動形リリーフ弁 40 吸入絞り弁 REFERENCE SIGNS LIST 1 engine 2 transmission 3 front wheel differential 4 front axle 5 front wheel 6 suction throttle type piston pump 7 reservoir tank 8H high pressure pipe 8L low pressure pipe 9 electromagnetic switching valve for forward / reverse switching 10 swash plate type variable displacement pump motor 11 difference Orifice for pressure generation 12 Variable swash plate mechanism 13 Relief valve 15 Check valve 16 Orifice 17 Rear wheel differential 18 Rear wheel axle 19 Rear wheel 21 Suction throttle valve 10L, 10R Swash plate type variable displacement pump motor 31 Forward / reverse switching Direction Control Valve 13P Pilot Operated Relief Valve 40 Suction Throttle Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀ヶ谷 茂 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平5−169996(JP,A) 特開 昭63−176734(JP,A) 特開 昭53−20231(JP,A) 特開 平5−246259(JP,A) 特開 平5−131859(JP,A) 特開 平2−200350(JP,A) 特開 昭63−284037(JP,A) 実開 昭61−89059(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60K 17/34 - 17/356 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shigeru Kamagaya Nissan Motor Co., Ltd. 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture (56) References JP-A-5-169996 (JP, A) JP-A-63- 176734 (JP, A) JP-A-53-20231 (JP, A) JP-A-5-246259 (JP, A) JP-A-5-131859 (JP, A) JP-A-2-200350 (JP, A) JP-A-63-284037 (JP, A) JP-A-61-89059 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B60K 17/34-17/356

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを連通する流路を
設けて流体圧伝動機構を構成し、前記駆動側流体圧駆動
手段の流量を前記従動側流体圧駆動手段の流量未満に設
定した四輪駆動車において、前記従動側流体圧駆動手段
の容量が最大伝達トルクを低下させ始める第1の回転数
より容量を減少させ、且つ前記駆動側流体圧駆動手段の
の容量を前記第1の回転数より高く伝達トルクの必要が
なくなる第2の回転数で最大値となるように設定されて
いることを特徴とする四輪駆動車。
A drive axle driven by a main motor;
A drive-side fluid pressure drive unit driven in conjunction with the drive axle; and a driven-side fluid pressure drive unit driven in conjunction with a driven axle, wherein the drive-side fluid pressure drive unit and the driven-side fluid pressure The drive means is provided with a flow path communicating the discharge port and the suction port with each other to constitute a fluid pressure transmission mechanism, and the flow rate of the drive side fluid pressure drive means is set to be less than the flow rate of the driven side fluid pressure drive means. In a four-wheel drive vehicle, the capacity of the driven fluid pressure drive means is reduced from the first rotation speed at which the maximum transmission torque starts to decrease, and the capacity of the drive fluid pressure drive means is reduced to the first speed . A four-wheel drive vehicle characterized by being set to a maximum value at a second rotation speed that is higher than the rotation speed and does not require transmission torque.
【請求項2】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを連通する流路を
設けて流体圧伝動機構を構成し、前記駆動側流体圧駆動
手段の流量を前記従動側流体圧駆動手段の流量未満に設
定した四輪駆動車において、前記従動側流体圧駆動手段
の容量が最大伝達トルクを低下させ始める第1の回転数
より容量を減少させ、且つ前記駆動側流体圧駆動手段の
容量を前記従動側流体圧駆動手段の容量特性に合わせて
第1の回転数より高く第2の回転数より低い回転数より
容量を減少させ、さらに伝達トルクの必要のなくなる第
2の回転数で最大値となるように設定されていることを
特徴とする四輪駆動車。
2. A drive axle driven by a main motor;
A drive-side fluid pressure drive unit driven in conjunction with the drive axle; and a driven-side fluid pressure drive unit driven in conjunction with a driven axle, wherein the drive-side fluid pressure drive unit and the driven-side fluid pressure The drive means is provided with a flow path communicating the discharge port and the suction port with each other to constitute a fluid pressure transmission mechanism, and the flow rate of the drive side fluid pressure drive means is set to be less than the flow rate of the driven side fluid pressure drive means. In a four-wheel drive vehicle, the capacity of the driven fluid pressure driving means is reduced from the first rotation speed at which the maximum transmission torque starts to decrease, and the capacity of the driven fluid pressure driving means is changed to the driven fluid pressure. in accordance with the capacitance characteristic of the drive means reducing the first high Ku than the revolving speed second capacitor lower rotational speed than the rotational speed of, so that the maximum value further by a second rotational speed which eliminates the need for transmission torque Four-wheel drive characterized by being set Car.
【請求項3】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを高圧側流路及び
低圧側流路で連通して流体圧伝動機構を構成し、前記駆
動側流体圧駆動手段の流量を前記従動側流体圧駆動手段
の流量未満に設定した四輪駆動車において、前記従動側
流体圧駆動手段の容量が最大伝達トルクを低下させ始め
る第1の回転数より容量を減少させ、且つ前記駆動側流
体圧駆動手段の容量を前記第1の回転数より高く伝達ト
ルクの必要がなくなる第2の回転数で最大値となるよう
に設定すると共に、前記高圧流路及び低圧流路間に開弁
圧を前記第1の回転数及び第2の回転数間で回転数の増
加に対して減少させるリリーフ弁を介挿したことを特徴
とする四輪駆動車。
3. A drive axle driven by a prime mover,
A drive-side fluid pressure drive unit driven in conjunction with the drive axle; and a driven-side fluid pressure drive unit driven in conjunction with a driven axle, wherein the drive-side fluid pressure drive unit and the driven-side fluid pressure The drive means communicates the discharge port and the suction port with each other through a high-pressure flow path and a low-pressure flow path to form a fluid pressure transmission mechanism, and the flow rate of the drive fluid pressure drive means is controlled by the driven fluid pressure drive means. In the four-wheel drive vehicle set to be less than the flow rate, the capacity of the driven fluid pressure driving means is reduced from the first rotation speed at which the maximum transmission torque starts to decrease, and the capacity of the driving fluid pressure driving means is reduced. Is set to a maximum value at a second rotation speed that is higher than the first rotation speed and no transmission torque is required, and the valve opening pressure between the high-pressure flow path and the low-pressure flow path is set to the first rotation speed. Between the number of revolutions and the second number of revolutions for an increase in the number of revolutions Four-wheel drive vehicle, wherein a relief valve is interposed that.
【請求項4】 主原動機により駆動される駆動車軸と、
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを高圧側流路及び
低圧側流路で連通して流体圧伝動機構を構成し、前記駆
動側流体圧駆動手段の流量を前記従動側流体圧駆動手段
の流量未満に設定した四輪駆動車において、前記従動側
流体圧駆動手段の容量が最大伝達トルクを低下させ始め
る第1の回転数より容量を減少させ、且つ前記駆動側流
体圧駆動手段の流量を前記第1の回転数より高く伝達ト
ルクの必要のなくなる第2の回転数で最大値となるよう
に設定し、さらに前記高圧流路及び低圧流路間に開弁圧
を前記第1の回転数及び第2の回転数間で回転数の増加
に対して減少させるリリーフ弁を介挿すると共に、前記
駆動側流体圧駆動手段の吐出圧が前記リリーフ弁の最大
開弁圧より低い設定圧を越えたときに当該駆動側流体圧
駆動手段の吸入量を減少させる吸入量制限手段を設けた
ことを特徴とする四輪駆動車。
4. A drive axle driven by a prime mover,
A drive-side fluid pressure drive unit driven in conjunction with the drive axle; and a driven-side fluid pressure drive unit driven in conjunction with a driven axle, wherein the drive-side fluid pressure drive unit and the driven-side fluid pressure The drive means communicates the discharge port and the suction port with each other through a high-pressure flow path and a low-pressure flow path to form a fluid pressure transmission mechanism, and the flow rate of the drive fluid pressure drive means is controlled by the driven fluid pressure drive means. In the four-wheel drive vehicle set to be less than the flow rate, the capacity of the driven fluid pressure driving means is reduced from the first rotational speed at which the maximum transmission torque starts to decrease, and the flow rate of the driving fluid pressure driving means is reduced. Is set to a maximum value at a second rotation speed that is higher than the first rotation speed and does not require transmission torque, and furthermore , the valve opening pressure is increased between the high pressure flow path and the low pressure flow path by the first rotation speed. Between the number of revolutions and the second number of revolutions, A suction valve that interposes a relief valve and reduces a suction amount of the driving-side fluid pressure driving unit when a discharge pressure of the driving-side fluid pressure driving unit exceeds a set pressure lower than a maximum valve opening pressure of the relief valve; A four-wheel drive vehicle characterized by having a quantity limiting means.
【請求項5】 前記リリーフ弁の開弁圧を第2の回転数
において略零となるように設定したことを特徴とする請
求項3又は4に記載の四輪駆動車。
5. The four-wheel drive vehicle according to claim 3, wherein the valve opening pressure of the relief valve is set to be substantially zero at the second rotation speed.
【請求項6】 前記リリーフ弁は、その開弁圧が従動側
流体圧駆動手段と低圧側流路との間に介挿した差圧検出
用オリフィスの従動側流体圧駆動手段側圧力により開弁
圧を制御するように構成されていることを特徴とする請
求項3乃至5の何れかに記載の四輪駆動車。
6. The relief valve is opened by the pressure of the differential pressure detecting orifice, which is interposed between the driven fluid pressure driving means and the low pressure flow passage, on the driven fluid pressure driving means side. The four-wheel drive vehicle according to any one of claims 3 to 5, wherein the four-wheel drive vehicle is configured to control the pressure.
【請求項7】 前記駆動側流体圧駆動手段は、回転数に
対する流量特性の異なる複数のポンプを組み合わせて構
成されていることを特徴とする請求項1乃至6の何れか
に記載の四輪駆動車。
7. The four-wheel drive according to claim 1, wherein the drive-side fluid pressure drive means is configured by combining a plurality of pumps having different flow rate characteristics with respect to the number of rotations. car.
JP09254594A 1994-03-18 1994-04-28 Four-wheel drive vehicles Expired - Fee Related JP3198794B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09254594A JP3198794B2 (en) 1994-03-18 1994-04-28 Four-wheel drive vehicles
US08/405,673 US5687808A (en) 1994-03-18 1995-03-17 Four wheel drive mechanism
DE19510046A DE19510046C2 (en) 1994-03-18 1995-03-20 Four wheel drive mechanism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4915494 1994-03-18
JP6-49154 1994-03-18
JP09254594A JP3198794B2 (en) 1994-03-18 1994-04-28 Four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JPH07304345A JPH07304345A (en) 1995-11-21
JP3198794B2 true JP3198794B2 (en) 2001-08-13

Family

ID=26389515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09254594A Expired - Fee Related JP3198794B2 (en) 1994-03-18 1994-04-28 Four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP3198794B2 (en)

Also Published As

Publication number Publication date
JPH07304345A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP4327284B2 (en) Four-wheel drive vehicle
US6161643A (en) System of controlling torque transfer in a motor vehicle and related method
JPH11315907A (en) Driving unit for driving system of vehicle having hydraulic clutch which depends on rotational speed difference
JP3612969B2 (en) Driving force adjusting device for vehicle
JP3198794B2 (en) Four-wheel drive vehicles
JP3817769B2 (en) Vehicle wheel driving force distribution control device
JP3196484B2 (en) Four-wheel drive vehicles
JP3237379B2 (en) Four-wheel drive vehicles
JP3196485B2 (en) Four-wheel drive vehicles
JPH058650A (en) Power transmission device for four-wheel drive vehicle
JP3715001B2 (en) Power transmission device for four-wheel drive vehicle
JPH0820253A (en) Four-wheel drive vehicle
JPH0899552A (en) Four wheel drive
JPH0899551A (en) Four wheel drive
JP3904630B2 (en) Four-wheel drive vehicle
JPH0820252A (en) Four-wheel drive vehicle
JPH08118977A (en) Four-wheel drive car
JP3593785B2 (en) Four-wheel drive vehicles
JPH07257213A (en) Four-wheel drive vehicle
JPH0976781A (en) Four-wheel drive vehicle
JP3942658B2 (en) Hydraulic drive
JPH09150641A (en) Four-wheel drive vehicle
JPH09175204A (en) Hydraulic transmission for vehicle
JP2010025197A (en) Electric hydraulic control system for hydraulic torque distribution adjustment differential
JPH03224831A (en) Power transmission device for four-wheel drive vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees