JPH0820209B2 - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPH0820209B2
JPH0820209B2 JP4169946A JP16994692A JPH0820209B2 JP H0820209 B2 JPH0820209 B2 JP H0820209B2 JP 4169946 A JP4169946 A JP 4169946A JP 16994692 A JP16994692 A JP 16994692A JP H0820209 B2 JPH0820209 B2 JP H0820209B2
Authority
JP
Japan
Prior art keywords
light
light source
light receiving
photoelectric conversion
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4169946A
Other languages
Japanese (ja)
Other versions
JPH0658713A (en
Inventor
宏和 田中
清光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP4169946A priority Critical patent/JPH0820209B2/en
Publication of JPH0658713A publication Critical patent/JPH0658713A/en
Publication of JPH0820209B2 publication Critical patent/JPH0820209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被測定物の反射光を
利用した測定装置で、例えば、自動車の車高測定、スプ
リングの撓み量測定、カメラの距離測定などに利用する
ところの光学的測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device using reflected light of an object to be measured, which is an optical device used for measuring the height of an automobile, measuring the amount of spring deflection, measuring the distance of a camera, etc. Regarding measuring device.

【0002】[0002]

【従来の技術】被測定物の反射光を利用した測定装置と
して様々な構成のものがあるが、その一例を図5に示
す。光路長に距離dの差をもって配置したLEDなどの
第1光源10と第2光源11とで被測定物12を照射す
る。これら第1光源10と第2光源11の近くには各光
源10、11に向けるように配置した受光素子13、1
4が設けられている。
2. Description of the Related Art There are various measuring devices using reflected light of an object to be measured, and one example is shown in FIG. The first light source 10 and the second light source 11 such as LEDs arranged with a difference in the optical path length of the distance d illuminates the DUT 12. Near the first light source 10 and the second light source 11, the light receiving elements 13, 1 arranged so as to face the respective light sources 10, 11.
4 are provided.

【0003】被測定物12は拡散反射面を備えており、
第1光源10から距離D+dだけ離れ、また、第2光源
11から距離Dだけ離れている。また、受光レンズ15
と受光素子16からなる受光手段を設け、この受光手段
で被測定物12からの反射光を受光するようになってい
る。上記した受光素子13、14及び16にはフォトダ
イオードが用いられている
The device under test 12 has a diffuse reflection surface,
It is separated from the first light source 10 by a distance D + d, and is separated from the second light source 11 by a distance D. In addition, the light receiving lens 15
A light receiving means including the light receiving element 16 and the light receiving element 16 is provided, and the light receiving means receives the reflected light from the DUT 12. Photodiodes are used for the light receiving elements 13, 14 and 16 described above.

【0004】2つの光源10、11より光が投光される
と、第1光源10の光の一部を受光素子13が受光し、
第2光源11の光の一部を受光素子14が受光する。そ
して、受光素子13、14は各々受光した光を電気信号
に変換して出力信号を発生する。
When light is projected from the two light sources 10 and 11, a part of the light from the first light source 10 is received by the light receiving element 13,
The light receiving element 14 receives a part of the light of the second light source 11. Then, the light receiving elements 13 and 14 each convert the received light into an electric signal and generate an output signal.

【0005】この出力信号は測定装置に備えた光量制御
回路に取り込まれる。光量制御回路は、第1光源10と
第2光源11との光量の比を算出し、この光量の比が予
め定めた一定の比とならない場合、第1光源10または
第2光源11の光量を変化させて一定の比を保つように
制御する。
This output signal is taken into a light amount control circuit provided in the measuring device. The light amount control circuit calculates the light amount ratio between the first light source 10 and the second light source 11, and when the light amount ratio does not reach a predetermined constant ratio, the light amount of the first light source 10 or the second light source 11 is calculated. It is controlled to change and maintain a constant ratio.

【0006】図6は上記した光量制御回路を示し、この
光量制御回路17は第1光源10と第2光源11との光
量の比を2:1と定めてある。受光索子13、14から
出力された光電変換信号Ip、Isは増幅器18、19
に送られて増幅された後、整流平滑回路20、21で整
流されて平滑される。
FIG. 6 shows the above-mentioned light amount control circuit. The light amount control circuit 17 defines the ratio of the light amounts of the first light source 10 and the second light source 11 as 2: 1. The photoelectric conversion signals Ip and Is output from the light receiving elements 13 and 14 are amplifiers 18 and 19, respectively.
After being sent to and amplified, the rectifying and smoothing circuits 20 and 21 rectify and smooth.

【0007】第1光源10の光電変換信号Ipはポテン
シヨメータ22で1/2の信号となり差動増幅器23に
入力され、第2光源11の光電変換信号Isはそのまま
の信号として差動増幅器23に入力される。そして、差
動増幅器23は、この2つの光電変換信号からその差を
算出し、差信号を電流制御回路24に送る。
The photoelectric conversion signal Ip of the first light source 10 becomes a 1/2 signal by the potentiometer 22 and is input to the differential amplifier 23, and the photoelectric conversion signal Is of the second light source 11 is used as it is as a signal. Entered in. Then, the differential amplifier 23 calculates the difference between the two photoelectric conversion signals and sends the difference signal to the current control circuit 24.

【0008】このとき、差動増幅器23は上記した演算
結果が+のときは、すなわち、第1光源10の光量が第
2光源11の光量の2倍以上のとき、+の信号を電流制
御回路24に送る。また、上記した演算結果が−のと
き、すなわち、第1光源10の光量が第2光源11の光
量の2倍以下のとき、−の信号を電流制御回路24に送
る。
At this time, the differential amplifier 23 sends a + signal to the current control circuit when the above calculation result is +, that is, when the light quantity of the first light source 10 is more than twice the light quantity of the second light source 11. Send to 24. Further, when the above calculation result is −, that is, when the light amount of the first light source 10 is less than or equal to twice the light amount of the second light source 11, a − signal is sent to the current control circuit 24.

【0009】電流制御回路24は+の信号を受けた場
合、第1光源10の電力増幅器25を駆動させて第1光
源10の光量を減少させる。また、電流制御回路24が
−の信号を受けた場合、第2光源11の電力増幅器26
を駆動させて第2光源11の光量を減少させる。
When the current control circuit 24 receives a + signal, the current control circuit 24 drives the power amplifier 25 of the first light source 10 to reduce the light amount of the first light source 10. Further, when the current control circuit 24 receives the signal of −, the power amplifier 26 of the second light source 11
Is driven to reduce the light amount of the second light source 11.

【0010】電流制御回路24の制御は光源各々に供給
する電力の差がゼロとなるまで続けられる。これより、
2つの光源10、11から投光された光は常に2:1の
光量比となって被測定物12を照射する。図中、27は
後述する信号処理回路を含む主コントローラである。
The control of the current control circuit 24 is continued until the difference between the electric powers supplied to the respective light sources becomes zero. Than this,
The light emitted from the two light sources 10 and 11 always has a light quantity ratio of 2: 1 and illuminates the DUT 12. In the figure, 27 is a main controller including a signal processing circuit described later.

【0011】被測定物12の反射光は受光レンズ15に
より集光され受光素子16で受光される。受光素子16
は受光した光を電気信号に変換して出力信号を発生し、
この出力信号は主コントローラ27に含まれた信号処理
回路に取り込まれ、被測定物12の輝度比から測定距離
Dが算出される。
The reflected light of the object to be measured 12 is condensed by the light receiving lens 15 and received by the light receiving element 16. Light receiving element 16
Converts the received light into an electrical signal to generate an output signal,
This output signal is taken into the signal processing circuit included in the main controller 27, and the measurement distance D is calculated from the luminance ratio of the DUT 12.

【0012】すなわち、第1光源10による被測定物1
2の照度Eは、第1光源10の放射強度を1とする
と、 E=I/(d+D)・・・・・・(1) となる。被測定物12の反射率をρとすると、被測定物
12の輝度BはρEに比例し、比例定数をKとする
と、 B=KρE ・・・・・・(2) となる。
That is, the DUT 1 by the first light source 10
The illuminance E 1 of 2 is given by E 1 = I / (d + D) 2 (1) when the radiation intensity of the first light source 10 is 1. When the reflectance of the DUT 12 is ρ, the brightness B 1 of the DUT 12 is proportional to ρE 1 , and when the proportional constant is K, B 1 = KρE 1 (2) .

【0013】同様に、第2光源11による発光では、 E=I/D ・・・・・・(3) B=KρE ・・・・・・(4) となる。Similarly, in the light emission by the second light source 11, E 2 = I / D 2 (3) B 2 = KρE 2 (4)

【0014】次に、反射した光は受光レンズ15、受光
素子16により受光され、この測定された輝度B,B
の比より測定距離Dを求める。すなわち、
Next, the reflected light is received by the light receiving lens 15 and the light receiving element 16, and the measured brightness B 1 , B
The measurement distance D is obtained from the ratio of 2 . That is,

【数1】 となる。これより、測定距離Dは反射率ρや比例定数K
に関係なく定数dと輝度比(B/B)とにより求め
ることができる。
[Equation 1] Becomes From this, the measurement distance D can be determined by the reflectance ρ and the proportional constant K.
Can be obtained from the constant d and the luminance ratio (B 2 / B 1 ) regardless of

【0015】図7はコントローラ27に含まれた信号処
理回路28を示し、発振器29の出力パルスは発光切換
回路30によって第1光源10の電力増幅器25と第2
光源11の電力増幅器26とに交互に送られ、2つの光
源10、11を交互に発光させる。また、発光切換回路
30は、上記した発振器29の出力パルスにしたがって
受光のタイミングをとるための同期信号を受光切換回路
31に送る。
FIG. 7 shows a signal processing circuit 28 included in the controller 27. The output pulse of the oscillator 29 is supplied to the power amplifier 25 of the first light source 10 and the second pulse by the light emission switching circuit 30.
It is alternately sent to the power amplifier 26 of the light source 11 to cause the two light sources 10 and 11 to emit light alternately. Further, the light emission switching circuit 30 sends to the light reception switching circuit 31 a synchronization signal for timing the light reception in accordance with the output pulse of the oscillator 29 described above.

【0016】第1光源10と第2光源11との発光によ
り被測定物12を照射し、被測定物12の反射光が受光
素子16で受光されると、この反射光が光電変換されて
その受光信号が増輻器32で増幅され、受光切換回路3
1に送られる。この受光切換回路31では、上記した発
光切換回路30からの同期信号により第1光源10また
は第2光源11のどちらかが発光されたかを判別し、こ
れにしたがい、第1光源10の光電変換信号を第1演算
回路33に、第2光源11の光電変換信号を第2演算回
路34に各々送る。
When the object 12 to be measured is illuminated by the light emitted from the first light source 10 and the second light source 11, and the reflected light of the object 12 to be measured is received by the light receiving element 16, the reflected light is photoelectrically converted. The received light signal is amplified by the amplifier 32, and the received light switching circuit 3
Sent to 1. The light receiving switching circuit 31 determines whether the first light source 10 or the second light source 11 emits light based on the synchronization signal from the light emitting switching circuit 30, and accordingly, the photoelectric conversion signal of the first light source 10 is detected. To the first arithmetic circuit 33 and the photoelectric conversion signal of the second light source 11 to the second arithmetic circuit 34.

【0017】この光電変換信号にもとづき、これら第1
演算回路33、第2演算回路34で各々第1光源10に
おける被測定物12の輝度Bと第2光源11における
被測定物12の輝度Bを求める演算を行ない、この結
果を処理回路35に伝えて輝度比(B/B)の演算
処理が行なわれ、測定距離Dに関する出力信号が出力端
子36より出力される。
Based on this photoelectric conversion signal, these first
The arithmetic circuit 33 and the second arithmetic circuit 34 perform arithmetic operations for obtaining the brightness B 1 of the DUT 12 in the first light source 10 and the brightness B 2 of the DUT 12 in the second light source 11, respectively, and the results are processed by the processing circuit 35. Then, the brightness ratio (B 2 / B 1 ) is calculated and the output signal related to the measurement distance D is output from the output terminal 36.

【0018】上記した測定装置は、2つの光源10、1
1の光量比を常に一定に保つので、測定された距離Dが
正確なものとなると共に、2つの光源10、11は、一
方の光源が暗くなった場合、この暗くなった光源に合わ
せて他方の光源の光量が制御されるので、光源の寿命を
延ばすことができ、装置の耐久性が向上する。
The measuring device described above comprises two light sources 10, 1
Since the light quantity ratio of 1 is always kept constant, the measured distance D is accurate and the two light sources 10 and 11 are arranged so that when one of the light sources is dark, the other light source is adjusted to the darkened light source. Since the light amount of the light source is controlled, the life of the light source can be extended and the durability of the device is improved.

【0019】一方、上記した測定装置の受光素子13、
14は図8、図9に示す如く1つの受光素子37で構成
することもできる。第1光源10と第2光源11とは上
述した信号処理回路28によって交互に発光される。そ
して、発光した各々の光の一部を図8に示す如く配置し
た受光素子37が受光して電気信号に変換し、この変換
信号にもとづいて図9に示す光量制御回路38が第1光
源10と第2光源11の光量の差を算出し、この差に応
じて第1光源10または第2光源11の光量を制御し
て、第1光源10と第2光源11の光量を予め定めた一
定の比とする。なお、この光量制御回路38について
も、第1光源10と第2光源11との光量の比を2:1
と定めてある。
On the other hand, the light receiving element 13 of the above measuring device,
14 can also be composed of one light receiving element 37 as shown in FIGS. The first light source 10 and the second light source 11 are alternately emitted by the signal processing circuit 28 described above. Then, a part of each emitted light is received by the light receiving element 37 arranged as shown in FIG. 8 and converted into an electric signal, and the light amount control circuit 38 shown in FIG. And the light amount of the second light source 11 is calculated, and the light amount of the first light source 10 or the second light source 11 is controlled according to the difference, and the light amount of the first light source 10 and the second light source 11 is set to a predetermined constant value. The ratio of In this light quantity control circuit 38, the light quantity ratio between the first light source 10 and the second light source 11 is 2: 1.
Has been defined.

【0020】受光素子37から出力された光電変換信号
は増幅器39で増幅された後、分離器40によって第1
光源10の発光による光電変換信号Ipと、第2光源1
1の発光による光電変換信号Isとに分離され、各々整
流平滑回路41、42で整流平滑された後、第1光源1
0の光電変換信号Ipはポテンシヨメータ43で1/2
の信号となり差動増幅器44に入力され、第2光源11
の光電変換信号Isはそのままの信号として差動増幅器
44に入力される。
The photoelectric conversion signal output from the light receiving element 37 is amplified by the amplifier 39 and then separated by the separator 40 into the first signal.
The photoelectric conversion signal Ip generated by the light source 10 emits light and the second light source 1
The first light source 1 is separated into the photoelectric conversion signal Is generated by the first light emission and is rectified and smoothed by the rectification smoothing circuits 41 and 42, respectively.
The photoelectric conversion signal Ip of 0 is 1/2 with the potentiometer 43.
Signal is input to the differential amplifier 44, and the second light source 11
The photoelectric conversion signal Is of is input to the differential amplifier 44 as it is.

【0021】そして、差動増幅器44はその差を算出
し、この差信号に基づいて電流制御回路45が第1光源
10の電力増幅器46または第2光源11の電力増幅器
47を駆動し、光量の大きい光源を光量の小さい光源に
合わせるように制御する。
Then, the differential amplifier 44 calculates the difference, and the current control circuit 45 drives the power amplifier 46 of the first light source 10 or the power amplifier 47 of the second light source 11 based on this difference signal to determine the amount of light. The large light source is controlled to match the light source with a small light amount.

【0022】このように光量制御された第1光源10、
第2光源11の光は被測定物12に照射され、その反射
光が受光レンズ15により集光されて受光素子16で受
光される。そして、受光素子16の出力信号にもとづい
て信号処理回路28が測定距離Dを算出する。
The first light source 10 whose light quantity is controlled in this way,
The light from the second light source 11 is applied to the DUT 12, and the reflected light is collected by the light receiving lens 15 and received by the light receiving element 16. Then, the signal processing circuit 28 calculates the measurement distance D based on the output signal of the light receiving element 16.

【0023】この測定装置は、上述した通り、1つの受
光素子37で構成されているので、部品点数が減り装置
構成が簡素化される。
As described above, since this measuring device is composed of one light receiving element 37, the number of parts is reduced and the structure of the device is simplified.

【0024】上記した測定装置は、本発明者らによって
既に提案され特許出願されているが、第1光源10と第
2光源11とは照度特性が異なるように投光するもので
あればよいから、受光素子各々の出力信号を増幅する増
幅器のゲインを調整するようにすれば、これら光源1
0、11の光量比を2:1或いは1:1のように定めな
くともよい。
The above-mentioned measuring device has already been proposed and applied for a patent by the present inventors, but it is sufficient if the first light source 10 and the second light source 11 project light so that the illuminance characteristics are different. If the gain of the amplifier for amplifying the output signal of each light receiving element is adjusted, these light sources 1
The light amount ratio of 0 and 11 may not be set to 2: 1 or 1: 1.

【0025】[0025]

【発明が解決しようとする課題】上記した従来の測定装
置は、2つの光源10、11のうちどちらか一方の光源
が劣化等の原因によって投光の強さが変化した場合で
も、光量制御回路17、38が2つの光源10、11の
光量比を一定に保つので被測定物12までの距離Dを正
確に算出することができる。
The above-described conventional measuring apparatus has a light amount control circuit even when the intensity of the projected light changes due to deterioration of one of the two light sources 10, 11 or the like. Since 17, 38 keep the light quantity ratio of the two light sources 10, 11 constant, the distance D to the DUT 12 can be accurately calculated.

【0026】しかしながら、この測定装置は、距離測定
に用いる光と光量測定に用いる光とが同一光でないため
に精度の面で問題があった。つまり、2つの光源10、
11から投光された光のうち、各々の光軸上にある光が
距離測定に用いられるのに対し、光量測定においては各
々の光軸から離れた光が用いられており、このため距離
測定に用いられる光の変化を正確に検出することができ
ない。
However, this measuring device has a problem in accuracy because the light used for distance measurement and the light used for light quantity measurement are not the same light. That is, the two light sources 10,
Among the light projected from 11, the light on each optical axis is used for distance measurement, whereas the light apart from each optical axis is used for light amount measurement, and therefore the distance measurement is performed. It is not possible to accurately detect the change in the light used for.

【0027】そこで、本発明は、距離などの測定と光量
測定とに同一光を用いることのできるこの種の光学的測
定装置を開発することを目的とする。
Therefore, an object of the present invention is to develop an optical measuring device of this kind which can use the same light for measuring a distance and the like and for measuring a light quantity.

【0028】[0028]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、投光距離によって変化する光特性が各
々異なる2つの光源と、光軸が交わるように配置した上
記2つの光源の光軸上に配置して各光源の光を2分する
ミラーを含み、2分された光のうちの一方の光を被測定
物に投光する投光手段と、2分された光のうちの他方の
光を上記2つの光源の光軸交点で受光して光電変換する
第1の受光手段と、被測定物の反射光を受光して光電変
換する第2の受光手段と、上記第1の受光手段が出力す
る光電変換信号を処理してこれら2つの光源の光量が予
め定めた一定の比となるように少なくとも一方の光源の
光量を制御する光量制御手段と、第2の受光手段が出力
する光電変換信号を光源別の信号に分けて処理し測定情
報を出力する信号処理手段とより構成したことを特徴と
する光学的測定装置を提案する。
In order to achieve the above object, according to the present invention, two light sources having different light characteristics which vary depending on the projection distance and the light from the two light sources arranged so that their optical axes intersect. A light projecting unit that includes a mirror that is arranged on the axis and divides the light of each light source into two, and that projects one of the two divided light beams onto the object to be measured; First light receiving means for receiving the other light at the optical axis intersection of the two light sources and photoelectrically converting it, second light receiving means for receiving and photoelectrically converting the reflected light of the object to be measured, and the first light receiving means. A light quantity control means for processing the photoelectric conversion signal output from the light receiving means to control the light quantity of at least one of the two light sources so that the light quantity of these two light sources has a predetermined constant ratio, and the second light receiving means outputs Signal processing that outputs the measured information by dividing the photoelectric conversion signal into signals for each light source Suggest optical measuring apparatus characterized by a more configuration and means.

【0029】[0029]

【作用】光軸が交わるように配置した2つの光源から光
を投光すると、これら2つの光源の光軸上に配置したミ
ラーによって各々の光が2分される。2分された一方の
光は上記2つの光源の光軸交点に設けた第1の受光手段
によって光源別に受光されて光電変換される。そして、
第1の受光手段が出力する光電変換信号にもとづいて光
量制御手段が、これら2つの光源の光量比が予め定めた
一定の比となるように上記2つの光源のうち、少なくと
も一方の光源の光量を制御する。
When light is projected from two light sources arranged so that their optical axes intersect, each light is divided into two by the mirrors arranged on the optical axes of these two light sources. One of the two divided lights is received by each light source and photoelectrically converted by the first light receiving means provided at the intersection of the optical axes of the two light sources . And
Based on the photoelectric conversion signal output from the first light receiving unit, the light amount control unit sets the light amount of at least one of the two light sources so that the light amount ratio of these two light sources becomes a predetermined constant ratio. To control.

【0030】 また、2分された他方の光は被測定物を投
光し被測定物の反射光として第2の受光手段によって受
光されて光電変換される。そして、第2の受光手段が出
力する光電変換信号にもとづいて信号処理手段が被測定
物の輝度比を算出して測定情報を出力する。
The other half of the light is projected onto the object to be measured and is received by the second light receiving means as reflected light of the object to be measured and photoelectrically converted. Then, the signal processing means calculates the luminance ratio of the measured object based on the photoelectric conversion signal output from the second light receiving means, and outputs the measurement information.

【0031】 この測定装置においては、被測定物測定用
の光と光量測定用の光が同一の光となっているので、2
つの光源は被測定物測定用の光量が一定となり、測定精
度が大きく向上する。
In this measuring apparatus, the light for measuring the object to be measured and the light for measuring the light quantity are the same light, so that 2
The two light sources have a constant amount of light for measuring the object to be measured, which greatly improves the measurement accuracy.

【0032】[0032]

【実施例】次に、本発明の実施例について図面に沿って
説明する。図1は、本発明の基本例を示し、この基本例
における投光手段と第1、第2の受光手段の簡略図であ
る。LEDで構成された2つの光源50、51の光軸上
に投光された光を2分するハーフミラー52、53が光
軸に対して所定の角度をもって配置されている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a basic example of the present invention, and is a simplified diagram of a light projecting means and first and second light receiving means in this basic example . Half mirrors 52 and 53 that divide the light projected on the optical axis of the two light sources 50 and 51 composed of LEDs are arranged at a predetermined angle with respect to the optical axis.

【0033】 各々の光源50、51とハーフミラー5
2、53とを結ぶ光軸線の延長位置には第1の受光手段
としての受光素子54、55が各々の受光面を各光源5
0、51に対向させて設けられている。また、上記した
ハーフミラー52、53の反射光路上には拡散反射面を
備えた被測定物56が設けられている。
[0033] Each of the light source 50 and 51 and the half-mirror 5
At the extended position of the optical axis connecting 2 and 53, the light receiving elements 54 and 55 as the first light receiving means have their light receiving surfaces on the respective light sources 5.
It is provided facing 0 and 51. An object to be measured 56 having a diffuse reflection surface is provided on the reflection optical paths of the half mirrors 52 and 53 described above.

【0034】 各光源50、51から被測定物56までの
距離は、第1光源50がd+D+D、第2光源51
がD+Dとなっており、D+D=Dとすると、
Dが測定距離となる。
The distance from the light sources 50 and 51 to DUT 56, the first light source 50 is d + D 1 + D 2, the second light source 51
Is D 1 + D 2 and D 1 + D 2 = D,
D is the measurement distance.

【0035】 また、受光レンズ57と受光素子58から
なる第2の受光手段を設け、この第2の受光手段で被測
定物56からの反射光を受光するようになっている。上
記した受光素子54、55及び58はフォトダイオード
が用いられている。
Further , a second light receiving means including a light receiving lens 57 and a light receiving element 58 is provided, and the second light receiving means receives the reflected light from the object 56 to be measured. Photodiodes are used as the above-mentioned light receiving elements 54, 55 and 58.

【0036】 2つの光源から投光された光がハーフミラ
ー52、53に入射すると、各々の光はこのハーフミラ
ー52、53によって透過光と反射光とに分けられる。
分けられた光のうち透過光を各々の光軸上に備えた受光
素子54、55が受光し光電変換する。
When the light projected from the two light sources is incident on the half mirrors 52 and 53, the respective light is divided into transmitted light and reflected light by the half mirrors 52 and 53.
Of the split light, the transmitted light is received by the light receiving elements 54 and 55 provided on the respective optical axes and photoelectrically converted.

【0037】 そして、この測定装置は、受光素子54、
55の出力する光源別の光電変換信号を図6に示した従
来例と同様の光量制御回路に取り込み、この光量制御回
路が第1光源50と第2光源51との光量が予め定めた
一定の割合となるように上記第1光源50、第2光源5
1のうち、少なくとも一方の光源の光量を制御する。
[0037] Then, this measuring device, the light-receiving element 54,
The photoelectric conversion signal for each light source, which is output from 55, is taken into a light amount control circuit similar to the conventional example shown in FIG. 6, and this light amount control circuit keeps the light amount of the first light source 50 and the second light source 51 constant. The first light source 50 and the second light source 5 so as to be in proportion.
The light amount of at least one of the light sources 1 is controlled.

【0038】 また、ハーフミラー52、53で分離され
た光のうち、反射光は被測定物56を照射する。被測定
物56には、上記光量制御回路によって光量の比が一定
となった2つの光が光路長の差に応じて異なる照度特性
で照射される。
Further, of the light separated by the half mirror 52 and 53, the reflected light illuminates the object to be measured 56. The object 56 to be measured is irradiated with two lights having a constant light amount ratio by the light amount control circuit with different illuminance characteristics depending on the difference in optical path length.

【0039】 被測定物56に照射された2つの光はその
反射光が受光レンズ57で集光されて受光素子58で受
光され、光源別の光電変換信号が出力される。そして、
この光電変換信号に基づいて図7に示した従来例と同様
の信号処理回路が被測定物56の輝度比を算出して測定
距離Dの出力信号を出力する。
The two lights emitted to the object 56 to be measured are reflected by the light receiving lens 57 and are received by the light receiving element 58, and photoelectric conversion signals for each light source are output. And
Based on this photoelectric conversion signal, a signal processing circuit similar to the conventional example shown in FIG. 7 calculates the luminance ratio of the DUT 56 and outputs the output signal of the measurement distance D.

【0040】 このように構成した測定装置は、2つの光
源50、51における各々の光軸上の光が距離測定光と
光量測定光とになるので、光量制御回路によって一定の
光量比となった2つの光で測定する距離Dは極めて精度
の高いものとなる。
In the measuring device thus constructed, the light on the respective optical axes of the two light sources 50 and 51 becomes the distance measuring light and the light quantity measuring light, so that the light quantity control circuit provides a constant light quantity ratio. The distance D measured by the two lights becomes extremely accurate.

【0041】 図2は本発明の第1実施例を示し、図1と
同様に投光手段と第1、第2の受光手段の簡略図であ
る。この実施例は、第1の受光手段を1つの受光素子5
9で構成して部品点数を削減し、装置構成を簡素化した
ものである。
FIG . 2 shows the first embodiment of the present invention and is a simplified diagram of the light projecting means and the first and second light receiving means as in FIG. In this embodiment, the first light receiving means is replaced by one light receiving element 5.
The number of parts is reduced by configuring the device with 9 and the device configuration is simplified.

【0042】 LEDで構成した2つの光源60、61は
光軸が交わるようにして配置されている。また、各々の
光軸上には投光された各々の光を2分するハーフミラー
62が備えられている。ハーフミラー62は、図に示す
如く、角錐形をなし、その側面をなす三角形状の面部6
2a、62bがハーフミラーとなっている。
The two light sources 60 and 61 composed of LEDs are arranged so that their optical axes intersect. Further, a half mirror 62 that divides each projected light into two is provided on each optical axis. As shown in the figure, the half mirror 62 has a pyramidal shape, and a triangular surface portion 6 forming a side surface thereof.
2a and 62b are half mirrors.

【0043】 そして、2つの光源60、61の光軸の交
点Pには第1の受光手段としての受光素子59が設けら
れている。また、上記したハーフミラー62の反射光路
上には拡散反射面を備えた被測定物63が設けられてい
る。
At the intersection P of the optical axes of the two light sources 60 and 61, a light receiving element 59 as a first light receiving means is provided. Further, an object to be measured 63 having a diffuse reflection surface is provided on the reflection optical path of the half mirror 62 described above.

【0044】 第1光源60と第2光源61とは、ハーフ
ミラー62に対して距離dの差を設けて設置され、これ
より、被測定物63までの距離は、第1光源60がd+
+D、第2光源61がD+Dとなり、D
=Dとして測定距離Dを算出する。
[0044] The first light source 60 and the second light source 61 is installed by providing the difference in distance d with respect to the half mirror 62, than this, the distance to the object to be measured 63, the first light source 60 is d +
D 1 + D 2 , the second light source 61 becomes D 1 + D 2 , and D 1 +
The measurement distance D is calculated with D 2 = D.

【0045】 また、被測定物63からの反射光を受光す
る第2の受光手段として受光レンズ64と受光素子65
とが設けられている。
Further, a light receiving lens 64 as a second light receiving means for receiving light reflected from the measurement object 63 receiving element 65
Are provided.

【0046】 第1光源60と第2光源61とは図7に示
す従来例と同様の信号処理回路によって交互に発光す
る。第1光源60の発光光はハーフミラー62の面部6
2aで反射光と透過光とに分けられ、第2光源61の発
光光はハーフミラー62の面部26bで反射光と透過光
とに分けられる。
[0046] The first light source 60 and the second light source 61 emits light alternately by the same signal processing circuit in the conventional example shown in FIG. The light emitted from the first light source 60 is the surface portion 6 of the half mirror 62.
The reflected light and the transmitted light are separated by 2a, and the emitted light of the second light source 61 is separated by the surface portion 26b of the half mirror 62 into the reflected light and the transmitted light.

【0047】 そして、各々の透過光は受光素子59によ
って受光されて光電変換される。この光電変換信号は図
9に示した従来例と同様の光量制御回路に取り込まれて
光別に処理され、第1光源60と第2光源61とが予め
定めた一定の光量比となるように制御される。
[0047] Each of the transmitted light is photoelectrically converted are received by the light receiving element 59. This photoelectric conversion signal is taken into a light amount control circuit similar to that of the conventional example shown in FIG. 9 and processed for each light so that the first light source 60 and the second light source 61 have a predetermined constant light amount ratio. To be done.

【0048】 また、各々の反射光は被測定物63を照射
する。被測定物63には、光量制御回路によって光量の
比が一定となった2つの光が光路長の差に応じて異なる
照度特性で照射される。
Further , each reflected light irradiates the DUT 63. The DUT 63 is irradiated with two lights having a constant light amount ratio by the light amount control circuit with different illuminance characteristics according to the difference in optical path length.

【0049】 被測定物63に照射された2つの光は、そ
の反射光が、受光レンズ64で集光されて受光素子65
で受光され、光源別の光の光電変換信号となる。この光
電変換信号に基づいて信号処理回路が被測定物63の輝
度比を算出して測定距離Dの出力信号を出力する。
[0049] Two of the light applied to the object to be measured 63, the reflected light is condensed by the light receiving lens 64 and the light receiving element 65
The light is received by and becomes a photoelectric conversion signal of light for each light source. The signal processing circuit calculates the luminance ratio of the DUT 63 based on the photoelectric conversion signal and outputs the output signal of the measurement distance D.

【0050】 図3は本発明の応用例を示し、投光手段と
第1、第2の受光手段の簡略図である。この応用例
は、第1光源70と第2光源71から投光された光のう
ち、ハーフミラー72、73で反射された光を光量制御
の受光素子74に入射させ、ハーフミラー72、73の
透過光を被測定物75に照射させる構成となっている。
FIG . 3 shows an application example of the present invention, and is a simplified diagram of the light projecting means and the first and second light receiving means. In this application example , of the light projected from the first light source 70 and the second light source 71, the light reflected by the half mirrors 72 and 73 is incident on the light receiving element 74 for controlling the light amount, and the half light is received. The transmitted light from the mirrors 72, 73 is configured to irradiate the DUT 75.

【0051】 受光素子74の光電変換信号によって第1
光源70と第2光源71との光量比を一定に制御するこ
と、また、被測定物75の反射光を受光レンズ76によ
り集光して受光索子74に受光し、この光電変換信号か
ら被測定物までの距離Dを求めることについては上記し
た実施例と同様である。
The first by the photoelectric conversion signals of the light receiving element 74
The light quantity ratio between the light source 70 and the second light source 71 is controlled to be constant, and the reflected light of the DUT 75 is collected by the light receiving lens 76 and received by the light receiving rod 74, and the photoelectric conversion signal is used to detect the reflected light. Obtaining the distance D to the measurement object is the same as in the above-described embodiment.

【0052】 図4は本発明の第2実施例を示し、投光手
段と第1の受光手段を示した簡略図である。この実施例
は、光量制御用の一つの受光素子83と、第1光源80
及び第2光源81が投光する光を一つのハーフミラー8
4によって2分することが特徴となっている。
FIG . 4 shows a second embodiment of the present invention and is a simplified diagram showing a light projecting means and a first light receiving means. In this embodiment, one light receiving element 83 for controlling the light amount and the first light source 80
And the light emitted by the second light source 81 from one half mirror 8
The feature is that it is divided into 2 by 4.

【0053】 すなわち、第1光源80から投光された光
のうち、ハーフミラー84を透過した光が受光素子83
に入射し、そのミラー84によって反射された光が被測
定物を照射する。また、第2光源81から投光された光
のうち、ハーフミラー84で反射された光が受光素子8
3に入射し、このミラー84を透過した光が被測定物を
照射する。その他は上記した実施例と変わりがない。
[0053] That is, among the light projected from the first light source 80, light transmitted through the half mirror 84 is the light receiving element 83
The light reflected by the mirror 84 illuminates the object to be measured. Further, of the light projected from the second light source 81, the light reflected by the half mirror 84 is the light receiving element 8
The light that is incident on the beam No. 3 and transmitted through the mirror 84 illuminates the object to be measured. Others do not have the same as the real施例described above.

【0054】 上記基本例及び実施例で説明したハーフミ
ラー52、53及び62は偏光分離ミラーでも良く、ま
た、白熱電球等であれば波長分離ミラーであってもよ
い。また、このハーフミラー52、53、62は平面ミ
ラーだけでなく、曲線を回転して得られる放物面ミラ
ー、楕円面ミラー、双曲面ミラー等であってもよい。
The half mirrors 52, 53 and 62 described in the above basic examples and embodiments may be polarization separation mirrors, or wavelength separation mirrors for incandescent lamps and the like. The half mirrors 52, 53, 62 may be not only plane mirrors but also parabolic mirrors, elliptical mirrors, hyperboloidal mirrors, etc. obtained by rotating a curve.

【0055】[0055]

【発明の効果】上記した通り、本発明に係る光学的測定
装置は、2つの光源の光量を制御する光量制御回路と、
被測定物の輝度比から測定結果を算出する信号処理回路
とが、上記2つの光源から投光される同じ光の受光信号
に応動する構成となっているので、算出された測定値が
極めて精度の高いものとなる。したがって、測定装置の
信頼性が大きく向上する。
As described above, the optical measuring device according to the present invention includes a light amount control circuit for controlling the light amounts of two light sources,
Since the signal processing circuit that calculates the measurement result from the luminance ratio of the DUT responds to the received light signal of the same light projected from the two light sources, the calculated measurement value is extremely accurate. Will be high. Therefore, the reliability of the measuring device is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本例を示し、この基本例の測定装置
に備えた投光手段と第1、第2の受光手段の簡略図であ
る。
FIG. 1 shows a basic example of the present invention, and is a simplified diagram of a light projecting means and first and second light receiving means provided in a measuring apparatus of this basic example .

【図2】本発明の第1実施例を示し、この実施例の測定
装置に備えた投光手段と第1、第2の受光手段の簡略図
である。
FIG. 2 shows the first embodiment of the present invention, and is a simplified diagram of the light projecting means and the first and second light receiving means provided in the measuring apparatus of this embodiment .

【図3】本発明の応用例を示し、この応用例の測定装置
に備えた投光手段と第1、第2の受光手段の簡略図であ
る。
FIG. 3 shows an application example of the present invention, and is a simplified diagram of a light projecting means and first and second light receiving means provided in the measuring apparatus of this application example .

【図4】本発明の第2実施例を示し、この実施例の測定
装置に備えた投光手段と第1の受光手段の簡略図であ
る。
FIG. 4 shows a second embodiment of the present invention and is a simplified diagram of a light projecting means and a first light receiving means provided in the measuring apparatus of this embodiment .

【図5】従来例として示した光学的測定装置の投光手段
と第1、第2の受光手段の簡略図である。
FIG. 5 is a simplified diagram of a light projecting unit and first and second light receiving units of an optical measuring device shown as a conventional example.

【図6】従来例における光量制御回路を示すブロック図
である。
FIG. 6 is a block diagram showing a light amount control circuit in a conventional example.

【図7】従来例における信号処理回路を示すブロツク図
である。
FIG. 7 is a block diagram showing a signal processing circuit in a conventional example.

【図8】他の従来例として示した光学的測定装置の投光
手段と第1、第2受光手段の簡略図である。
FIG. 8 is a simplified diagram of a light projecting means and first and second light receiving means of an optical measuring device shown as another conventional example.

【図9】他の従来例における光量制御回路を示すブロッ
ク図である。
FIG. 9 is a block diagram showing a light amount control circuit in another conventional example.

【符号の説明】[Explanation of symbols]

50、60、70、80 第1光源 51、61、71、81 第2光源 52、53、62、72、73、84 ハーフミラー 54、55、58、59、65、74、77、83 受
光素子 56、63、75 被測定物 57、64、76 受光レンズ
50, 60, 70, 80 First light source 51, 61, 71, 81 Second light source 52, 53, 62, 72, 73, 84 Half mirror 54, 55, 58, 59, 65, 74, 77, 83 Light receiving element 56, 63, 75 DUT 57, 64, 76 Light receiving lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 投光距離によって変化する光特性が各々
異なる2つの光源と、光軸が交わるように配置した上記
2つの光源の光軸上に配置して各光源の光を2分するミ
ラーを含み、2分された光のうちの一方の光を被測定物
に投光する投光手段と、2分された光のうちの他方の光
を上記2つの光源の光軸交点で受光して光電変換する第
1の受光手段と、被測定物の反射光を受光して光電変換
する第2の受光手段と、上記第1の受光手段が出力する
光電変換信号を処理してこれら2つの光源の光量が予め
定めた一定の比となるように少なくとも一方の光源の光
量を制御する光量制御手段と、第2の受光手段が出力す
る光電変換信号を光源別の信号に分けて処理し測定情報
を出力する信号処理手段とより構成したことを特徴とす
る光学的測定装置。
1. A mirror that divides the light of each light source into two by arranging them on the optical axis of the two light sources arranged so that their optical axes intersect with each other, and the two light sources having different light characteristics that change depending on the projection distance. And a light projecting means for projecting one of the two divided light beams to the object to be measured, and another light beam of the two divided light beams received at the optical axis intersection points of the two light sources. And a photoelectric conversion signal output from the first light receiving means to process the photoelectric conversion signal output from the first light receiving means. Light quantity control means for controlling the light quantity of at least one of the light sources so that the light quantity of the light source has a predetermined constant ratio, and photoelectric conversion signals output from the second light receiving means are divided into signals for each light source to be processed and measured. An optical measuring device comprising a signal processing means for outputting information.
JP4169946A 1992-06-05 1992-06-05 Optical measuring device Expired - Lifetime JPH0820209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4169946A JPH0820209B2 (en) 1992-06-05 1992-06-05 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4169946A JPH0820209B2 (en) 1992-06-05 1992-06-05 Optical measuring device

Publications (2)

Publication Number Publication Date
JPH0658713A JPH0658713A (en) 1994-03-04
JPH0820209B2 true JPH0820209B2 (en) 1996-03-04

Family

ID=15895814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4169946A Expired - Lifetime JPH0820209B2 (en) 1992-06-05 1992-06-05 Optical measuring device

Country Status (1)

Country Link
JP (1) JPH0820209B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236696A (en) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd Three-dimensional image measurement method, measurement system, and measurement program for subject
KR20220152679A (en) * 2021-05-10 2022-11-17 엘지이노텍 주식회사 Distance measuring camera module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202385A (en) * 1983-01-26 1983-11-25 Hitachi Ltd Oil supply mechanism for closed compressor
JPS59220605A (en) * 1983-05-30 1984-12-12 Hitachi Ltd Gap measuring apparatus
JPH0493706A (en) * 1990-08-10 1992-03-26 Stanley Electric Co Ltd Optical measuring apparatus

Also Published As

Publication number Publication date
JPH0658713A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
KR100231373B1 (en) Method and apparatus for infrared moisture measurement
EP0419082B1 (en) Optical distance gauging apparatus
JPS61286703A (en) Detector for detecting minute displacement
EP0332781A2 (en) Optical measuring device
JPH0212215A (en) Distance measuring equipment for camera
JPH0820209B2 (en) Optical measuring device
JPH01202614A (en) Active distance measuring apparatus
JPS59762B2 (en) displacement measuring device
JPH0642915A (en) Optical measuring apparatus
JPH06213658A (en) Method and equipment for distance measurement
JP4376422B2 (en) Dichroic optical cell
JPH0440314A (en) Optical measuring instrument
JP2696384B2 (en) Camera ranging device
JPH03107709A (en) Optical measuring instrument
JPH1125821A (en) Optical sensor device
JPH0493706A (en) Optical measuring apparatus
JPH03134509A (en) Optical measuring apparatus
KR20020000583A (en) Three dimensional image measurement system
JP2652576B2 (en) Method for expanding measurement range of light transmittance measurement device
JPS6344118A (en) Displacement switch
JPH07280552A (en) Distance measuring apparatus
JPH06137863A (en) Range measurement device
JPS58150876A (en) Reflecting type light sensor
SU1582358A1 (en) Method of analysing images
JPS6049238A (en) Measuring device for directional angle of light emitting element