JPH09243324A - Laser interferometer type x-y positioning device - Google Patents

Laser interferometer type x-y positioning device

Info

Publication number
JPH09243324A
JPH09243324A JP7930196A JP7930196A JPH09243324A JP H09243324 A JPH09243324 A JP H09243324A JP 7930196 A JP7930196 A JP 7930196A JP 7930196 A JP7930196 A JP 7930196A JP H09243324 A JPH09243324 A JP H09243324A
Authority
JP
Japan
Prior art keywords
moving mirror
stage
airflow
temperature
laser interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7930196A
Other languages
Japanese (ja)
Inventor
Shuichi Yabu
修一 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7930196A priority Critical patent/JPH09243324A/en
Publication of JPH09243324A publication Critical patent/JPH09243324A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Abstract

PROBLEM TO BE SOLVED: To increase positioning accuracy by restraining the temperature of a gas on a length-measuring optical path in an X-Y positioning device from becoming uneven for reduction of length measurement errors. SOLUTION: This laser interferometer type X-Y positioning device, which has laser interferometers 2, 5 for measuring positions along mutually perpendicular X- and Y-axes and an X-Y stage 1 movable along both the X- and Y-axes, and in which an X-axis moving mirror 4 and a Y-axis moving mirror 7 are fixed on the X-Y stage in such a way that their reflecting surfaces are perpendicular to the length-measuring optical paths 3, 6 of the laser interferometers, is provided with an airflow temperature regulating means 8 by which airflow 9 controlled to a certain temperature is blown from the side of the X-Y stage 1 toward the reflecting surface of the X-axis moving mirror 4 and that of the Y-axis moving mirror 7 at almost equal angles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、XY位置決め装置
に係り、特に半導体露光装置やレチクル座標測定装置等
に用いられる高精度のレーザ干渉計方式のXY位置決め
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an XY positioning apparatus, and more particularly to a high precision laser interferometer type XY positioning apparatus used in a semiconductor exposure apparatus, a reticle coordinate measuring apparatus and the like.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高集積化に伴
い、超微細パターン形成への要求が強まり、レチクルと
ウエハの位置合わせ精度に対する要求もますます厳しく
なってきている。このため、ウエハを載置し位置決めを
行うXY位置決め装置も、0.01μm以下の精度が要
求され、その位置計測にはレーザ干渉計が用いられてい
る。
2. Description of the Related Art In recent years, as the integration density of semiconductor integrated circuits has increased, the demand for forming ultra-fine patterns has increased, and the demand for alignment accuracy between a reticle and a wafer has also become more stringent. For this reason, an XY positioning device for mounting and positioning a wafer is also required to have an accuracy of 0.01 μm or less, and a laser interferometer is used for position measurement.

【0003】レーザ干渉計による測長では、その測長光
路上の空気の屈折率変動が誤差要因となる。空気の屈折
率は温度で変わり、その変化率は約−1ppm/℃であ
る。測長距離を300mmとして、温度による測長誤差
を0.01μm以下にするには、空気の温度変動を0.
03℃以下に抑えなければならない。そのために、従来
この種のXY位置決め装置は空調手段を備え、上面(Z
方向)からのダウンフローまたは側面(XもしくはY方
向)からのサイドフローにより、測長光路上の空気の温
度変動の低減が図られてきた。
In the length measurement by a laser interferometer, a change in the refractive index of air on the length measurement optical path causes an error. The refractive index of air changes with temperature, the rate of change being about -1 ppm / ° C. In order to set the length measurement distance to 300 mm and to reduce the length measurement error due to temperature to 0.01 μm or less, it is necessary to reduce the air temperature fluctuation to 0.1 μm.
It must be kept below 03 ° C. For this reason, this type of XY positioning device has conventionally been provided with an air-conditioning means, and the upper surface (Z
The downflow from the direction) or the sideflow from the side surface (the X or Y direction) has been used to reduce the temperature fluctuation of the air on the length-measuring optical path.

【0004】ダウンフロー方式は、一つの理想形ではあ
るが、半導体露光装置やレチクル座標測定装置等におい
ては、XY位置決め装置のトップテーブルに近接して投
影レンズ、顕微鏡、フォーカス検出器等が配置されるた
め、設計的に実現困難である。そのため、サイドフロー
方式が多く用いられている。
The down-flow method is one ideal type, but in a semiconductor exposure apparatus, a reticle coordinate measuring apparatus, etc., a projection lens, a microscope, a focus detector, etc. are arranged close to the top table of an XY positioning apparatus. Therefore, it is difficult to realize by design. Therefore, the side flow method is often used.

【0005】図4にサイドフロー方式のXY位置決め装
置の従来例の平面図を示す。図4において、1はXYス
テージ、2はX方向レーザ干渉計、3はX方向測長光
路、4はX方向移動鏡、5はY方向レーザ干渉計、6は
Y方向測長光路、7はY方向移動鏡、10は空調装置、
11は吹き出し気流である。上記の構成において、空調
装置10によって温度制御された吹き出し気流11によ
り、装置の温度安定化と測長光路3および6の空気温度
の安定化が図られている。その気流の方向は特に意識さ
れておらず、図4のように装置の自然な配置に従って、
X方向またはY方向に向けられているのが普通である。
FIG. 4 shows a plan view of a conventional example of a side-flow type XY positioning apparatus. In FIG. 4, 1 is an XY stage, 2 is an X direction laser interferometer, 3 is an X direction measuring optical path, 4 is an X direction moving mirror, 5 is a Y direction laser interferometer, 6 is a Y direction measuring optical path, and 7 is Y direction moving mirror, 10 is an air conditioner,
Reference numeral 11 is an airflow. In the above configuration, the temperature of the device is stabilized and the air temperatures of the length-measuring optical paths 3 and 6 are stabilized by the air flow 11 whose temperature is controlled by the air conditioner 10. The direction of the air flow is not particularly conscious, and according to the natural arrangement of the device as shown in Fig. 4,
Usually oriented in the X or Y direction.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うなXY位置決め装置は、XY駆動を行うモータ等の発
熱源が配設されており、装置温度が気流に対して高くな
る。そのため気流に温度ムラが生じる(特開平3−12
9720、石田:O plus E 1995年10月
号第84〜89頁)。
However, in such an XY positioning device, a heat source such as a motor for XY driving is provided, and the device temperature becomes higher than the air flow. Therefore, temperature irregularity occurs in the air flow (Japanese Patent Laid-Open No. 3-12)
9720, Ishida: O plus E October 1995 issue, pp. 84-89).

【0007】図3は気流の温度ムラをシミュレーション
によって求めた結果である。図3において、計算の簡略
化のために移動鏡はXYステージ1と一体化してあり、
4aはX方向移動鏡面、7aはY方向移動鏡面である。
計算条件は、吹き出し気流11の流速0.5m/s、温
度0℃、XYステージ1の温度1℃である。結果とし
て、0.1℃と0.3℃の等温線が示してある。
FIG. 3 shows the results of the temperature unevenness of the air flow obtained by simulation. In FIG. 3, the moving mirror is integrated with the XY stage 1 for simplification of calculation,
Reference numeral 4a is an X-direction moving mirror surface, and 7a is a Y-direction moving mirror surface.
The calculation conditions are a flow velocity of the blown air flow 11 of 0.5 m / s, a temperature of 0 ° C., and a temperature of the XY stage 1 of 1 ° C. As a result, the isotherms of 0.1 ° C and 0.3 ° C are shown.

【0008】図3から分かるように、X方向移動鏡面4
aの近傍の気流の等温線は面4aに近接し平行である
が、Y方向移動鏡面7aの近傍の気流の等温線は下流に
なるに従って面7aから離れ不均一である。つまり、面
4aに対する温度境界層は薄く均一であるが、面7aに
対する温度境界層は厚く不均一である。これは、X方向
移動鏡面4aには常に一定温度の気流が当たるが、Y方
向移動鏡面7aに対しては平行流となり、下流になるに
従って厚さの成長する低速の速度境界層が形成されるた
めである。
As can be seen from FIG. 3, the X-direction moving mirror surface 4
The isotherm of the air flow in the vicinity of a is close to and parallel to the surface 4a, but the isotherm of the air flow in the vicinity of the Y-direction moving mirror surface 7a moves away from the surface 7a and becomes uneven as it goes downstream. That is, the temperature boundary layer for the surface 4a is thin and uniform, but the temperature boundary layer for the surface 7a is thick and non-uniform. This is because the X-direction moving mirror surface 4a is always hit by an airflow of a constant temperature, but becomes a parallel flow to the Y-direction moving mirror surface 7a, and a low-speed velocity boundary layer is formed in which the thickness grows toward the downstream side. This is because.

【0009】気流に温度ムラがあると、測長誤差が生じ
る。図3の場合、Y方向移動鏡面7aの近傍の気流の温
度が不均一であるため、XYステージ1のX方向位置に
よってY方向測長光路6上の温度分布が変化することに
なり、Y方向に測長誤差を生じる。
When the temperature of the air flow is uneven, a measurement error occurs. In the case of FIG. 3, since the temperature of the airflow in the vicinity of the Y-direction moving mirror surface 7a is non-uniform, the temperature distribution on the Y-direction length measuring optical path 6 changes depending on the position of the XY stage 1 in the X-direction. Measurement error occurs.

【0010】本発明の目的は、上記従来例の問題点に鑑
み、レーザ干渉計方式のXY位置決め装置において、測
長光路上の気体の温度ムラを抑え、測長誤差を低減し
て、位置決め精度を高めることにある。
In view of the problems of the above-mentioned conventional example, an object of the present invention is to suppress the temperature unevenness of the gas on the length measuring optical path, reduce the length measuring error, and improve the positioning accuracy in the laser interferometer type XY positioning apparatus. Is to raise.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は一定温度に制御された気流を、X方向移
動鏡の反射面とY方向移動鏡の反射面とに対してほぼ等
しい角度で、XYステージの側方から吹き込む気流温調
手段を備えたことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides an air flow controlled to a constant temperature to a reflecting surface of an X-direction moving mirror and a reflecting surface of a Y-direction moving mirror. It is characterized in that it is provided with airflow temperature control means for blowing air from the side of the XY stage at equal angles.

【0012】[0012]

【作用】本発明によれば、XY両方向の移動鏡面に対し
て常に一定温度の気流が当り、温度境界層が薄く均一に
なり、測長光路上の気流の温度ムラが抑えられることに
より、測長誤差が低減し、位置決め精度が向上する。
According to the present invention, an airflow of a constant temperature is constantly applied to the movable mirror surface in both the XY directions, the temperature boundary layer becomes thin and uniform, and the temperature unevenness of the airflow on the length-measuring optical path is suppressed. The long error is reduced and the positioning accuracy is improved.

【0013】[0013]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は、本発明の一実施例に係るXY位置決め装置
の平面図である。図1において、1はXY方向に移動可
能なXYステージ、2はX方向の位置計測をするX方向
レーザ干渉計、3はX方向測長光路、4はXYステージ
1に固設されたX方向移動鏡、5はY方向の位置計測を
するY方向レーザ干渉計、6はY方向測長光路、7はX
Yステージ1に固設されたY方向移動鏡、8は一定温度
に制御された気流を、X方向移動鏡4の反射面とY方向
移動鏡7の反射面とに対してほぼ等しい角度で、吹き込
む気流温調手段、9は気流温調手段8から吹き出された
気流である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of an XY positioning device according to an embodiment of the present invention. In FIG. 1, 1 is an XY stage movable in the XY directions, 2 is an X-direction laser interferometer for measuring the position in the X-direction, 3 is an X-direction measuring optical path, and 4 is an X-direction fixed to the XY stage 1. A movable mirror, 5 is a Y-direction laser interferometer for measuring the position in the Y-direction, 6 is a Y-direction length measuring optical path, and 7 is an X-axis.
The Y-direction moving mirror 8 fixed to the Y-stage 1 is arranged so that the airflow controlled to a constant temperature is at substantially the same angle with respect to the reflecting surface of the X-direction moving mirror 4 and the reflecting surface of the Y-direction moving mirror 7. The airflow temperature adjusting means 9 to be blown in is an airflow blown out from the airflow temperature adjusting means 8.

【0014】図1の装置においては、図示しないレーザ
干渉計光源から発せられた光がX方向レーザ干渉計2お
よびY方向レーザ干渉計5に導入される。そして、X方
向レーザ干渉計2に導入された光は、レーザ干渉計2内
のビームスプリッタ(不図示)によってレーザ干渉計2
内の固定鏡(不図示)に向かう光とX方向移動鏡4に向
かう光とに分けられる。X方向移動鏡4に向かう光は、
X方向測長光路3を通ってXYステージ1に固設された
X方向移動鏡4に入射する。ここで反射された光は再び
X方向測長光路3を通ってレーザ干渉計2内のビームス
プリッタに戻り、固定鏡で反射された光と重ね合わされ
る。このときの光の干渉の変化を検出することによりX
方向の移動距離を測定する。Y方向の移動距離の測定も
X方向と同様にして行われる。このようにして計測され
た移動距離情報は、図示しないXY駆動装置にフィード
バックされ、XYステージの位置決め制御がなされる。
In the apparatus shown in FIG. 1, light emitted from a laser interferometer light source (not shown) is introduced into the X-direction laser interferometer 2 and the Y-direction laser interferometer 5. The light introduced into the X-direction laser interferometer 2 is reflected by the laser interferometer 2 by a beam splitter (not shown) in the laser interferometer 2.
It is divided into light directed to a fixed mirror (not shown) inside and light directed to the X-direction moving mirror 4. The light directed to the X-direction moving mirror 4 is
The light passes through the X-direction length measuring optical path 3 and is incident on the X-direction moving mirror 4 fixed to the XY stage 1. The light reflected here returns again to the beam splitter in the laser interferometer 2 through the X-direction length measurement optical path 3, and is superimposed on the light reflected by the fixed mirror. By detecting the change in the interference of light at this time, X
Measure the distance traveled in the direction. The movement distance in the Y direction is also measured in the same manner as in the X direction. The moving distance information measured in this way is fed back to an XY driving device (not shown) to control the positioning of the XY stage.

【0015】ところで上記の構成において、気流温調手
段8からは、一定温度に制御された気流が、X方向移動
鏡4の反射面とY方向移動鏡7の反射面とに対してほぼ
等しい角度で、吹き込まれる。図2はこのときの気流の
温度分布をシミュレーションによって求めた結果であ
る。図2において、計算の簡略化のために移動鏡はXY
ステージ1と一体化してあり、4aはX方向移動鏡面、
7aはY方向移動鏡面である。計算条件は、吹き出し気
流9の流速0.5m/s、温度0℃、XYステージ1の
温度1℃である。結果として、0.1℃と0.3℃の等
温線が示してある。
By the way, in the above-mentioned structure, the airflow temperature controlled by the airflow temperature adjusting means 8 makes the airflow controlled at a constant temperature substantially equal to the reflecting surface of the X-direction moving mirror 4 and the reflecting surface of the Y-direction moving mirror 7. Then, it is blown in. FIG. 2 shows the result of the temperature distribution of the airflow obtained by simulation. In FIG. 2, the moving mirror is XY for simplification of calculation.
It is integrated with the stage 1, 4a is a moving mirror surface in the X direction,
Reference numeral 7a is a Y-direction moving mirror surface. The calculation conditions are a flow velocity of the blowing airflow 9 of 0.5 m / s, a temperature of 0 ° C., and a temperature of the XY stage 1 of 1 ° C. As a result, the isotherms of 0.1 ° C and 0.3 ° C are shown.

【0016】図2から分かるように、X方向移動鏡面4
aの近傍の気流も、Y方向移動鏡面7aの近傍の気流も
共に、温度境界層が薄く均一である。これは、X方向移
動鏡面4a、Y方向移動鏡面7a共に、常に一定温度の
気流が当るためである。これにより、XY共に測長光路
上の気流の温度ムラが抑えられ、かつXYステージの位
置によらず測長誤差が低減し、位置決め精度が向上す
る。
As can be seen from FIG. 2, the X-direction moving mirror surface 4
Both the airflow near a and the airflow near the Y-direction moving mirror surface 7a have a thin and uniform temperature boundary layer. This is because both the X-direction moving mirror surface 4a and the Y-direction moving mirror surface 7a are constantly exposed to the airflow having a constant temperature. As a result, the temperature unevenness of the airflow on the length-measuring optical path is suppressed for both XY, the length-measuring error is reduced regardless of the position of the XY stage, and the positioning accuracy is improved.

【0017】なお、本実施例では、図1に示すように、
気流9はXY平面に平行に吹き出されているが、必ずし
も平行である必要はなく、気流温調手段8を傾斜させた
り、ルーバーや仕切り板等によりZ成分を持たせ、やや
ダウンフロー気味にすることも可能である。熱源が下方
にある場合には、この方法が効果的である。ダウンフロ
ー気味にする場合のXYステージ1に対する吹きつけ角
度(俯角)は、前記一定温度の気流9が、常に、投影レ
ンズや顕微鏡等に遮られることなく測長光路3,6の全
体に供給される範囲であれば任意に設定することができ
る。
In this embodiment, as shown in FIG.
The airflow 9 is blown out in parallel to the XY plane, but it is not always necessary to be in parallel, and the airflow temperature adjusting means 8 is inclined, or the louver or partition plate has a Z component to make it slightly downflow. It is also possible. This method is effective when the heat source is located below. The blowing angle (depression angle) with respect to the XY stage 1 in the case of downflow is such that the airflow 9 having the constant temperature is always supplied to the entire length measurement optical paths 3 and 6 without being blocked by the projection lens or the microscope. It can be arbitrarily set within the range.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
一定温度に制御された気流を、X方向移動鏡の反射面と
Y方向移動鏡の反射面とに対してほぼ等しい角度で、X
Yステージの側方から吹き込む気流温調手段を備えるこ
とにより、XY両方向の移動鏡面に対して常に一定温度
の気流が当たり、温度境界層が薄く均一になり、XY共
に測長光路上の気流の温度ムラが抑えられる。したがっ
て、XYステージの位置によらず測長誤差を低減し、位
置決め精度を向上させることができる。
As described above, according to the present invention,
The airflow controlled to a constant temperature is applied to the reflecting surface of the X-direction moving mirror and the reflecting surface of the Y-direction moving mirror at substantially the same angle X
By providing the airflow temperature control means that blows in from the side of the Y stage, the airflow of a constant temperature is constantly applied to the moving mirror surfaces in both XY directions, the temperature boundary layer becomes thin and uniform, and both XY of the airflow on the length measurement optical path. Temperature unevenness can be suppressed. Therefore, the length measurement error can be reduced regardless of the position of the XY stage, and the positioning accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るXY位置決め装置の
平面図である。
FIG. 1 is a plan view of an XY positioning device according to an embodiment of the present invention.

【図2】 図1の装置における気流温度分布シミュレー
ション結果を示す図である。
FIG. 2 is a diagram showing a result of air temperature distribution simulation in the apparatus of FIG.

【図3】 図4の従来例に対する気流温度分布シミュレ
ーション結果を示す図である。
FIG. 3 is a diagram showing an air temperature distribution simulation result for the conventional example of FIG.

【図4】 従来例のXY位置決め装置の平面図である。FIG. 4 is a plan view of a conventional XY positioning device.

【符号の説明】[Explanation of symbols]

1:XYステージ、2:X方向レーザ干渉計、3:X方
向測長光路、4:X方向移動鏡、5:Y方向レーザ干渉
計、6:Y方向測長光路、7:Y方向移動鏡、8:気流
温調手段、9:吹き出し気流。
1: XY stage, 2: X direction laser interferometer, 3: X direction measuring optical path, 4: X direction moving mirror, 5: Y direction laser interferometer, 6: Y direction measuring optical path, 7: Y direction moving mirror , 8: airflow temperature control means, 9: blown airflow.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに垂直なX方向とY方向の位置を計
測するレーザ干渉計と、XおよびY方向に移動可能なX
Yステージとを有し、X方向移動鏡とY方向移動鏡と
が、その反射面が該レーザ干渉計の測長光路と垂直にな
るように該XYステージ上に固設されているレーザ干渉
計方式のXY位置決め装置であって、一定温度に制御さ
れた気流を、該X方向移動鏡の反射面と該Y方向移動鏡
の反射面とに対してほぼ等しい角度で、該XYステージ
の側方から吹き込む気流温調手段を備えたことを特徴と
するレーザ干渉計方式のXY位置決め装置。
1. A laser interferometer for measuring positions in an X direction and a Y direction which are perpendicular to each other, and an X movable in the X and Y directions.
A laser interferometer having a Y stage, the X direction moving mirror and the Y direction moving mirror being fixedly mounted on the XY stage such that their reflection surfaces are perpendicular to the length measurement optical path of the laser interferometer. A XY positioning device of a system, wherein an air flow controlled to a constant temperature is applied to the side of the XY stage at substantially the same angle with respect to the reflecting surface of the X-direction moving mirror and the reflecting surface of the Y-direction moving mirror. An XY positioning device of a laser interferometer system, characterized in that it is provided with an air flow temperature adjusting means for blowing from the air.
【請求項2】 前記気流温調手段は、前記XYステージ
の移動面に対し、やや下向きに前記気流を吹き込むこと
を特徴とする請求項1記載のXY位置決め装置。
2. The XY positioning device according to claim 1, wherein the airflow temperature adjusting means blows the airflow slightly downward on a moving surface of the XY stage.
JP7930196A 1996-03-08 1996-03-08 Laser interferometer type x-y positioning device Pending JPH09243324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7930196A JPH09243324A (en) 1996-03-08 1996-03-08 Laser interferometer type x-y positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7930196A JPH09243324A (en) 1996-03-08 1996-03-08 Laser interferometer type x-y positioning device

Publications (1)

Publication Number Publication Date
JPH09243324A true JPH09243324A (en) 1997-09-19

Family

ID=13686027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7930196A Pending JPH09243324A (en) 1996-03-08 1996-03-08 Laser interferometer type x-y positioning device

Country Status (1)

Country Link
JP (1) JPH09243324A (en)

Similar Documents

Publication Publication Date Title
US5550633A (en) Optical measuring apparatus having a partitioning wall for dividing gas flow in an environmental chamber
US6778260B2 (en) Coordinate measuring stage and coordinate measuring instrument
US6803992B2 (en) Projection exposure apparatus
JPH0785112B2 (en) Stage device
JP2000277412A (en) Projection aligner mounting interferometer thereon
US20070103696A1 (en) Apparatus for measuring the position of an object with a laser interferometer system
JP2015032800A (en) Lithographic apparatus and article manufacturing method
JP3637639B2 (en) Exposure equipment
JP3689510B2 (en) Exposure apparatus and device manufacturing method
US5523574A (en) Exposure apparatus
JP3372782B2 (en) Scanning stage apparatus and scanning type exposure apparatus
US5870198A (en) Stage position measuring apparatus capable of restricting generation of temperature fluctuations to a measured value
JPS63140989A (en) Positioning device
US7515277B2 (en) Stage apparatus, control system, exposure apparatus, and device manufacturing method
JP2001160531A (en) Stage system
JP3013837B2 (en) Stage position measuring device and measuring method thereof
JPH09243324A (en) Laser interferometer type x-y positioning device
TWI811569B (en) Positioning device, exposure device and manufacturing method of article
US6798516B1 (en) Projection exposure apparatus having compact substrate stage
JPH1083954A (en) Exposure device
JPH10335234A (en) Projection aligner
JP3958321B2 (en) Exposure apparatus and device manufacturing method
JPH1197339A (en) Aligner
JPH0320062B2 (en)
JP2002359185A (en) Stage device and aligner