JP2828090B2 - Exposure equipment - Google Patents
Exposure equipmentInfo
- Publication number
- JP2828090B2 JP2828090B2 JP9088725A JP8872597A JP2828090B2 JP 2828090 B2 JP2828090 B2 JP 2828090B2 JP 9088725 A JP9088725 A JP 9088725A JP 8872597 A JP8872597 A JP 8872597A JP 2828090 B2 JP2828090 B2 JP 2828090B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- exposure apparatus
- air flow
- guide means
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザ干渉計を用いた測
長装置に関するもので、特に集積回路製造用の露光装置
のように高精度な位置測定が要求される場合に適する測
長装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a length measuring apparatus using a laser interferometer, and more particularly to a length measuring apparatus suitable for a case where high-precision position measurement is required, such as an exposure apparatus for manufacturing an integrated circuit. Things.
【0002】[0002]
【従来の技術】周波数を安定化したヘリウム−ネオン
(He−Ne)レーザを光源とした干渉計は精密な測長や座
標測定に利用されている。従来、この種の干渉計を用い
るにあたっては、空気の密度変化(屈折率変化)によっ
て波長が変動し、測定誤差を生じることを防止するため
に、干渉計を空気の温度、湿度がコントロールできる特
別なチャンバに配置して温度±0.1℃、湿度±15%程
度に空調し、大気圧の変化をセンサーによりモニターし
て波長の補正を行なうことがなされている。2. Description of the Related Art An interferometer using a helium-neon (He-Ne) laser whose frequency is stabilized as a light source is used for precise length measurement and coordinate measurement. Conventionally, when using this type of interferometer, the interferometer can control the temperature and humidity of the air in order to prevent the wavelength from fluctuating due to the change in the density of the air (change in the refractive index) and the occurrence of measurement errors. The air conditioner is placed in a simple chamber and air-conditioned to a temperature of about ± 0.1 ° C. and a humidity of about ± 15%, and a change in atmospheric pressure is monitored by a sensor to correct the wavelength.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記のように
干渉計を配置したチャンバー内を空調した場合でも、温
度による空気のゆらぎを要求される測長精度に影響を与
えない程度にまで低減することはできておらず、この原
因は、かなりの容積を有するチャンバー内の温度を完全
に均一にすることが困難なため、局部的に温度が異なる
空気の塊が存在し、この塊が干渉計の測定用ビームを横
切るためと考えられる。However, even when the inside of the chamber in which the interferometer is arranged is air-conditioned as described above, the fluctuation of the air due to the temperature is reduced to such an extent that the required length measurement accuracy is not affected. The reason for this is that it is difficult to make the temperature in a chamber with a considerable volume completely uniform, so that there is a mass of air with locally different temperatures, which is To cross the measurement beam.
【0004】例えば、かかる干渉計が集積回路製造要求
の露光装置のステージの位置決め等に用いられる場合に
は、干渉計自身のレーザ発振器以外にもステージ駆動用
モータ、露光用光源等の熱源が多く、空気のゆらぎの原
因となっている。また、ステージの移動により測定用ビ
ームに対するチャンバー吹出口からの風の当り方の条件
が変わることによっても測定用ビーム周辺の温度が変動
してしまい空気のゆらぎが生じることになる。For example, when such an interferometer is used for positioning of a stage of an exposure apparatus required for manufacturing an integrated circuit, there are many heat sources such as a stage driving motor and an exposure light source other than the laser oscillator of the interferometer itself. , Causing air fluctuations. Further, the temperature around the measurement beam also fluctuates due to a change in the condition of how the wind from the chamber outlet contacts the measurement beam due to the movement of the stage, which causes air fluctuation.
【0005】この発明は、かかる点に鑑みてなされたも
のであり、測定用ビームが通過する空間の空気のゆらぎ
を低減し、極めて高精度な測長が可能な測長装置を提供
することを目的とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a length measuring apparatus capable of reducing fluctuations of air in a space through which a measuring beam passes and performing extremely accurate length measurement. It is the purpose.
【0006】[0006]
【課題を解決するための手段】本発明においては、レー
ザ干渉計の測定用ビームに対してほぼ平行に空気流を流
すとともに、その空気流の流速を適当な値に調整するこ
とにより上記の目的を達成している。さらに本発明にお
いては、 レーザ干渉計の測定用ビームのほぼ全長に対
して、温度均一化、かつ層流化された空気流を流すこと
によって、上記目的を達成している。In the present invention, the above object is achieved by flowing an air flow substantially parallel to a measurement beam of a laser interferometer and adjusting the flow velocity of the air flow to an appropriate value. Have achieved. Further, in the present invention, the above object is achieved by flowing a temperature-uniform and laminarized air flow over almost the entire length of the measuring beam of the laser interferometer.
【0007】[0007]
【作用】本発明によれば、測定ビームとほぼ平行に空気
流を流しているので、空気の塊が測定ビームの光路を長
時間かけて通過することになる。したがって、空気ゆら
ぎの周期が長くなるばかりでなく、空気の塊の影響が時
間的に重なりあうことにより平均化される。また測定ビ
ームに対して送られる空気流の速度を適当な値に調整す
るので、空気流の乱れや空気流によるステージ振動の発
生を抑えることができる。さらに本発明によれば、測定
用ビームのほぼ全長にわたって、温度均一化、かつ層流
化された空気流が流されるので、空気流の速度をあまり
大きくしなくても、測定ビームが通過する空間の空気ゆ
らぎを小さくすることができる。According to the present invention, since the air flow is made to flow substantially parallel to the measurement beam, a lump of air passes through the optical path of the measurement beam for a long time. Therefore, not only the period of the air fluctuation becomes long, but also the influence of the air mass overlaps with each other over time, thereby averaging. In addition, since the speed of the air flow sent to the measurement beam is adjusted to an appropriate value, it is possible to suppress turbulence of the air flow and the occurrence of stage vibration due to the air flow. Further, according to the present invention, since the temperature uniformized and laminarized air flow is caused to flow over almost the entire length of the measuring beam, the space through which the measuring beam passes can be obtained without increasing the velocity of the air flow too much. Air fluctuation can be reduced.
【0008】また、空気流はその流れと平行に細分化さ
れることから、空気流は層流化され、周辺部の空気を巻
き込むことなく温度が均一な状態のまま測定用ビームの
通路に送り出される。このため、測定用ビームが通過す
る空間における空気のゆらぎがほとんどなくなり、測定
用ビームの波長の誤差が非常に小さくなる。即ち、この
ようにして、本発明では極めて高精度の測長が可能とな
る。Further, since the air flow is subdivided in parallel with the flow, the air flow is made laminar, and is sent out to the path of the measuring beam while keeping the temperature uniform without entraining the air around the periphery. It is. For this reason, there is almost no fluctuation of air in the space through which the measurement beam passes, and the error in the wavelength of the measurement beam becomes very small. That is, in this way, the present invention enables extremely accurate length measurement.
【0009】[0009]
【実施例】図1は、本発明にかかる測長装置を例えば集
積回路製造用の露光装置のような精密移動ステージの座
標検出に用いた場合の構成の概略を示す斜視図である。
以下、図1を参照しながら構成の説明を行なう。まず、
XYステージ1は、ウェハ6をホールドしてX,Y方向
へ所定量移動できるように露光装置の本体に備えられて
いる。このステージ1の直交する2つの側面にはX,Y
方向の反射鏡4、5が夫々取付けられており、かかる反
射鏡4、5はX,Yステージ1とともに移動するように
なっている。FIG. 1 is a perspective view schematically showing a configuration in which a length measuring apparatus according to the present invention is used for detecting coordinates of a precision moving stage such as an exposure apparatus for manufacturing an integrated circuit.
Hereinafter, the configuration will be described with reference to FIG. First,
The XY stage 1 is provided in the main body of the exposure apparatus so as to hold the wafer 6 and move it by a predetermined amount in the X and Y directions. X and Y are provided on two orthogonal sides of the stage 1.
The reflecting mirrors 4 and 5 in the directions are mounted respectively, and the reflecting mirrors 4 and 5 move together with the X and Y stages 1.
【0010】また、周波数を安定化したレーザ光源10
0からは、ゼーマン効果によって約2MHzだけ周波数を
異ならせた、互いに偏光特性の異なる2成分を含むビー
ムB1が出射される。このビームB1はビームスプリッ
タ7により、X軸座標測定用の干渉計ユニット2に向う
ビームB2と、Y軸座標測定用の干渉計ユニット3へ向
うビームB3とに分割される。そして、X軸方向の干渉
計ユニット2は、XYステージ1に取付けられた反射鏡
4へ測定用ビームB4を出射し、反射鏡4で反射された
測定用ビームB4を受光する。またY軸についても同様
に干渉計ユニット3は、反射鏡5へ測定用ビームB5が
出射し、反射鏡5で反射された測定用ビームB5を受光
する。Further, a laser light source 10 having a stabilized frequency
From 0, a beam B1 including two components having polarization characteristics different from each other and having frequencies differing by about 2 MHz due to the Zeeman effect is emitted. The beam B1 is split by the beam splitter 7 into a beam B2 directed to the interferometer unit 2 for X-axis coordinate measurement and a beam B3 directed to the interferometer unit 3 for Y-axis coordinate measurement. Then, the interferometer unit 2 in the X-axis direction emits the measuring beam B4 to the reflecting mirror 4 attached to the XY stage 1, and receives the measuring beam B4 reflected by the reflecting mirror 4. Similarly, for the Y axis, the interferometer unit 3 emits the measuring beam B5 to the reflecting mirror 5 and receives the measuring beam B5 reflected by the reflecting mirror 5.
【0011】次に、干渉計ユニット2(干渉計ユニット
3も同様)の内部の構成を図3により説明する。まず、
ビームB2は偏光ビームスプリッタ21により、偏光方
向の異なる参照用ビームB13と測定用ビームB4に分
けられる。偏光ビームスプリッタ21を透過した測定用
ビームB4は、λ/4板24を経て、XYステージとと
もに所定の速度で移動しうる反射鏡4に入射し、ここで
反射されて再びλ/4板24を経て偏光ビームスプリッ
タ21に入射する。ここで、測定用ビームB4はλ/4
板24を2度通過しているので、偏光方向が90゜変わ
っており、今度は偏光ビームスプリッタ21で反射され
て直角プリズム23に入射する。ここで測定用ビームB
4は2回反射されて入射方向に戻り、偏光ビームスプリ
ッタ21で反射されて、再び反射鏡4へ入射し反射され
る。ここでも測定用ビームB4は前回と同様にλ/4板
24を2回通過することにより偏光方向90゜が変わっ
ているので、反射鏡4で反射された測定用ビームB4は
今度は偏光ビームスプリッタ21を透過して直進する。Next, the internal structure of the interferometer unit 2 (the same applies to the interferometer unit 3) will be described with reference to FIG. First,
The beam B2 is split by the polarizing beam splitter 21 into a reference beam B13 and a measurement beam B4 having different polarization directions. The measuring beam B4 transmitted through the polarizing beam splitter 21 is incident on the reflecting mirror 4 that can move at a predetermined speed together with the XY stage via the λ / 4 plate 24, is reflected there, and is reflected again by the λ / 4 plate 24. After that, the light enters the polarization beam splitter 21. Here, the measurement beam B4 is λ / 4.
Since the light has passed through the plate 24 twice, the polarization direction has changed by 90 °. This time, the light is reflected by the polarization beam splitter 21 and enters the right-angle prism 23. Here, measurement beam B
4 is reflected twice, returns to the incident direction, is reflected by the polarization beam splitter 21, and then enters the reflecting mirror 4 again and is reflected. Also in this case, the measurement beam B4 has passed through the λ / 4 plate 24 twice as before and the polarization direction 90 ° has changed, so that the measurement beam B4 reflected by the reflecting mirror 4 is now polarized beam splitter. Go straight through 21.
【0012】一方、偏光ビームスプリッタ21によって
分割されたもう一方のビーム、即ち参照用ビームB13
は、所定の位置に固定された参照鏡としての直角プリズ
ム22に入射し、ここで2回反射されて再び偏光ビーム
スプリッタ21に入り90度偏向される。このようにし
て、該参照用ビームB13と前記測定用ビームB4は再
び重なり干渉ビームB6となり、光電センサー25に入
射する。On the other hand, the other beam split by the polarizing beam splitter 21, ie, the reference beam B13
Enters a right-angle prism 22 as a reference mirror fixed at a predetermined position, where it is reflected twice and reenters the polarizing beam splitter 21 and is deflected by 90 degrees. In this way, the reference beam B13 and the measurement beam B4 again overlap and become the interference beam B6, and enter the photoelectric sensor 25.
【0013】ここで、ビームB2は前述したように周波
数の異なった2成分を有しているため、もともとビート
(うなり)を生じているが、反射鏡4が移動することに
より、反射鏡4で反射される測定用ビームB4の周波数
がドップラー効果のため変化し、干渉ビームB6のうな
りの周期が変化する。即ち、測定用ビームB4と参照用
ビームB13を互いに干渉させることにより生じる干渉
縞が変化する。このため、この干渉縞の変化を光電セン
サー25で検出することにより反射鏡4の移動量(即
ち、XYステージの移動量)を検出することができる。Since the beam B2 has two components having different frequencies as described above, the beam B2 originally generates a beat (beat). However, the movement of the reflecting mirror 4 causes the reflecting mirror 4 to move. The frequency of the reflected measurement beam B4 changes due to the Doppler effect, and the beat period of the interference beam B6 changes. That is, the interference fringe generated by causing the measurement beam B4 and the reference beam B13 to interfere with each other changes. Therefore, the amount of movement of the reflecting mirror 4 (that is, the amount of movement of the XY stage) can be detected by detecting the change in the interference fringes with the photoelectric sensor 25.
【0014】また、上記以外の干渉計ユニット2の構成
として、参照用ビームと測定用ビームの通路が平行にな
るようにしたものが考えられる。この構成を図4により
説明する。光源から出射されたビームB2を偏光ビーム
スプリッタ31によって偏光方向の異なる測定用ビーム
B4と参照用ビームB13に分け、測定用ビームB4を
XYステージとともに移動する反射鏡4で反射させる点
については図3に示した場合と同様である。Another possible configuration of the interferometer unit 2 other than the above is one in which the paths of the reference beam and the measurement beam are parallel. This configuration will be described with reference to FIG. The beam B2 emitted from the light source is divided into a measuring beam B4 and a reference beam B13 having different polarization directions by the polarizing beam splitter 31, and the measuring beam B4 is reflected by the reflecting mirror 4 moving together with the XY stage. Is the same as the case shown in FIG.
【0015】一方、参照用ビームB13は、偏光ビーム
スプリッタ31で測定用ビームB4と分離された後、反
射鏡32で折り曲げられ、λ/4板37を介して、例え
ば露光用レンズ等の所定の位置に固定された物に取付け
られた反射鏡36に入射する。そして、反射鏡36で反
射された後、再びλ/4板37を介して反射鏡32に入
射し、90゜折り曲げられて偏光ビームスプリッタ31
に入射する。On the other hand, the reference beam B13 is separated from the measuring beam B4 by the polarizing beam splitter 31, then bent by the reflecting mirror 32, and passed through the λ / 4 plate 37 to a predetermined beam such as an exposure lens. The light enters a reflecting mirror 36 attached to an object fixed in position. Then, after being reflected by the reflecting mirror 36, the light is again incident on the reflecting mirror 32 through the λ / 4 plate 37, is bent by 90 °, and is polarized by the polarization beam splitter 31.
Incident on.
【0016】ここで、参照用ビームB21は図3におい
て説明した測定用ビームB4と同様にλ/4板37を通
過することにより偏光方向が90゜変わっており、今度
は偏光ビームスプリッタ31を透過して、直角プリズム
33に入射する。そして、直角プリズム33の2辺で反
射された参照用ビームB13は再び偏光ビームスプリッ
タ31を透過して、反射鏡32で折り曲げられ、再度λ
/4板37を介して反射鏡36に入射する。ここで反射
された参照用ビームB13はλ/4板37を通過して反
射鏡32に到達し、ここで90゜折り曲げられて偏光ビ
ームスプリッタ31に入射する。この場合もλ/4板3
7を2回通過していることから参照用ビームB13はそ
の偏光方向が90゜変わっており、偏光ビームスプリッ
タ31を透過せずに90゜偏向されて出射され、ここで
測定用ビームB4と重なり、干渉ビームB6として光電
センサ35に入射する。Here, the reference beam B21 has its polarization direction changed by 90 ° by passing through the λ / 4 plate 37 similarly to the measurement beam B4 described in FIG. 3, and this time passes through the polarization beam splitter 31. Then, the light enters the right-angle prism 33. Then, the reference beam B13 reflected by the two sides of the right-angle prism 33 passes through the polarizing beam splitter 31 again, is bent by the reflecting mirror 32, and is again λ
The light enters the reflecting mirror 36 via the / 4 plate 37. The reference beam B13 reflected here passes through the λ / 4 plate 37 and reaches the reflecting mirror 32, where it is bent by 90 ° and enters the polarizing beam splitter 31. Also in this case, the λ / 4 plate 3
7, the polarization direction of the reference beam B13 is changed by 90 °, and the reference beam B13 is deflected by 90 ° without transmitting through the polarization beam splitter 31, and overlaps with the measurement beam B4. Incident on the photoelectric sensor 35 as an interference beam B6.
【0017】ここで、干渉計ユニットが図4に示された
構成をとる場合は、参照用ビームB13と測定用ビーム
B4の光路が平行になっているので、空気のゆらぎの状
況が同様であり、影響が互いに相殺されるため、光路長
が等しい場合、原理的には空気密度変化の影響を受けず
(デッド・バス・エラ=0)、図3の場合に比べて有利
であるとも考えられる。しかし、現実には図4に示され
た参照用ビームB13と測定用ビームB4の間にも空気
密度の差があり、反射鏡36の振動の影響もあるので、
干渉計ユニットの構成については何れが有利であるかは
一概にはいえない。Here, when the interferometer unit has the configuration shown in FIG. 4, since the optical paths of the reference beam B13 and the measurement beam B4 are parallel, the situation of the air fluctuation is the same. Since the effects cancel each other out, if the optical path lengths are equal, the optical path length is not affected in principle by the air density change (dead bus error = 0), which is considered to be advantageous as compared with the case of FIG. . However, in reality, there is also a difference in air density between the reference beam B13 and the measurement beam B4 shown in FIG.
Regarding the configuration of the interferometer unit, it is not clear which is more advantageous.
【0018】次に本発明の主要な構成要素である導風手
段と、空気流の温度均一化および層流化を図る細分化部
材の説明を行なう。図1に示された実施例では、導風手
段8、9の送風口はそれぞれ測定用ビームB4、B5の
通路に平行に設置されている。即ち、X軸用の導風手段
8は測定用ビームB4を垂直に横切るように空気流を送
り、同様にY軸用の導風手段9は測定用ビームB5を垂
直に横切るように空気流を送るように配置されている。
そしてかかる導風手段8、9の送風口付近の内部には後
述する細分化部材10、11が配置されており、内部を
通過する空気流の温度の均一化および層流化を図ってい
る。Next, a description will be given of the air guiding means, which is a main component of the present invention, and a subdivided member for achieving uniform temperature and laminar air flow. In the embodiment shown in FIG. 1, the air outlets of the air guiding means 8 and 9 are installed in parallel with the paths of the measuring beams B4 and B5, respectively. That is, the air guide means 8 for the X axis sends an air flow so as to cross the measurement beam B4 vertically, and similarly, the wind guide means 9 for the Y axis sends the air flow so as to cross the measurement beam B5 vertically. It is arranged to send.
Subdivision members 10 and 11, which will be described later, are disposed in the vicinity of the air outlets of the air guide means 8 and 9, respectively, to make the temperature of the air flow passing through the inside uniform and laminar.
【0019】また、導風手段8、9にはそれぞれ測定用
ビームB4、B5付近の気温とほぼ等しく安定した温度
の空気を供給するのが望ましいため、本発明にかかる測
長装置が設置されているチャンバーの空調の空気吹出口
から、直接空気を導風手段8、9に取り込むことが望ま
しい。さらに、空気流にはある程度速度が必要なため、
導風手段8、9の空気の取り込み口にはファンを設ける
か、あるいは取り込み口の断面を大きくしてしだいに断
面を絞り込む等のことを行う必要がある。Since it is desirable to supply air having a stable temperature substantially equal to the air temperature near the measuring beams B4 and B5 to the wind guide means 8 and 9, respectively, a length measuring device according to the present invention is installed. It is desirable to take air directly into the air guide means 8 and 9 from the air outlet for air conditioning of the chamber in which it is located. In addition, because the airflow needs some speed,
It is necessary to provide a fan at the air intakes of the air guide means 8 and 9, or to increase the cross-section of the intakes and gradually narrow the cross-section.
【0020】なお、導風手段8、9の送風口は、ステー
ジ1がXY平面内で移動しても接触しないようにステー
ジ1の上方もしくは下方に設置する必要があるが、下方
にはステージ1が乗る定盤等があり設置が困難であるの
で図1に示されるように斜め上方もしくは真上より送風
するように配置するのが適当である。また、図1では、
干渉計ユニット2、3の構成を図3のものとしている
が、図4の構成をとるものも同様に適用でき、この場合
は測定用ビームB4と参照用ビームB13に対して同等
に空気流を送るように、導風手段8、9の送風口のダク
ト形状を定めると良い。The air outlets of the air guide means 8 and 9 need to be installed above or below the stage 1 so that they do not come into contact with each other even if the stage 1 moves within the XY plane. Since it is difficult to install the apparatus with a surface plate or the like on which it is mounted, it is appropriate to arrange the apparatus so that air is blown diagonally from above or directly above as shown in FIG. Also, in FIG.
Although the configuration of the interferometer units 2 and 3 is shown in FIG. 3, a configuration having the configuration shown in FIG. 4 can be similarly applied. In this case, an air flow is equally applied to the measurement beam B4 and the reference beam B13. It is good to determine the duct shape of the air outlet of the air guide means 8 and 9 so that it may be sent.
【0021】次に、本発明にかかる細分化部材10、1
1の形状を図2を参照しながら説明する。かかる細分化
部材は空気流を層流とするために、空気流の流れと平行
に空気流を細分化する構成となっている。即ち、細分化
部材の形状としては、例えば図2(a)、(b)に示さ
れたようなものが考えられる。(a)は薄い金属板等を
交互に折り曲げたもので、(b)は正方形断面のパイプ
を並べたものであり、何れも導風手段の外筒と平行に送
風口付近に設置される。なお、細分化部材の形状として
は図2に示されたものに限定されるものではないが、空
気流を層流とするためにはこの細分化部材は空気流の流
れ方向に一定以上の長さを有することが望ましい。Next, the subdivided members 10 and 1 according to the present invention will be described.
1 will be described with reference to FIG. Such a subdivision member is configured to subdivide the air flow in parallel with the flow of the air flow in order to make the air flow a laminar flow. That is, as the shape of the subdivision member, for example, the shape shown in FIGS. 2A and 2B can be considered. (A) is obtained by alternately bending thin metal plates or the like, and (b) is a line in which pipes having a square cross section are arranged, and both are installed in the vicinity of the air outlet in parallel with the outer cylinder of the air guide means. The shape of the subdivision member is not limited to the shape shown in FIG. 2, but in order to make the air flow a laminar flow, the subdivision member is longer than a certain length in the flow direction of the air flow. It is desirable to have.
【0022】また、細分化部材10、11は、空気流の
温度の均一化を促進するためには、熱伝導性が良く、熱
容量の大きい材料、例えば金属等で構成するのが望まし
く、空気流との接触面積を大きくするために、空気流の
流れに対する抵抗が大きくなり過ぎない範囲で空気流の
断面をできるだけ細分することが望ましい。さらに、本
実施例のように集積回路製造用の露光装置等に適用する
場合には、ゴミの発生が重要な問題となるため、空気流
を乱さないものであればゴミ防止用の空気濾化フィルタ
ーを導風手段の送風口に取付けることも可能である。The subdivision members 10 and 11 are preferably made of a material having good heat conductivity and a large heat capacity, such as a metal, in order to promote uniform temperature of the air flow. In order to increase the contact area with the air flow, it is desirable to subdivide the cross section of the air flow as much as possible within a range where the resistance to the flow of the air flow does not become too large. Further, when the present invention is applied to an exposure apparatus for manufacturing an integrated circuit as in the present embodiment, since generation of dust is an important problem, if the air flow is not disturbed, air filtration for preventing dust is performed. It is also possible to attach a filter to the air outlet of the air guiding means.
【0023】次に空気流のビームに対する角度について
説明する。図1の例では、導風手段8、9の送風口を測
定用ビームB4、B5に沿って平行に設置する例を示し
たが、送風口を干渉計ユニット2、3付近、もしくは反
射鏡4、5付近に設置し、測定用ビームB4、B5に対
して平行もしくは平行に近い角度で空気流を流す方法も
考えられる。Next, the angle of the airflow with respect to the beam will be described. In the example of FIG. 1, an example is shown in which the air outlets of the air guide means 8 and 9 are installed in parallel along the measuring beams B4 and B5. 5 near the measurement beams B4 and B5, and an air flow at an angle parallel or nearly parallel to the measurement beams B4 and B5.
【0024】ここで、図1に示されるような配置の利点
としては、導風手段の送風口とビームの間が接近してお
り、ビーム全長に対して均一な空気流が送られ、あまり
大きな風速を必要としない点がある。一方、空気流をビ
ームに平行に流す場合の利点としては、空気流が完全に
温度均一化されておらず、空気温度の異なる塊が残って
いても、空気の塊がビームの通路を長時間かけて通過す
るために、ゆらぎの周期が十分長くなり、また各空気の
塊の影響が時間的に重なりあうことにより平均化され、
測定への影響が小さくなるという点が考えられる。しか
し、この場合、送風口からはなれた部分のビームには十
分空気流がとどかず周囲から温度の異なる空気が混入す
ることもある。このため、空気流を送り出す方向につい
ては、一概に優劣はつけにくく、両者の中間的な角度で
送風するようにしても良い。次に、導風手段から送り出
される空気流の流速の調整法についての説明を行なう。
空気流は遅すぎるとビームに十分に空気が送られず、ま
た速すぎても空気流の反射による空気の乱れや、測定物
の振動等を起こすため、空気流の速度を適当な値に調整
することが望ましい。このため、予め最適な流速がわか
っていない場合には、導風手段には空気流の速度を調節
するために面積可変の逃がし穴を設けたり、空気取り込
み口のファンの速度や面積を可変にしたりする手段が具
備されていることが望ましい。空気流の流速を最適に調
整するには、例えばXYステージ1を固定し、干渉計ユ
ニットでの座標読みとり値をモニタし、その変動が最も
小さくなるように流速を調節する方法や、実際に装置を
動作させ、最も精度が出るように流速を調節する方法な
どが考えられる。また、XYステージ1の停止中と、移
動中ではビーム周辺の空気の流れの状態が異なるため、
空気流の流速度をそれぞれの場合の最適な流速に制御す
るようにすればより望ましい。Here, an advantage of the arrangement as shown in FIG. 1 is that the space between the air outlet of the baffle means and the beam is close, and a uniform air flow is sent over the entire length of the beam. There is no need for wind speed. On the other hand, the advantage of flowing the air stream parallel to the beam is that even if the air stream is not completely uniform in temperature, and there are remaining air masses with different air temperatures, the air In order to pass over, the fluctuation period becomes long enough, and the influence of each air mass overlaps with each other in time.
It is conceivable that the influence on the measurement is reduced. However, in this case, air beams having different temperatures may be mixed in from the surroundings because the air flow does not sufficiently reach the part of the beam separated from the air outlet. For this reason, the direction in which the air flow is sent out is generally difficult to determine, and air may be sent at an intermediate angle between the two. Next, a description will be given of a method of adjusting the flow velocity of the air flow sent from the air guide means.
If the air flow is too slow, the air will not be sent enough to the beam, and if it is too fast, the air flow will be disturbed by the reflection of the air flow and the measurement object will vibrate, so adjust the air flow speed to an appropriate value. It is desirable to do. For this reason, if the optimum flow velocity is not known in advance, a ventilation hole is provided in the air guide means to adjust the speed of the air flow, or the speed and area of the air intake fan are made variable. Is preferably provided. In order to adjust the flow velocity of the air flow optimally, for example, the XY stage 1 is fixed, the coordinate reading value in the interferometer unit is monitored, and the flow velocity is adjusted so that the fluctuation is minimized. , And a method of adjusting the flow velocity so as to obtain the highest accuracy. Also, since the state of the air flow around the beam is different between when the XY stage 1 is stopped and when it is moving,
It is more desirable to control the flow velocity of the air flow to the optimum flow velocity in each case.
【0025】また、通常の干渉計システムでは測定ビー
ム周辺の大気圧、気温等をモニタし波長補正を行なって
いるが、本発明による測長装置ではビーム周辺空気の大
気圧、気温は導風手段から送り出される空気の大気圧、
気温と一致するため、これらのセンサーは導風手段送風
口の内部もしくは送風口付近に設ければ良い。さらに、
本発明にかかる細分化部材は空気流の温度の均一化を図
るだけでなく、細分化部材自体の温度を制御することに
より、所望の温度に均一化された空気流を送るようにす
ることも可能である。細分化部材の温度制御の方法とし
ては、例えば細分化部材の内部(内壁)に液体等を流
し、その温度を制御する方法が考えられ、前述した送風
口付近に備えられた温度センサーからの信号により空気
流が所望の温度に保たれるようフィードバック制御を行
なうことが望ましい。このようにすれば、導風手段に取
り込む空気の温度がある程度不安定でも送風口から送り
出される空気流の温度はほぼ一定となり、安定的に高い
測定精度を確保できる。なお、導風手段は細分化部材が
設置されている部分以外は中空の筒となっているため、
微小な振動でも共振する可能性が高く、特に空気取り込
み口にファンを使用している場合、かかる導風手段は常
に振動していると考えられる。そして、この振動が干渉
計ユニットに伝わってた場合、その振幅分の計測誤差が
発生することになるので、導風手段と干渉計ユニット及
び被測定物の間を振動を絶縁することが望ましい、この
方法としては、防振ゴム等で絶縁する方法、ダクトと干
渉計ユニット、被測定物を直接に接しないように配置す
る方法等が考えられる。この他にも、XYステージ1の
移動、停止による振動、空気の乱れが発生する可能性が
あるが、これらについては防止が困難であるため、必要
に応じて、ステージ停止後数秒程度待ってから露光等を
開始するようにすると良い。また、露光装置等のよう
に、モータ、レーザ発振器等の発熱源がある場合には、
振動に対してと同様にこれらの発熱源と測長装置を熱的
にも絶縁することが望ましいことは言うまでもない。In an ordinary interferometer system, the atmospheric pressure, temperature, etc. around the measurement beam are monitored and wavelength correction is performed. However, in the length measuring apparatus according to the present invention, the atmospheric pressure, air temperature around the beam is measured by a wind guide means. The atmospheric pressure of the air sent out of the
These sensors may be provided inside or near the air outlet of the air guide means because they match the air temperature. further,
The subdivided member according to the present invention not only aims to equalize the temperature of the air flow, but also controls the temperature of the subdivided member itself so as to send the air flow uniformized to a desired temperature. It is possible. As a method of controlling the temperature of the subdivision member, for example, a method of flowing a liquid or the like into the interior (inner wall) of the subdivision member and controlling the temperature thereof can be considered, and a signal from the temperature sensor provided near the air outlet described above is considered. It is desirable to perform feedback control so that the air flow is maintained at a desired temperature. In this way, even if the temperature of the air taken into the air guide is unstable to some extent, the temperature of the air flow sent out from the air outlet becomes substantially constant, and high measurement accuracy can be stably secured. In addition, since the air guide means is a hollow cylinder except for the portion where the subdivision member is installed,
It is highly probable that even small vibrations will resonate, and especially when a fan is used in the air intake, it is considered that such air guide means is always vibrating. Then, when this vibration is transmitted to the interferometer unit, a measurement error corresponding to the amplitude will occur, so it is desirable to insulate the vibration between the air guide means and the interferometer unit and the object to be measured. Examples of this method include a method of insulating with a vibration-proof rubber or the like, a method of arranging a duct and an interferometer unit, and a method of placing an object to be measured so as not to be in direct contact. In addition, vibration and air turbulence due to movement and stoppage of the XY stage 1 may occur. However, since it is difficult to prevent these, it is necessary to wait several seconds after stopping the stage if necessary. Exposure and the like may be started. In addition, when there is a heat source such as a motor and a laser oscillator, such as an exposure apparatus,
Needless to say, it is desirable to thermally insulate these heat sources and the length measuring device as well as against vibration.
【0026】[0026]
【発明の効果】以上の様に本発明においては、測定用ビ
ームの通路付近の空気が常にほぼ均一な温度に保たれる
ため、温度差による空気の密度変化がほとんどおこらな
い。このため、測定用ビームの波長がほぼ一定に保た
れ、安定的に極めて高い測定精度を確保することができ
る。As described above, in the present invention, the air near the passage of the measuring beam is always kept at a substantially uniform temperature, so that the air density hardly changes due to the temperature difference. For this reason, the wavelength of the measurement beam is kept substantially constant, and extremely high measurement accuracy can be stably secured.
【0027】したがって、集積回路製造用の露光装置で
行われるマスクと基板のアライメントなどを非常に正確
に行うことができ、集積回路の高集積化を図るに極めて
有益である。Therefore, alignment of a mask and a substrate performed by an exposure apparatus for manufacturing an integrated circuit can be performed very accurately, which is extremely useful for achieving high integration of an integrated circuit.
【図1】本発明実施例の斜視図。FIG. 1 is a perspective view of an embodiment of the present invention.
【図2】細分化部材の構成例を示す斜視図。FIG. 2 is a perspective view showing a configuration example of a subdivision member.
【図3】干渉計ユニットの構成を示す模式図。FIG. 3 is a schematic diagram showing a configuration of an interferometer unit.
【図4】干渉計ユニットの構成を示す模式図。FIG. 4 is a schematic diagram showing a configuration of an interferometer unit.
1 XYステージ 2、3 干渉計ユニット 4、5 反射鏡 8、9 導風手段 10、11 細分化部材 B13 参照用ビーム B4、B5 測定用ビーム DESCRIPTION OF SYMBOLS 1 XY stage 2, 3 Interferometer unit 4, 5 Reflecting mirror 8, 9 Wind guide means 10, 11 Subdivision member B13 Reference beam B4, B5 Measurement beam
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 9/00 - 9/10 G01B 11/00 - 11/30 G03F 9/00 H01L 21/30──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) G01B 9/00-9/10 G01B 11/00-11/30 G03F 9/00 H01L 21/30
Claims (17)
置して2次元的に移動するステージと、該ステージの位
置を計測するためのレーザ干渉計とを有する露光装置に
おいて、 前記レーザ干渉計の測定用ビームに対してほぼ平行に空
気流を流す導風手段と;該導風手段からの空気流の流速
を調整する調整手段と; を有することを特徴とする露光装置。1. An exposure apparatus comprising: a stage on which a substrate onto which a pattern of a mask is transferred is mounted and two-dimensionally moved; and a laser interferometer for measuring a position of the stage. An exposure apparatus, comprising: wind guide means for flowing an air flow substantially in parallel with the measurement beam; and adjusting means for adjusting the flow rate of the air flow from the wind guide means.
た面積可変の逃がし穴を含むことを特徴とする請求項1
に記載の露光装置。2. The apparatus according to claim 1, wherein said adjusting means includes a relief hole having a variable area provided in said air guiding means.
3. The exposure apparatus according to claim 1.
込み口のファンの速度や面積を可変にすることを特徴と
する請求項1に記載の露光装置。3. The exposure apparatus according to claim 1, wherein said adjusting means changes the speed and area of a fan at an air intake of said air guide means.
変動が小さくなるように前記空気流の流速を調整するこ
とを特徴とする請求項1に記載の露光装置。4. The exposure apparatus according to claim 1, wherein said adjusting means adjusts the flow velocity of said air flow so as to reduce the output fluctuation of said laser interferometer.
した流速に前記空気流を調整することを特徴とする請求
項1に記載の露光装置。5. An exposure apparatus according to claim 1, wherein said adjusting means adjusts the air flow to a flow rate suitable for the operation accuracy of the apparatus itself.
に応じて前記空気流の流速を調整することを特徴とする
請求項1に記載の露光装置。6. An exposure apparatus according to claim 1, wherein said adjusting means adjusts the flow velocity of said air flow according to an operation state of said stage.
用ビーム付近の気温とほぼ等しい温度の空気流を流すこ
とを特徴とする請求項1又は4に記載の露光装置。7. An exposure apparatus according to claim 1, wherein said air guide means flows an airflow having a temperature substantially equal to an air temperature near a measurement beam of said laser interferometer.
ための細分化部材を有することを特徴とする請求項1、
4、7のいずれか一つに記載の露光装置。8. The apparatus according to claim 1, wherein said air guide means has a subdivision member for laminating said air flow.
The exposure apparatus according to any one of items 4 and 7.
量の大きい材料で構成することを特徴とする請求項8に
記載の露光装置。9. An exposure apparatus according to claim 8, wherein said subdivision member is made of a material having high thermal conductivity and large heat capacity.
有することを特徴とする請求項1に記載の露光装置。10. An exposure apparatus according to claim 1, wherein said air guide means has an air filtration filter.
近に温度センサを有し、該温度センサからの信号に基づ
き前記空気流の温度が所望の温度に保たれるようにフィ
ードバック制御を行うことを特徴とする請求項1、4、
7、8のいずれか一つに記載の露光装置。11. The air guide means has a temperature sensor near an air outlet of the air flow, and performs feedback control based on a signal from the temperature sensor so that the temperature of the air flow is maintained at a desired temperature. 5. The method according to claim 1, wherein
The exposure apparatus according to any one of claims 7 and 8.
載置して2次元的に移動するステージと、該ステージの
位置を計測するためのレーザ干渉計とを有する露光装置
において、 前記レーザ干渉計の測定用ビームのほぼ全長に対して、
温度均一化、かつ層流化された空気流を流す導風手段を
さらに有することを特徴とする露光装置。12. An exposure apparatus comprising: a stage on which a substrate on which a pattern of a mask is transferred is mounted and two-dimensionally moved; and a laser interferometer for measuring a position of the stage. For almost the entire length of the measuring beam
An exposure apparatus, further comprising: a wind guiding means for flowing a temperature uniform and laminarized air flow.
横切るように前記導風手段の送風口を配置したことを特
徴とする請求項12に記載の露光装置。13. An exposure apparatus according to claim 12, wherein an air outlet of said air guide means is arranged so that said air flow crosses said measuring beam vertically.
速に調整して前記測定用ビームに対して流すことを特徴
とする請求項12に記載の露光装置。14. An exposure apparatus according to claim 12, wherein said air guide means adjusts the air flow to an optimum flow velocity and flows the air flow with respect to the measurement beam.
定用ビーム付近の気温とほぼ等しい温度の空気流を流す
ことを特徴とする請求項12又は14に記載の露光装
置。15. The exposure apparatus according to claim 12, wherein said air guide means flows an airflow having a temperature substantially equal to an air temperature near a measurement beam of said laser interferometer.
近に温度センサを有し、該温度センサからの信号に基づ
き前記空気流の温度が所望の温度に保たれるようにフィ
ードバック制御を行うことを特徴とする請求項12、1
4、15のいずれか一つに記載の露光装置。16. The air guide means has a temperature sensor near the airflow opening of the airflow, and performs feedback control based on a signal from the temperature sensor so that the temperature of the airflow is maintained at a desired temperature. 12. The method according to claim 12, wherein
The exposure apparatus according to any one of items 4 and 15.
有することを特徴とする請求項12に記載の露光装置。17. An exposure apparatus according to claim 12, wherein said air guiding means has an air filtration filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9088725A JP2828090B2 (en) | 1997-03-24 | 1997-03-24 | Exposure equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9088725A JP2828090B2 (en) | 1997-03-24 | 1997-03-24 | Exposure equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63102684A Division JPH0820204B2 (en) | 1988-04-27 | 1988-04-27 | Length measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1082610A JPH1082610A (en) | 1998-03-31 |
JP2828090B2 true JP2828090B2 (en) | 1998-11-25 |
Family
ID=13950897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9088725A Expired - Lifetime JP2828090B2 (en) | 1997-03-24 | 1997-03-24 | Exposure equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2828090B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW563002B (en) * | 1999-11-05 | 2003-11-21 | Asml Netherlands Bv | Lithographic projection apparatus, method of manufacturing a device using a lithographic projection apparatus, and device manufactured by the method |
US7193722B2 (en) * | 2003-12-30 | 2007-03-20 | Asml Netherlands B.V. | Lithographic apparatus with disturbance correction system and device manufacturing method |
US7136142B2 (en) * | 2004-05-25 | 2006-11-14 | Asml Netherlands B.V. | Lithographic apparatus having a gas flushing device |
US7432513B2 (en) * | 2005-10-21 | 2008-10-07 | Asml Netherlands B.V. | Gas shower, lithographic apparatus and use of a gas shower |
-
1997
- 1997-03-24 JP JP9088725A patent/JP2828090B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
「O plus E」,株式会社新技術コミュニケーションズ,昭和62年6月5日発行,1987年6月号 No.91,p.99−105 |
Also Published As
Publication number | Publication date |
---|---|
JPH1082610A (en) | 1998-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7751060B2 (en) | Position measuring method, position measuring system, and exposure apparatus | |
US5141318A (en) | Laser interferometer type length measuring apparatus and positioning method using the same | |
JP3143663B2 (en) | Interferometer | |
US20030151750A1 (en) | Compensating for effects of variations in gas refractivity in interferometers | |
JP2004101362A (en) | Stage position measurement and positioning device | |
JPH07117371B2 (en) | measuring device | |
JP2828090B2 (en) | Exposure equipment | |
JP3508240B2 (en) | Laser interference distance measuring device | |
JP3637639B2 (en) | Exposure equipment | |
JPH0820204B2 (en) | Length measuring device | |
US5392120A (en) | Dual interferometer measuring system including a wavelength correction resulting from a variation in the refractive index | |
US5870198A (en) | Stage position measuring apparatus capable of restricting generation of temperature fluctuations to a measured value | |
US6856402B2 (en) | Interferometer with dynamic beam steering element | |
US7515277B2 (en) | Stage apparatus, control system, exposure apparatus, and device manufacturing method | |
JPH05126522A (en) | Length-measuring device | |
JP2001044112A (en) | Atmospheric pressure control method and device thereof, laser measuring device using the same, and aligner | |
KR102262464B1 (en) | Lithographic apparatus and method | |
JP2888215B2 (en) | Exposure apparatus and measurement method | |
JP4081317B2 (en) | Wavelength calibration interferometer | |
JPH06109417A (en) | Measuring apparatus for stage position | |
JP3516875B2 (en) | Interferometer | |
JP2883077B1 (en) | 3D shape measuring device | |
JPH1038544A (en) | Interferometer system | |
JPH01158788A (en) | Laser beam controller | |
JPH09243324A (en) | Laser interferometer type x-y positioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070918 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080918 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080918 Year of fee payment: 10 |