JPH0820204B2 - Length measuring device - Google Patents

Length measuring device

Info

Publication number
JPH0820204B2
JPH0820204B2 JP63102684A JP10268488A JPH0820204B2 JP H0820204 B2 JPH0820204 B2 JP H0820204B2 JP 63102684 A JP63102684 A JP 63102684A JP 10268488 A JP10268488 A JP 10268488A JP H0820204 B2 JPH0820204 B2 JP H0820204B2
Authority
JP
Japan
Prior art keywords
air
air flow
guide means
measurement
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63102684A
Other languages
Japanese (ja)
Other versions
JPH01274001A (en
Inventor
哲夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP63102684A priority Critical patent/JPH0820204B2/en
Publication of JPH01274001A publication Critical patent/JPH01274001A/en
Publication of JPH0820204B2 publication Critical patent/JPH0820204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザ干渉計を用いた測長装置に関するもの
で、特に集積回路製造用の露光装置のように高精度な位
置測定が要求される場合に適する測長装置に関するもの
である。
TECHNICAL FIELD The present invention relates to a length measuring apparatus using a laser interferometer, and particularly requires highly accurate position measurement like an exposure apparatus for manufacturing an integrated circuit. The present invention relates to a length measuring device suitable for cases.

[従来の技術] 周波数を安定化したヘリウム−ネオン(He−Ne)レー
ザを光源とした干渉計は精密な測長や座標測定に利用さ
れている。従来、この種の干渉計を用いるにあたって
は、空気の密度変化(屈折率変化)によって波長が変動
し、測定誤差を生じることを防止するために、干渉計を
空気の温度、湿度がコントロールできる特別なチャンバ
に配置して温度±0.1℃、湿度±15%程度に空調し、大
気圧の変化をセンサーによりモニターして波長の補正を
行なうことがなされている。
[Prior Art] An interferometer using a frequency-stabilized helium-neon (He-Ne) laser as a light source is used for precise length measurement and coordinate measurement. Conventionally, when using this type of interferometer, in order to prevent the wavelength from fluctuating due to the density change (refractive index change) of the air and causing the measurement error, the interferometer can control the temperature and humidity of the air. It is placed in a different chamber and air-conditioned at a temperature of ± 0.1 ° C and a humidity of ± 15%, and the change in atmospheric pressure is monitored by a sensor to correct the wavelength.

[発明が解決しようとする課題] しかし、上記のように干渉計を配置したチャンバー内
を空調した場合でも、温度による空気のゆらぎを要求さ
れる測長精度に影響を与えない程度にまで低減すること
はできておらず、この原因は、かなりの容積を有するチ
ャンバー内の温度を完全に均一にすることが困難なた
め、局部的に温度が異なる空気の塊が存在し、この塊が
干渉計の測定ビームを横切るためと考えられる。
[Problems to be Solved by the Invention] However, even when the inside of the chamber in which the interferometer is arranged is air-conditioned as described above, the fluctuation of air due to temperature is reduced to such an extent that the required measurement accuracy is not affected. The reason for this is that it is difficult to make the temperature in a chamber with a considerable volume completely uniform, so there is a lump of air with a locally different temperature, and this lump is caused by an interferometer. It is thought to be due to crossing the measurement beam of.

例えば、かかる干渉計が集積回路製造用の露光装置の
ステージの位置決め等に用いられる場合には、干渉計自
身のレーザ発振器以外にもステージ駆動用モータ、露光
用光源等の熱源が多く、空気のゆらぎの原因となってい
る。また、ステージの移動により測定用ビームに対する
チャンバー吹出口からの風の当り方の条件が変わること
によっても測定用ビーム周辺の温度が変動してしまい空
気のゆらぎが生じることになる。
For example, when such an interferometer is used for positioning a stage of an exposure apparatus for manufacturing an integrated circuit, there are many heat sources such as a stage driving motor and an exposure light source in addition to the laser oscillator of the interferometer itself, It is a cause of fluctuations. In addition, the movement of the stage changes the condition of how the measurement beam is blown from the chamber outlet, so that the temperature around the measurement beam also fluctuates, resulting in air fluctuations.

この発明は、かかる点に鑑みてなされたものであり、
測定用ビームが通過する空間の空気のゆらぎを低減し、
極めて高精度な測長が可能な測長装置を提供することを
目的とするものである。
The present invention has been made in view of the above points,
Reduces air fluctuations in the space where the measurement beam passes,
It is an object of the present invention to provide a length measuring device capable of extremely high precision length measurement.

[課題を解決するための手段] 本発明においては、測長ビームが通過する空間に所定
の断面積を有する送風口から空気流を送る導風手段を備
え、該導風手段の送風口もしくはその近傍に、前記空気
流の流れと平行に、かつ前記送風口の断面積よりも小さ
な断面積に前記空気流を細分化する細分化部材を配置し
たことにより上記の課題を達成している。
[Means for Solving the Problem] In the present invention, the space through which the length-measuring beam passes is provided with an air guide means for sending an air flow from a blower opening having a predetermined cross-sectional area. The above object is achieved by arranging a subdividing member that subdivides the air flow in the vicinity in parallel to the flow of the air flow and in a cross-sectional area smaller than the cross-sectional area of the blower port.

[作用] 本発明においては、導風手段の送風口もしくはその近
傍に、空気流の流れと平行に空気流を細分化する細分化
部材を配置しているので、該細分化部材の壁面と空気流
との間で熱交換が行なわれ、空気流が細分化部材を通過
する間に温度差のある空気の塊がなくなり、空気流の温
度の均一化が図られる。
[Operation] In the present invention, since the subdivision member for subdividing the air flow is arranged in parallel with the air flow of the air guide means or in the vicinity thereof, the wall surface of the subdivision member and the air Heat is exchanged with the air flow, and while the air flow passes through the subdividing members, air masses having a temperature difference are eliminated, and the temperature of the air flow is made uniform.

また、空気流はその流れと平行に細分化されることか
ら、空気流は層流化され、周辺部の空気を巻き込むこと
なく温度が均一な状態のまま測定用ビームの通路に送り
出される。このため、測定用ビームが通過する空間にお
ける空気のゆらぎがほとんどなくなり、測定用ビームの
波長の誤差が非常に小さくなる。即ち、このようにし
て、本発明では極めて高精度の測長が可能となる。
Further, since the air flow is subdivided in parallel with the flow, the air flow is laminarized and is sent out to the path of the measurement beam with the temperature kept uniform without involving the air in the peripheral portion. Therefore, the fluctuation of the air in the space through which the measurement beam passes is almost eliminated, and the error in the wavelength of the measurement beam becomes extremely small. That is, in this way, according to the present invention, extremely high precision length measurement is possible.

[実施例] 第1図は、本発明にかかる測長装置を例えば集積回路
製造用の露光装置のような精密移動ステージの座標検出
に用いた場合の構成の概略を示す斜視図である。以下、
第1図を参照しながら構成の説明を行なう。
[Embodiment] FIG. 1 is a perspective view showing the outline of the configuration when the length measuring apparatus according to the present invention is used for coordinate detection of a precision moving stage such as an exposure apparatus for manufacturing integrated circuits. Less than,
The configuration will be described with reference to FIG.

まず、XYステージ1は、ウエハ6をホールドしてXY方
向へ所定量移動できるように露光装置の本体に備えられ
ている。このステージ1の直交する2つの側面にはX,Y
方向の反射鏡4,5が夫々取付けられており、かかる反射
鏡4,5はXYステージ1とともに移動するようになってい
る。
First, the XY stage 1 is provided in the main body of the exposure apparatus so that the wafer 6 can be held and moved in the XY directions by a predetermined amount. On the two sides of this stage 1 which intersect at right angles, X, Y
Directional reflecting mirrors 4 and 5 are attached respectively, and the reflecting mirrors 4 and 5 move together with the XY stage 1.

また、周波数を安定化したレーザ光源100からは、ゼ
ーマン効果によって約2MHzだけ周波数を異ならせた、互
いに偏光特性の異なる2成分を含むビームB1が出射され
る。このビームB1はビームスプリッタ7により、X軸座
標測定用の干渉計ユニット2に向うビームB2と、Y軸座
標測定用の干渉計ユニット3へ向うビームB3とに分割さ
れる。そして、X軸方向の干渉計ユニット2は、XYステ
ージ1に取付けられた反射鏡4へ測定用ビームB4を出射
し、反射鏡4で反射された測定用ビームB4を受光する。
またY軸についても同様に干渉計ユニット3は、反射鏡
5へ測定用ビームB5が出射し、反射鏡5で反射された測
定用ビームB5を受光する。
Further, the laser light source 100 whose frequency is stabilized emits a beam B1 containing two components having different polarization characteristics, which are different in frequency by about 2 MHz due to the Zeeman effect. The beam B1 is split by the beam splitter 7 into a beam B2 directed to the interferometer unit 2 for X-axis coordinate measurement and a beam B3 directed to the interferometer unit 3 for Y-axis coordinate measurement. Then, the interferometer unit 2 in the X-axis direction emits the measuring beam B4 to the reflecting mirror 4 attached to the XY stage 1 and receives the measuring beam B4 reflected by the reflecting mirror 4.
Similarly, for the Y axis, the interferometer unit 3 emits the measuring beam B5 to the reflecting mirror 5 and receives the measuring beam B5 reflected by the reflecting mirror 5.

次に、干渉計ユニット2(干渉ユニット3も同様)の
内部の構成を第3図により説明する。まず、ビームB2は
偏光ビームスプリッタ21により、偏光方向の異なる参照
用ビームB13と測定用ビームB4に分けられる。偏光ビー
ムスプリッタ21を透過した測定用ビームB4は、λ/4板24
を経て、XYステージとともに所定の速度で移動しうる反
射鏡4に入射し、ここで反射されて再びλ/4板24を経て
偏光ビームスプリッタ21に入射する。ここで、測定用ビ
ームB4はλ/4板24を2度通過しているので、偏光方向が
90°変わっており、今度は偏光ビームスプリッタ21で反
射されて直角プリズム23に入射する。ここで測定用ビー
ムB4は2回反射されて入射方向に戻り、偏光ビームスプ
リッタ21で反射されて、再び反射鏡4へ入射し反射され
る。ここでも測定用ビームB4は前回と同様にλ/4板24を
2回通過することにより偏光方向90°が変わっているの
で、反射鏡4で反射された測定用ビームB4は今度は偏光
ビームスプリッタ21を透過してへ直進する。
Next, the internal configuration of the interferometer unit 2 (same for the interference unit 3) will be described with reference to FIG. First, the beam B2 is divided by the polarization beam splitter 21 into a reference beam B13 and a measurement beam B4 having different polarization directions. The measurement beam B4 transmitted through the polarization beam splitter 21 is a λ / 4 plate 24
Then, the light enters the reflecting mirror 4 that can move at a predetermined speed together with the XY stage, is reflected here, and again enters the polarizing beam splitter 21 via the λ / 4 plate 24. Here, since the measuring beam B4 has passed through the λ / 4 plate 24 twice, the polarization direction is
It has changed by 90 °, and this time it is reflected by the polarization beam splitter 21 and enters the rectangular prism 23. Here, the measuring beam B4 is reflected twice, returns in the incident direction, is reflected by the polarization beam splitter 21, and is incident again on the reflecting mirror 4 and is reflected. Here again, the measuring beam B4 has its polarization direction changed by 90 ° by passing through the λ / 4 plate 24 twice as before, so the measuring beam B4 reflected by the reflecting mirror 4 is now the polarizing beam splitter. Continue straight through 21.

一方、偏光ビームスプリッタ21によって分割されたも
う一方のビーム、即ち参照用ビームB13は、所定の位置
に固定された参照鏡としての直角プリズム22に入射し、
ここで2回反射されて再び偏光ビームスプリッタ21に入
り90度偏向される。このようにして、該参照用ビームB1
3と前記測定用ビームB4は再び重なり干渉ビームB6とな
り、光電センサー25に入射する。
On the other hand, the other beam split by the polarization beam splitter 21, that is, the reference beam B13, is incident on the rectangular prism 22 as a reference mirror fixed at a predetermined position,
Here, it is reflected twice and enters the polarization beam splitter 21 again and is deflected by 90 degrees. In this way, the reference beam B1
3 and the measuring beam B4 again overlap and become an interference beam B6, which is incident on the photoelectric sensor 25.

ここで、ビームB2は前述したように周波数の異なった
2成分を有しているため、もともとビート(うなり)を
生じているが、反射鏡4が移動することにより、反射鏡
4で反射される測定用ビームB4の周波数がドップラー効
果のため変化し、干渉ビームB6のうなりの周期が変化す
る。即ち、測定用ビームB4と参照用ビームB13を互いに
干渉させることにより生じる干渉縞が変化する。このた
め、この干渉縞の変化を光電センサ25で検出することに
より反射鏡4の移動量(即ち、XYステージの移動量)を
検出することができる。
Here, since the beam B2 has two components having different frequencies as described above, it originally causes a beat, but is reflected by the reflecting mirror 4 when the reflecting mirror 4 moves. The frequency of the measurement beam B4 changes due to the Doppler effect, and the beat cycle of the interference beam B6 changes. That is, the interference fringes generated by causing the measurement beam B4 and the reference beam B13 to interfere with each other change. Therefore, the movement amount of the reflecting mirror 4 (that is, the movement amount of the XY stage) can be detected by detecting the change in the interference fringes with the photoelectric sensor 25.

また、上記以外の干渉計ユニット2の構成として、参
照用ビームと測定用ビームの通路が平行になるようにし
たものが考えられる。この構成を第4図により説明す
る。光源から出射されたビームB2を偏光ビームスプリッ
タ31によって偏光方向の異なる測定用ビームB4と参照用
ビームB13に分け、測定用ビームB4をXYステージととも
に移動する反射鏡4で反射させる点については第3図に
示した場合と同様である。
As a configuration of the interferometer unit 2 other than the above, one in which the paths of the reference beam and the measurement beam are parallel to each other can be considered. This structure will be described with reference to FIG. The beam B2 emitted from the light source is divided by the polarization beam splitter 31 into a measurement beam B4 and a reference beam B13 having different polarization directions, and the measurement beam B4 is reflected by the reflecting mirror 4 which moves together with the XY stage. It is similar to the case shown in the figure.

一方、参照用ビームB13は、偏光ビームスプリッタ31
で測定用ビームB4と分離された後、反射鏡32で折り曲げ
られ、λ/4板37を介して、例えば露光用レンズ等の所定
の位置に固定された物に取付けられた反射鏡36に入射す
る。そして、反射鏡36で反射された後、再びλ/4板37を
介して反射鏡32に入射し、90°折り曲げられて偏光ビー
ムスプリッタ31に入射する。
On the other hand, the reference beam B13 is the polarization beam splitter 31.
After being separated from the measuring beam B4 by, is reflected by the reflecting mirror 32 and is incident on the reflecting mirror 36 attached to an object fixed at a predetermined position such as an exposure lens through the λ / 4 plate 37, for example. To do. Then, after being reflected by the reflecting mirror 36, it again enters the reflecting mirror 32 through the λ / 4 plate 37, is bent 90 ° and enters the polarizing beam splitter 31.

ここで、参照用ビームB21は第3図において説明した
測定用ビームB4と同様にλ/4板37を通過することにより
偏光方向が90°変わっており、今度は偏光ビームスプリ
ッタ31を透過して、直角プリズム33に入射する。そし
て、直角プリズム33の2辺で反射された参照用ビームB1
3は再び偏光ビームスプリッタ31を透過して、反射鏡32
で折り曲げられ、再度λ/4板37を介して反射鏡36に入射
する。ここで反射された参照用ビームB13はλ/4板37を
通過して反射鏡32に到達し、ここで90°折り曲げられて
偏光ビームスプリッタ31に入射する。この場合もλ/4板
37を2回通過していることから参照用ビームB13はその
偏光方向が90°変わっており、偏光ビームスプリッタ31
を透過せずに90°偏向されて出射され、ここで測定用ビ
ームB4と重なり、干渉ビームB6として光電センサ35に入
射する。
Here, the reference beam B21 has its polarization direction changed by 90 ° by passing through the λ / 4 plate 37 similarly to the measuring beam B4 described in FIG. 3, and this time it passes through the polarization beam splitter 31. , Enters the right-angle prism 33. Then, the reference beam B1 reflected by the two sides of the rectangular prism 33
3 again passes through the polarizing beam splitter 31, and the reflecting mirror 32
It is bent by and is incident on the reflecting mirror 36 again via the λ / 4 plate 37. The reference beam B13 reflected here passes through the λ / 4 plate 37 and reaches the reflecting mirror 32, where it is bent 90 ° and enters the polarizing beam splitter 31. Also in this case λ / 4 plate
Since the reference beam B13 has passed through 37 twice, the polarization direction of the reference beam B13 has changed by 90 °.
The light beam is deflected by 90 ° and is emitted without passing through it, where it is overlapped with the measurement beam B4 and enters the photoelectric sensor 35 as an interference beam B6.

ここで、干渉計ユニットが第4図に示された構成をと
る場合は、参照用ビームB13と測定用ビームB4の光路が
平行になっているので、空気のゆらぎの状況が同様であ
り、影響が互いに相殺されるため、光路長が等しい場
合、原理的には空気密度変化の影響を受けず(デッド・
パス・エラ=0)、第3図の場合に比べて有利であると
も考えられる。しかし、現実には第4図に示された参照
用ビームB13と測定用ビームB4の間にも空気密度の差が
あり、反射鏡36の振動の影響もあるので、干渉計ユニッ
トの構成については何れが有利であるかは一概にはいえ
ない。
Here, when the interferometer unit has the configuration shown in FIG. 4, since the optical paths of the reference beam B13 and the measurement beam B4 are parallel, the situation of air fluctuations is the same, and Therefore, when the optical path lengths are equal, they are not affected by the change in air density (dead
Path error = 0), which is considered to be more advantageous than the case of FIG. However, in reality, there is a difference in air density between the reference beam B13 and the measurement beam B4 shown in FIG. 4, and the vibration of the reflecting mirror 36 also affects the structure. It is not possible to say which is advantageous.

次に本発明の主要な構成要素である導風手段と、空気
流の温度均一化および層流化を図る細分化部材の説明を
行なう。第1図に示された実施例では、導風手段8,9の
送風口はそれぞれ測定用ビームB4,B5の通路に平行に設
置されている。即ち、X軸用の導風手段8は測定ビーム
B4を垂直に横切るように空気流を送り、同様にY軸用の
導風手段9は測定ビームB5を垂直に横切るように空気流
を送るように配置されている。そしてかかる導風手段8,
9の送風口付近の内部には後述する細分化部材10,11が配
置されており、内部を通過する空気流の温度の均一化お
よび層流化を図っている。
Next, the air guide means, which is a main component of the present invention, and the subdivided member for achieving uniform temperature and laminar flow of the air flow will be described. In the embodiment shown in FIG. 1, the air outlets of the air guide means 8 and 9 are installed parallel to the passages of the measurement beams B4 and B5, respectively. That is, the wind guide means 8 for the X axis is the measurement beam.
The air flow is sent vertically across B4, and similarly the air guide means 9 for the Y axis is arranged to send the air flow vertically across the measurement beam B5. And such a wind guide means 8,
Subdividing members 10 and 11 described later are arranged inside the vicinity of the blower port of 9 to make the temperature of the air flow passing through the inside uniform and laminar.

また、導風手段8,9にはそれぞれ測定用ビームB4,B5付
近の気温とほぼ等しく安定した温度の空気を供給するの
が望ましいため、本発明にかかる測長装置が設置されて
いるチャンバーの空調の空気吹出口から、直接空気を導
風手段8,9に取り込むことが望ましい。さらに、空気流
にはある程度速度が必要なため、導風手段8,9の空気の
取り込み口にはファンを設けるか、あるいは取り込み口
の断面を大きくしてしだいに断面を絞り込む等のことを
行う必要がある。
Further, since it is desirable to supply the air guiding means 8 and 9 with air having a stable temperature which is almost equal to the air temperature near the measuring beams B4 and B5, respectively, the chamber of the chamber in which the length measuring apparatus according to the present invention is installed. It is desirable to take the air directly into the air guide means 8 and 9 from the air outlet of the air conditioner. Further, since the air flow requires a certain speed, a fan is provided at the air intake of the air guide means 8 or 9, or the cross section of the intake is enlarged and the cross section is gradually narrowed. There is a need.

なお、導風手段8,9の送風口は、ステージ1がXY平面
内で移動しても接触しないようにステージ1の上方もし
くは下方に設置する必要があるが、下方にはステージ1
が乗る定盤等があり設置が困難であるので第1図に示さ
れるように斜め上方もしくは真上より送風するように配
置するのが適当である。
It is necessary to install the blower openings of the air guide means 8 and 9 above or below the stage 1 so that they do not come into contact with each other even if the stage 1 moves in the XY plane.
Since it is difficult to install because there is a surface plate or the like on which the vehicle rides, it is appropriate to arrange so that the air is blown obliquely from above or directly above, as shown in FIG.

また、第1図では、干渉計ユニット2,3の構成を第3
図のものとしているが、第4図の構成をとるものも同様
に適用でき、この場合は測定用ビームB4と参照用ビーム
B13に対して同等に空気流を送るように、導風手段8,9の
送風口のダクト形状を定めると良い。
Also, in FIG. 1, the configuration of the interferometer units 2 and 3 is shown in FIG.
Although shown in the figure, the configuration shown in FIG. 4 can be applied in the same manner. In this case, the measurement beam B4 and the reference beam are used.
It is advisable to determine the duct shape of the blower ports of the air guide means 8 and 9 so that the air flow is equally sent to B13.

次に、本発明にかかる細分化部材10,11の形状を第2
図を参照しながら説明する。かかる細分化部材は空気流
を層流とするために、空気流の流れと平行に空気流を細
分化する構成となっている。即ち、細分化部材の形状と
しては、例えば第2図(a),(b)に示されたような
ものが考えられる。(a)は薄い金属板等を交互に折り
曲げたもので、(b)は正方形断面のパイプを並べたも
のであり、何れも導風手段の外筒と平行に送風口付近に
設置される。なお、細分化部材の形状としては第2図に
示されたものに限定されるものではないが、空気流を層
流とするためにはこの細分化部材は空気流の流れ方向に
一定以上の長さを有することが望ましい。
Next, the shape of the subdivided members 10 and 11 according to the present invention is changed to the second
This will be described with reference to the drawings. The subdivision member is configured to subdivide the airflow in parallel with the flow of the airflow in order to make the airflow laminar. That is, as the shape of the subdivided member, for example, the shapes shown in FIGS. 2A and 2B can be considered. (A) is obtained by alternately bending thin metal plates and the like, and (b) is an array of pipes having a square cross section, both of which are installed in the vicinity of the blower port in parallel with the outer tube of the air guide means. The shape of the subdividing member is not limited to that shown in FIG. 2, but in order to make the airflow a laminar flow, the subdividing member has a certain size or more in the flow direction of the airflow. It is desirable to have a length.

また、細分化部材10,11は、空気流の温度の均一化を
促進するためには、熱伝導性が良く、熱容量の大きい材
料、例えば金属等で構成するのが望ましく、空気流との
接触面積を大きくするために、空気流の流れに対する抵
抗が大きくなり過ぎない範囲で空気流の断面をできるだ
け細分することが望ましい。さらに、本実施例のように
集積回路製造用の露光装置等に適用する場合には、ゴミ
の発生が重要な問題となるため、空気流を乱さないもの
であればゴミ防止用の空気濾化フィルターを導風手段の
送風口に取付けることも可能である。
Further, the subdividing members 10 and 11 are preferably made of a material having a high thermal conductivity and a large heat capacity, such as a metal, in order to promote the uniformization of the temperature of the air flow, and contact with the air flow. In order to increase the area, it is desirable to subdivide the cross section of the air flow as much as possible within a range in which the resistance to the flow of the air flow does not become too large. Further, when the present invention is applied to an exposure apparatus for manufacturing integrated circuits as in this embodiment, dust generation is an important problem. It is also possible to attach the filter to the air outlet of the air guide means.

次に空気流のビームに対する角度について説明する。
第1図の例では、導風手段8,9の送風口を測定用ビームB
4,B5に沿って平行に設置する例を示したが、送風口を干
渉計ユニット2,3付近、もしくは反射鏡4,5付近に設置
し、測定用ビームB4,B5に対して平行もしくは平行に近
い角度で空気流を流す方法も考えられる。
Next, the angle of the air flow with respect to the beam will be described.
In the example shown in FIG. 1, the air blowing means 8 and 9 are provided with the measurement beam B.
Although an example of parallel installation along B4 and B5 is shown, the ventilation port is installed near the interferometer units 2 and 3 or near the reflecting mirrors 4 and 5 and is parallel or parallel to the measurement beams B4 and B5. A method of flowing an air flow at an angle close to is also conceivable.

ここで、第1図に示されるような配置の利点として
は、導風手段の送風口とビームの間が接近しており、ビ
ーム全長に対して均一な空気流が送られ、あまり大きな
風速を必要としない点がある。一方、空気流をビームに
平行に流す場合の利点としては、空気流が完全に温度均
一化されておらず、空気温度の異なる塊が残っていて
も、空気の塊がビームの通路を長時間かけて通過するた
めに、ゆらぎの周期が十分長くなり、また各空気の塊の
影響が時間的に重なりあうことにより平均化され、測定
への影響が小さくなるという点が考えられる。しかし、
この場合、送風口からはなれた部分のビームには十分空
気流がとどかず周囲から温度の異なる空気が混入するこ
ともある。このため、空気流を送り出す方向について
は、一概に優劣はつけにくく、両者の中間的な角度で送
風するようにしても良い。次に、導風手段から送り出さ
れる空気流の流速の調整法についての説明を行なう。空
気流は遅すぎるとビームに十分に空気が送られず、また
速すぎても空気流の反射による空気の乱れや、測定物の
振動等を起こすため、空気流の速度を適当な値に調整す
ることが望ましい。このため、予め最適な流速がわかっ
ていない場合には、導風手段には空気流の速度を調節す
るために面積可変の逃がし穴を設けたり、空気取り込み
口のファンの速度や面積を可変にしたりする手段が具備
されていることが望ましい。空気流の流速を最適に調整
するには、例えばXYステージ1を固定し、干渉計ユニッ
トでの座標読みとり値をモニタし、その変動が最も小さ
くなるように流速を調節する方法や、実際に装置を動作
させ、最も精度が出るように流速を調節する方法などが
考えられる。また、XYステージ1の停止中と、移動中で
はビーム周辺の空気の流れの状態が異なるため、空気流
の流速度をそれぞれの場合の最適な流速に制御するよう
にすればより望ましい。
Here, the advantage of the arrangement as shown in FIG. 1 is that the air outlet of the air guide means and the beam are close to each other, a uniform air flow is sent over the entire length of the beam, and a very high wind speed is obtained. There are some points that you do not need. On the other hand, the advantage of flowing the air flow parallel to the beam is that the temperature of the air flow is not completely uniform, and even if there are lumps with different air temperatures, the lumps of air will be in the beam passage for a long time. It is conceivable that the fluctuation cycle becomes sufficiently long to pass over the air, and the influences of the air masses are averaged by overlapping in time, and the influence on the measurement is reduced. But,
In this case, the air flow does not reach the beam far from the air outlet, and air having a different temperature may be mixed from the surroundings. For this reason, it is generally difficult to provide superiority or inferiority in the direction of air flow, and air may be blown at an angle intermediate between the two. Next, a method of adjusting the flow velocity of the air flow sent from the air guide means will be described. If the air flow is too slow, the air will not be sufficiently sent to the beam, and if it is too fast, the air flow will be turbulent due to the reflection of the air flow and the measured object will vibrate, so the air flow speed is adjusted to an appropriate value. It is desirable to do. For this reason, if the optimum flow velocity is not known in advance, the air guide means may be provided with an escape hole with a variable area to adjust the velocity of the air flow, or the speed and area of the fan at the air intake may be varied. It is desirable that a means for doing so be provided. To optimally adjust the flow velocity of the air flow, for example, fix the XY stage 1, monitor the coordinate reading value in the interferometer unit, and adjust the flow velocity so that the fluctuation becomes the smallest, or the actual device. It is conceivable to adjust the flow velocity so as to obtain the most accuracy by operating the. Further, since the state of the air flow around the beam is different between when the XY stage 1 is stopped and when it is moving, it is more desirable to control the flow velocity of the air flow to the optimum flow velocity in each case.

また、通常の干渉計システムでは測定ビーム周辺の大
気圧、気温等をモニタし波長補正を行なっているが、本
発明による測長装置ではビーム周辺空気の大気圧、気温
は導風手段から送り出される空気の大気圧、気温と一致
するため、これらのセンサーは導風手段送風口の内部も
しくは送風口付近に設ければ良い。
Further, in an ordinary interferometer system, the atmospheric pressure and temperature around the measurement beam are monitored and the wavelength is corrected, but in the length measuring device according to the present invention, the atmospheric pressure and temperature of the air around the beam are sent out from the air guide means. Since these are the same as the atmospheric pressure and temperature of the air, these sensors may be provided inside or near the air blowing means.

さらに、本発明にかかる細分化部材は空気流の温度の
均一化を図るだけでなく、細分化部材自体の温度を制御
することにより、所望の温度に均一化された空気流を送
るようにすることも可能である。細分化部材の温度制御
の方法としては、例えば細分化部材の内部(内壁)に液
体等を流し、その温度を制御する方法が考えられ、前述
した送風口付近に備えられた温度センサーからの信号に
より空気流が所望の温度に保たれるようフィードバック
制御を行なうことが望ましい。このようにすれば、導風
手段に取り込む空気の温度がある程度不安定でも送風口
から送り出される空気流の温度はほぼ一定となり、安定
的に高い測定精度を確保できる。なお、導風手段は細分
化部材が設置されている部分以外は中空の筒となってい
るため、微小な振動でも共振する可能性が高く、特に空
気取り込み口にファンを使用している場合、かかる導風
手段は常に振動していると考えられる。そして、この振
動が干渉計ユニットに伝わってた場合、その振幅分の計
測誤差が発生することになるので、導風手段と干渉計ユ
ニット及び被測定物の間を振動を絶縁することが望まし
い。この方法としては、防振ゴム等で絶縁する方法、ダ
クトと干渉計ユニット、被測定物を直接に接しないよう
に配置する方法等が考えられる。この他にも、XYステー
ジ1の移動、停止による振動、空気の乱れが発生する可
能性があるが、これらについては防止が困難であるた
め、必要に応じて、ステージ停止後数秒程度待ってから
露光等を開始するようにすると良い。また、露光装置等
のように、モータ、レーザ発振器等の発熱源がある場合
には、振動に対してと同様にこれらの発熱源と測長装置
を熱的にも絶縁することが望ましいことは言うまでもな
い。
Further, the subdivided member according to the present invention not only makes the temperature of the airflow uniform, but also controls the temperature of the subdivided member itself so as to send the airflow homogenized to a desired temperature. It is also possible. As a method for controlling the temperature of the subdivided member, for example, a method of flowing a liquid or the like into the subdivided member (inner wall) and controlling the temperature is conceivable, and a signal from the temperature sensor provided near the blower opening is used. Therefore, it is desirable to perform feedback control so that the air flow is maintained at a desired temperature. By doing so, even if the temperature of the air taken into the air guide means is unstable to some extent, the temperature of the air flow sent out from the air outlet becomes substantially constant, and stable high measurement accuracy can be secured. Since the air guide means is a hollow cylinder except for the portion where the subdivision member is installed, it is highly likely to resonate even with minute vibrations, especially when a fan is used for the air intake port, It is considered that such an air guide means is constantly vibrating. If this vibration is transmitted to the interferometer unit, a measurement error corresponding to the amplitude will occur, so it is desirable to isolate the vibration between the air guide means, the interferometer unit, and the object to be measured. As this method, a method of insulating with a vibration-proof rubber or the like, a method of arranging the duct and the interferometer unit, and a method of arranging the object to be measured so as not to come into direct contact with each other can be considered. In addition to this, vibration and air turbulence due to movement and stop of the XY stage 1 may occur, but these are difficult to prevent, so wait a few seconds after stopping the stage if necessary. It is advisable to start exposure. Further, when there are heat sources such as a motor and a laser oscillator such as an exposure apparatus, it is desirable to thermally insulate these heat sources from the length measuring device as well as against vibration. Needless to say.

[発明の効果] 以上の様に本発明においては、測定用ビームの通路付
近の空気が常にほぼ均一な温度に保たれるため、温度差
による空気の密度変化かほとんどおこらない。このた
め、測定用ビームの波長がほぼ一定に保たれ、安定的に
極めて高い測定精度を確保することができる。
[Advantages of the Invention] As described above, in the present invention, since the air in the vicinity of the passage of the measuring beam is always kept at a substantially uniform temperature, the air density hardly changes due to the temperature difference. Therefore, the wavelength of the measurement beam is kept substantially constant, and stable and extremely high measurement accuracy can be secured.

かかる測長装置を集積回路製造用露光装置のXYステー
ジの座標検出等に用いれば、アライメントを非常に正確
に行うことができ、集積回路の高集積化を図るに際して
極めて有益である。
If such a length measuring device is used for detecting the coordinates of the XY stage of the exposure apparatus for manufacturing an integrated circuit, the alignment can be performed very accurately, which is extremely useful in achieving high integration of the integrated circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の斜視図、第2図は細分化部材の
構成例を示す斜視図、第3図,第4図は干渉計ユニット
の構成を示す模式図である。 [主要部分の符号の説明] 1……XYステージ 2,3……干渉計ユニット 4,5……反射鏡 8,9……導風手段 10,11……細分化部材 B13……参照用ビーム B4,B5……測定用ビーム
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a perspective view showing a configuration example of a subdivided member, and FIGS. 3 and 4 are schematic diagrams showing a configuration of an interferometer unit. [Explanation of symbols for main parts] 1 ... XY stage 2,3 ... Interferometer unit 4,5 ... Reflecting mirror 8,9 ... Bending means 10,11 ... Subdividing member B13 .... Reference beam B4, B5 ... Measuring beam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源から出射されたビームを所定の位置に
設けられた参照鏡と所定の速度で移動しうる可動鏡との
夫々に分割して投射し、該参照鏡で反射された参照用ビ
ームと該可動鏡で反射された測定用ビームとを互いに干
渉させ、該干渉により生じる干渉縞の変化を光電検出す
ることにより、前記可動反射鏡の移動距離を測定する測
長装置において、前記測定ビームが通過する空間に所定
の断面積を有する送風口から空気流を送る導風手段を有
し、該導風手段の送風口もしくはその近傍には、前記空
気流の流れと平行に、かつ前記送風口の断面積よりも小
さな断面積に前記空気流を細分化する細分化部材を備え
たことを特徴とする測長装置。
1. A reference beam reflected by the reference mirror, which is obtained by dividing a beam emitted from a light source into a reference mirror provided at a predetermined position and a movable mirror that can move at a predetermined speed and dividing the beam. In the length measuring device for measuring the moving distance of the movable reflecting mirror by interfering the beam and the measuring beam reflected by the movable mirror with each other, and photoelectrically detecting a change in interference fringes caused by the interference, The air passage has a predetermined cross-sectional area in the space through which the beam passes, and has an air guide means for sending an air flow, and the air blow opening of the air guide means or in the vicinity thereof is parallel to the air flow and A length measuring device comprising a subdivision member for subdividing the air flow into a cross-sectional area smaller than the cross-sectional area of the blower opening.
【請求項2】前記測定用ビームの通路を前記空気流が垂
直に横切るように前記導風手段の送風口を配置したこと
を特徴とする請求項1記載の測長装置。
2. The length measuring apparatus according to claim 1, wherein the air blowing port of the air guiding means is arranged so that the air flow crosses the passage of the measuring beam vertically.
JP63102684A 1988-04-27 1988-04-27 Length measuring device Expired - Lifetime JPH0820204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102684A JPH0820204B2 (en) 1988-04-27 1988-04-27 Length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102684A JPH0820204B2 (en) 1988-04-27 1988-04-27 Length measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9088725A Division JP2828090B2 (en) 1997-03-24 1997-03-24 Exposure equipment

Publications (2)

Publication Number Publication Date
JPH01274001A JPH01274001A (en) 1989-11-01
JPH0820204B2 true JPH0820204B2 (en) 1996-03-04

Family

ID=14334064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102684A Expired - Lifetime JPH0820204B2 (en) 1988-04-27 1988-04-27 Length measuring device

Country Status (1)

Country Link
JP (1) JPH0820204B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252507A (en) * 1990-03-02 1991-11-11 Hitachi Ltd Laser interference length measuring instrument and positioning method using same
JP3448787B2 (en) * 1994-08-30 2003-09-22 株式会社ニコン Stage position measuring device
US5870197A (en) * 1996-10-24 1999-02-09 Nikon Corporation Precision stage interferometer system with local single air duct
JP2007067123A (en) * 2005-08-31 2007-03-15 National Institute Of Advanced Industrial & Technology Laser pulse compressor
JP4640091B2 (en) * 2005-10-04 2011-03-02 三菱電機株式会社 Antenna device
JP5984413B2 (en) * 2012-02-06 2016-09-06 キヤノン株式会社 Exposure apparatus, stage apparatus, and device manufacturing method
CN107329371B (en) * 2016-04-28 2019-01-22 中芯国际集成电路制造(上海)有限公司 Alignment measuring system and the method for measuring alignment precision

Also Published As

Publication number Publication date
JPH01274001A (en) 1989-11-01

Similar Documents

Publication Publication Date Title
US5141318A (en) Laser interferometer type length measuring apparatus and positioning method using the same
US7751060B2 (en) Position measuring method, position measuring system, and exposure apparatus
JP2004101362A (en) Stage position measurement and positioning device
JPH07117371B2 (en) measuring device
JPH0820204B2 (en) Length measuring device
US5392120A (en) Dual interferometer measuring system including a wavelength correction resulting from a variation in the refractive index
JP3508240B2 (en) Laser interference distance measuring device
JP2828090B2 (en) Exposure equipment
JPH05126522A (en) Length-measuring device
RU2243500C2 (en) Method of enhancing accuracy of measurements of laser interferrometer
JPH0922121A (en) Aligner
US5870198A (en) Stage position measuring apparatus capable of restricting generation of temperature fluctuations to a measured value
US7515277B2 (en) Stage apparatus, control system, exposure apparatus, and device manufacturing method
JP2001044112A (en) Atmospheric pressure control method and device thereof, laser measuring device using the same, and aligner
JPH11304425A (en) Device and method for measuring stage position
JP2888215B2 (en) Exposure apparatus and measurement method
JP4081317B2 (en) Wavelength calibration interferometer
JPH06109417A (en) Measuring apparatus for stage position
JPH1038544A (en) Interferometer system
US11378386B2 (en) Laser interference device
WO2001001067A1 (en) Method for improving measurements by laser interferometer
JPH10221020A (en) Length measuring system
JPH09243324A (en) Laser interferometer type x-y positioning device
JPH10307060A (en) Frequency-analyzer
JPH0450602A (en) Xy stage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13