JPH08201420A - Impact sensor - Google Patents

Impact sensor

Info

Publication number
JPH08201420A
JPH08201420A JP2999495A JP2999495A JPH08201420A JP H08201420 A JPH08201420 A JP H08201420A JP 2999495 A JP2999495 A JP 2999495A JP 2999495 A JP2999495 A JP 2999495A JP H08201420 A JPH08201420 A JP H08201420A
Authority
JP
Japan
Prior art keywords
case
impact sensor
terminal
bimorph
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2999495A
Other languages
Japanese (ja)
Inventor
Ryuichi Tadano
隆一 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2999495A priority Critical patent/JPH08201420A/en
Publication of JPH08201420A publication Critical patent/JPH08201420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: To provide an impact sensor which can be manufactured at a low cost, is improved in acceleration outputting voltage characteristic and frequency characteristic, and has high sensitivity and high quality. CONSTITUTION: An impact sensor is constituted of a case 4 having a rectangular recessed section 10 and is equipped with an upper lid 9, bimorph-structure element 3 formed by sticking two piezoelectric ceramic plates 1 and 2 respectively carrying Ni-plated internal and external electrodes 7 and 8 to each other, internal terminal 5, and external terminal 6. A pair of recessed supporting sections 12 is formed at the central side edges of the case in the direction perpendicular to the direction of the long axis of the case 4 and the internal terminal 5 is integrally formed with the external terminal 6 on the inner side face of the sections 12 and the element 3 is mounted by inserting both ends of the element 3 into the supporting sections 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2枚張り合わせた圧電
セラミックからなるバイモルフ構造素子を用いた衝撃セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock sensor using a bimorph structure element composed of two piezoelectric ceramics.

【0002】[0002]

【従来の技術】従来の加速度の検出には、種々の方式の
ものが実用化されている。その中で、圧電セラミックを
用いた衝撃センサは、構造が簡単で、高温での使用が可
能であることから、各種機械の振動検出、及び自動車の
エンジンのノッキング検出等に広く使用されている。
2. Description of the Related Art Various types of conventional acceleration detection methods have been put into practical use. Among them, the impact sensor using the piezoelectric ceramic has a simple structure and can be used at a high temperature, and is therefore widely used for detecting vibrations of various machines and knocking detection of automobile engines.

【0003】図3は、従来の衝撃センサを示す斜視図で
ある。従来の衝撃センサは、上蓋9と、直方体状の凹部
10を形成したケース4と、外部電極8と内部電極7を
施した圧電セラミック1,2を2枚張り合わせたバイモ
ルフ構造素子3と、内部端子5と一体に形成された外部
端子6とからなる。
FIG. 3 is a perspective view showing a conventional impact sensor. The conventional impact sensor includes an upper lid 9, a case 4 having a rectangular parallelepiped concave portion 10, a bimorph structure element 3 in which two piezoelectric ceramics 1 and 2 having an external electrode 8 and an internal electrode 7 are bonded together, and an internal terminal. 5 and an external terminal 6 formed integrally.

【0004】バイモルフ構造素子3は、矩形板状の圧電
セラミック1,2の厚さ方向に直交する面に1〜2μm
程度のNiめっきを施して、外部電極8と内部電極7と
を形成し、接着剤を用いて2枚張り合わせ、形成したも
のである。このバイモルフ構造素子3の両端は、ケース
4の凹部10に露出した内部端子5と接続するようにな
っている。
The bimorph structure element 3 has a size of 1 to 2 μm on a surface of the rectangular plate-shaped piezoelectric ceramics 1 and 2 orthogonal to the thickness direction.
The external electrode 8 and the internal electrode 7 are formed by applying a degree of Ni plating, and two sheets are bonded together by using an adhesive agent. Both ends of the bimorph structure element 3 are connected to the internal terminals 5 exposed in the recess 10 of the case 4.

【0005】ケース4の凹部10には、バイモルフ構造
素子3の両端とのクリアランスが約0.15mmで均等
になるよう設けられている。
The recess 10 of the case 4 is provided so as to have a uniform clearance of about 0.15 mm from both ends of the bimorph structure element 3.

【0006】内部端子5は、ケース4の長手方向に設け
られ突出した外部端子6と接続している。外部端子6
は、基板に表面実装される構造である。
The internal terminal 5 is connected to an external terminal 6 provided in the longitudinal direction of the case 4 and protruding. External terminal 6
Is a structure that is surface-mounted on a substrate.

【0007】前述の衝撃センサに、例えば、衝撃等の加
速度が前記矩形板状のバイモルフ構造素子の厚さ方向に
対して外力が加わると、前記バイモルフ構造素子が厚さ
方向に振動する。前記衝撃センサは、前記外力による変
位によって発生する電荷の量を検知するものである。
When an external force is applied to the above-mentioned impact sensor in the thickness direction of the rectangular plate-shaped bimorph structural element, for example, acceleration of impact or the like causes the bimorph structural element to vibrate in the thickness direction. The impact sensor detects the amount of electric charge generated by the displacement due to the external force.

【0008】この時の感度は、圧電セラミックの矩形板
状の長さ、幅、厚み等の寸法によって決定され、その周
波数特性は、その静電容量と増幅回路のインピーダンス
によって決定される。
The sensitivity at this time is determined by dimensions such as the length, width and thickness of the rectangular plate of the piezoelectric ceramic, and its frequency characteristic is determined by its capacitance and the impedance of the amplifier circuit.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
衝撃センサでは、図4に示すような金属板13に打ち抜
きして、曲げ加工して形成した内部端子5と外部端子6
とをケースを成形する際に、一体に成形したものであ
る。即ち、前記金属板13の打ち抜き品を金型に設置し
て、液晶ポリマーの樹脂を圧入して、ケースと内部及び
外部端子とを一体に成形したものである。しかし、前記
金属板の打ち抜き品は高価で、しかも、打ち抜き品の寸
法、精度が悪く、そのため、バイモルフ構造素子の寸
法、精度を2〜3μmに押さえなければならない等、バ
イモルフ構造素子の加工にも工数がかかるという欠点が
あった。又、加速度出力電圧特性や使用周波数特性が低
下し、かつばらつきが生ずる等の欠点があった。
However, in the conventional impact sensor, the internal terminal 5 and the external terminal 6 formed by punching and bending the metal plate 13 as shown in FIG. 4 are used.
When and are molded into a case, they are integrally molded. That is, the punched product of the metal plate 13 is placed in a mold, and a resin of liquid crystal polymer is press-fitted to integrally mold the case and the internal and external terminals. However, the stamped product of the metal plate is expensive, and the dimension and accuracy of the stamped product are poor. Therefore, the dimension and accuracy of the bimorph structure element must be suppressed to 2 to 3 μm. There was a drawback that it took man hours. In addition, there are drawbacks such that the acceleration output voltage characteristic and the operating frequency characteristic are deteriorated and variations occur.

【0010】又、周波数特性がよい衝撃センサを得るた
めには、圧電セラミックの長さの寸法を大きくとればよ
いが、短小軽薄の要請に反する。一方、寸法を小さく
し、増幅回路のインピーダンスを高くすると、S/N比
が劣化するため、低周波域で高感度の衝撃センサが得ら
れないという問題点があった。
Further, in order to obtain an impact sensor having good frequency characteristics, it is sufficient to make the length of the piezoelectric ceramic large, but this is contrary to the demand for shortness, lightness and thinness. On the other hand, when the size is reduced and the impedance of the amplifier circuit is increased, the S / N ratio is deteriorated, so that there is a problem that a shock sensor having high sensitivity in a low frequency region cannot be obtained.

【0011】従って、本発明の目的は、安価で、かつ、
加速度出力電圧特性が向上し、検出能が大きく、周波数
特性が向上し、高感度の品質のよい衝撃センサを提供す
ることにある。
[0011] Therefore, the object of the present invention is inexpensive and
An object of the present invention is to provide a high-sensitivity impact sensor having improved acceleration output voltage characteristics, high detectability, and improved frequency characteristics.

【0012】[0012]

【課題を解決するための手段】本発明は、圧電セラミ
ックを2枚張り合わせてなるバイモルフ構造素子と、内
部端子及び外部端子と上蓋とを有するケースからなり、
前記バイモルフ構造素子を前記ケース内部に収納し、前
記バイモルフ構造素子の電極を前記内部端子と接続して
なる衝撃センサにおいて、前記ケースの内部の対向する
側面の中央部に前記バイモルフ構造素子の長軸方向の端
部を支持する溝を設け、更に、前記溝に前記外部端子と
一体の前記内部端子を設けたことを特徴とする衝撃セン
サであり、前記ケースが液晶ポリマーの樹脂よりな
り、前記一体の内部端子及び外部端子が導電性を有する
樹脂よりなることを特徴とする上記の衝撃センサであ
る。
SUMMARY OF THE INVENTION The present invention comprises a bimorph structural element having two piezoelectric ceramics bonded together, a case having an internal terminal, an external terminal and an upper lid.
In a shock sensor in which the bimorph structural element is housed in the case and the electrodes of the bimorph structural element are connected to the internal terminals, a long axis of the bimorph structural element is provided in a central portion of opposite side surfaces inside the case. A shock sensor characterized in that a groove for supporting an end portion in a direction is provided, and further, the internal terminal integrated with the external terminal is provided in the groove, wherein the case is made of liquid crystal polymer resin, The impact sensor is characterized in that the internal terminal and the external terminal are made of a conductive resin.

【0013】[0013]

【作用】ケース及び上蓋は、液晶ポリマーで成形する。
前記ケースを成形する際、ケースの内側に凹部を設け、
ケースの長軸方向と直交する中央縁辺に、一対の支持部
となる溝を設ける。その際、前記支持部の内周側面、及
びケースの底面と外周側面に導電性樹脂を注入して、内
部及び外部端子一体の端子を予め形成したものを同時に
成形する。圧電セラミックを2枚張り合わせたバイモル
フ構造素子の長軸方向の両端部を前記支持部に嵌入、装
着することにより、ケースとの間に均等に所定のクリア
ランスをもって、端部のみが密着、嵌入される。このこ
とにより、ばらつきが少なくなり、加速度出力電圧特性
や周波数特性が劣化することが解決され、加速度出力電
圧特性が向上し、周波数特性が向上する。このため、検
出能が大きくなる。しかも、金属より樹脂の方が安いた
め、低価格化が図れる。
Function: The case and the upper lid are made of liquid crystal polymer.
When molding the case, a recess is provided inside the case,
A groove serving as a pair of supporting portions is provided on a central edge of the case that is orthogonal to the long axis direction. At this time, a conductive resin is injected into the inner peripheral side surface of the supporting portion and the bottom surface and outer peripheral side surface of the case to simultaneously form terminals in which internal and external terminals are integrated in advance. By fitting and mounting both ends of the bimorph structural element in which two piezoelectric ceramics are bonded to each other in the longitudinal direction to the supporting part, only the ends are closely attached and fitted with a predetermined clearance evenly with the case. . As a result, variation is reduced, resolution of acceleration output voltage characteristics and frequency characteristics is resolved, acceleration output voltage characteristics are improved, and frequency characteristics are improved. Therefore, the detectability is increased. Moreover, since resin is cheaper than metal, the price can be reduced.

【0014】[0014]

【実施例】本発明の実施例について、図面を用いて詳細
に説明する。
Embodiments of the present invention will be described in detail with reference to the drawings.

【0015】図1は、本発明の衝撃センサを示す断面図
及び斜視図である。図1(a)は、本発明の衝撃センサ
に使用されるバイモルフ構造素子の斜視図である。図1
(b)は、本発明の衝撃センサの組立て斜視図である。
図1(c)は、図1(b)のA−A断面図である。図1
(d)は、本発明の衝撃センサの斜視図である。
FIG. 1 is a sectional view and a perspective view showing an impact sensor of the present invention. FIG. 1A is a perspective view of a bimorph structural element used in the impact sensor of the present invention. FIG.
(B) is an assembled perspective view of the impact sensor of the present invention.
FIG. 1C is a cross-sectional view taken along the line AA of FIG. FIG.
(D) is a perspective view of the impact sensor of the present invention.

【0016】図1(a)に示すように、本発明の衝撃セ
ンサは、長さ3.5mm、幅0.7mm、厚さ0.15m
mの矩形板状の圧電セラミック1,2の厚さ方向と直交
する面に、厚さ1〜2μmのNiめっきを施して、プラ
ス(+)の外部電極8とマイナス(−)の内部電極を形
成し、接着剤11でこれらを張り合わせてバイモルフ構
造素子3としたものを受動素子として用いている。
As shown in FIG. 1A, the impact sensor of the present invention has a length of 3.5 mm, a width of 0.7 mm and a thickness of 0.15 m.
A rectangular plate-shaped piezoelectric ceramics 1 and 2 having a thickness of m are plated with Ni having a thickness of 1 to 2 μm to form a positive (+) external electrode 8 and a negative (-) internal electrode. The bimorph structure element 3 formed by adhering them with the adhesive 11 is used as a passive element.

【0017】図1(b)に示すように、バイモルフ構造
素子3の厚さは、0.35mmである。ケース4は、液
晶ポリマーからなる長さ5.4mm、幅1.3mm、高さ
1.3mmの直方体のブロックに、前記のバイモルフ構
造素子を嵌入、装着するための一対の支持部12を長軸
方向に設けた長さ3.6mm、幅0.65mm、高さ0.
9mmの凹部10を設けたものである。
As shown in FIG. 1B, the bimorph structure element 3 has a thickness of 0.35 mm. The case 4 has a pair of supporting portions 12 for fitting and mounting the above bimorph structural element in a rectangular parallelepiped block made of a liquid crystal polymer and having a length of 5.4 mm, a width of 1.3 mm and a height of 1.3 mm. The length is 3.6mm, the width is 0.65mm, and the height is 0.6mm.
A 9 mm recess 10 is provided.

【0018】又、図1(c)に示すように、ケース4に
設けられた導電性樹脂からなる外部端子6は、内部端子
5と一体であり、ケース4の底面を通り、支持部12の
内側の面に平坦に露出していて、支持部12に取り付け
られたバイモルフ構造素子3の両端の外部電極8に密着
し、接続されている。これに、図1(b)の液晶ポリマ
ーからなる長さ5.4mm、幅1.3mm、厚さ0.2m
mからなる上蓋9を接着剤で被せて固定し、図1(d)
に示すような表面実装型の衝撃センサが完成する。
Further, as shown in FIG. 1C, the external terminal 6 made of a conductive resin provided on the case 4 is integral with the internal terminal 5 and passes through the bottom surface of the case 4 to support the support portion 12. It is exposed flatly on the inner surface and is in close contact with and connected to the external electrodes 8 at both ends of the bimorph structure element 3 attached to the support portion 12. In addition, a length of 5.4 mm, width of 1.3 mm, and thickness of 0.2 m made of the liquid crystal polymer shown in FIG.
The upper lid 9 made of m is covered with an adhesive and fixed, and then, as shown in FIG.
A surface mount type impact sensor as shown in (3) is completed.

【0019】本発明の衝撃センサに、バイモルフ構造素
子の厚さ方向に加振機で振動を与えて、出力電圧を測定
した。
The output voltage was measured by applying vibration to the impact sensor of the present invention in the thickness direction of the bimorph structure element with a vibrator.

【0020】又、比較例として、図3に示すように、前
述の実施例と同様に、Niめっきの電極を施した矩形板
状の圧電セラミックからなるバイモルフ構造素子3を前
記ケース4の従来の凹部10に取り付け、上蓋9を被せ
て接着剤で固定し、試料に供した。この従来品にバイモ
ルフ構造素子3の厚さ方向に加振機で振動を加えて、出
力電圧を測定した。
As a comparative example, as shown in FIG. 3, a bimorph structure element 3 made of a rectangular plate-shaped piezoelectric ceramic with Ni-plated electrodes is used as in the case 4 as in the case of the conventional example as in the above-described embodiment. The sample was attached to the concave portion 10, covered with the upper lid 9, fixed with an adhesive, and provided as a sample. This conventional product was vibrated in the thickness direction of the bimorph structure element 3 by a vibrator to measure the output voltage.

【0021】その結果を、図2(a)及び図2(b)に
示す。図2(a)は、周波数特性を示す図である。図2
(b)は、加速度出力電圧特性を示す図である。
The results are shown in FIGS. 2 (a) and 2 (b). FIG. 2A is a diagram showing frequency characteristics. Figure 2
(B) is a diagram showing an acceleration output voltage characteristic.

【0022】図2(a)に示すように、本発明品では、
50Hz〜10KHzの周波数特性がBのようなグラフ
になり、100Hz〜10KHzの領域では5dBの一
定の出力電圧が得られた。
As shown in FIG. 2 (a), in the product of the present invention,
The frequency characteristic of 50 Hz to 10 KHz becomes a graph like B, and a constant output voltage of 5 dB was obtained in the region of 100 Hz to 10 KHz.

【0023】一方、従来品では、50Hz〜10KHz
の周波数特性がCのようなグラフになり、100〜70
0Hzで0dBの出力電圧であるが、900Hz以上に
おいて、バイモルフ構造素子の両端に、X,Y,Zで示
す共振が発生し、出力電圧の乱れが発生し、周波数特性
の劣化が生じている。
On the other hand, in the conventional product, 50 Hz to 10 KHz
The frequency characteristic of becomes a graph like C, and 100-70
Although the output voltage is 0 dB at 0 Hz, at 900 Hz or higher, the resonances indicated by X, Y, and Z occur at both ends of the bimorph structure element, the output voltage is disturbed, and the frequency characteristic is deteriorated.

【0024】又、図2(b)に示すように、0〜15G
の加速度に対して、加速度出力電圧は、本発明品ではD
のようなグラフになり、一方、従来品ではEのようなグ
ラフになり、従来品より本発明品が加速度出力電圧が向
上している。従って、衝撃センサの検出能が向上してい
ることがわかる。
Further, as shown in FIG. 2 (b), 0 to 15G
The acceleration output voltage is D
On the other hand, the conventional product has a graph like E, and the acceleration output voltage of the product of the present invention is higher than that of the conventional product. Therefore, it can be seen that the detectability of the impact sensor is improved.

【0025】[0025]

【発明の効果】以上、述べたように、一体成形された内
部端子及び外部端子に導電性樹脂を用いることにより、
ケースと内部端子及び外部端子の密着度が増し、端子の
共振がなくなった。このため、周波数特性は良くなり、
かつ、ばらつきが少なくなり、しかも、加速度出力電圧
特性が向上した。よって、安価で高感度の品質のよい衝
撃センサを提供することができる。
As described above, by using the conductive resin for the integrally molded internal terminal and external terminal,
The adhesion between the case and the internal and external terminals increased, and the terminal resonance disappeared. Therefore, the frequency characteristics are improved,
Moreover, the variation is reduced and the acceleration output voltage characteristic is improved. Therefore, it is possible to provide an inexpensive and highly sensitive impact sensor of high quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の衝撃センサを示す断面図及び
斜視図。図1(a)は、本発明の実施例の衝撃センサに
用いられるバイモルフ構造素子の斜視図。図1(b)
は、本発明の実施例の衝撃センサの組立て斜視図。図1
(c)は、図1(b)のA−A断面図。図1(d)は、
本発明の実施例の衝撃センサの斜視図。
FIG. 1 is a sectional view and a perspective view showing an impact sensor according to an embodiment of the present invention. FIG. 1A is a perspective view of a bimorph structure element used in an impact sensor according to an embodiment of the present invention. Figure 1 (b)
FIG. 3 is an assembled perspective view of an impact sensor according to an embodiment of the present invention. FIG.
1C is a cross-sectional view taken along the line AA of FIG. Figure 1 (d)
The perspective view of the impact sensor of the Example of this invention.

【図2】本発明の実施例の衝撃センサの周波数特性及び
加速度出力電圧特性を示す図。図2(a)は周波数特性
を示す図。図2(b)は加速度出力電圧特性を示す図。
FIG. 2 is a diagram showing frequency characteristics and acceleration output voltage characteristics of the impact sensor according to the embodiment of the present invention. FIG. 2A is a diagram showing frequency characteristics. FIG. 2B is a diagram showing an acceleration output voltage characteristic.

【図3】従来の衝撃センサの組立て斜視図。FIG. 3 is an assembled perspective view of a conventional impact sensor.

【図4】従来の衝撃センサに用いられる金属板を打ち抜
いて一体曲げ加工した内部端子及び外部端子を示す斜視
図。
FIG. 4 is a perspective view showing an internal terminal and an external terminal formed by punching out and integrally bending a metal plate used in a conventional impact sensor.

【符号の説明】[Explanation of symbols]

1,2 圧電セラミック 3 バイモルフ構造素子 4 ケース 5 内部端子 6 外部端子 7 内部電極 8 外部電極 9 上蓋 10 凹部 11 接着剤 12 支持部 13 金属板 B,D 本発明品 C,E 従来品 X,Y,Z 共振点 1, 2 Piezoelectric ceramic 3 Bimorph structural element 4 Case 5 Internal terminal 6 External terminal 7 Internal electrode 8 External electrode 9 Upper lid 10 Recess 11 Adhesive 12 Supporting part 13 Metal plate B, D Conventional product C, E Conventional product C, E Conventional product X, Y , Z resonance point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧電セラミックを2枚張り合わせてなる
バイモルフ構造素子と、内部端子及び外部端子と上蓋と
を有するケースからなり、前記バイモルフ構造素子を前
記ケース内部に収納し、前記バイモルフ構造素子の電極
を前記内部端子と接続してなる衝撃センサにおいて、前
記ケースの内部の対向する側面の中央部に前記バイモル
フ構造素子の長軸方向の端部を支持する溝を設け、更
に、前記溝に前記外部端子と一体の前記内部端子を設け
たことを特徴とする衝撃センサ。
1. A bimorph structure element formed by laminating two piezoelectric ceramics together, a case having an internal terminal, an external terminal and an upper lid, the bimorph structure element being housed inside the case, and an electrode of the bimorph structure element. In the impact sensor formed by connecting the internal terminal to the internal terminal, a groove for supporting a longitudinal end of the bimorph structural element is provided in a central portion of opposite side surfaces inside the case, and the external groove is provided in the groove. An impact sensor comprising the internal terminal integrated with a terminal.
【請求項2】 前記ケースが液晶ポリマーの樹脂よりな
り、前記一体の内部端子及び外部端子が導電性を有する
樹脂よりなることを特徴とする請求項1記載の衝撃セン
サ。
2. The impact sensor according to claim 1, wherein the case is made of a liquid crystal polymer resin, and the integrated internal terminal and external terminal are made of a conductive resin.
JP2999495A 1995-01-25 1995-01-25 Impact sensor Pending JPH08201420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2999495A JPH08201420A (en) 1995-01-25 1995-01-25 Impact sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2999495A JPH08201420A (en) 1995-01-25 1995-01-25 Impact sensor

Publications (1)

Publication Number Publication Date
JPH08201420A true JPH08201420A (en) 1996-08-09

Family

ID=12291499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2999495A Pending JPH08201420A (en) 1995-01-25 1995-01-25 Impact sensor

Country Status (1)

Country Link
JP (1) JPH08201420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127759A (en) * 2010-12-14 2012-07-05 Murata Mfg Co Ltd Impact and acoustic sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127759A (en) * 2010-12-14 2012-07-05 Murata Mfg Co Ltd Impact and acoustic sensor

Similar Documents

Publication Publication Date Title
US7353707B2 (en) Acceleration sensor
JP2004040584A (en) Capacitor microphone
US7134339B2 (en) Acceleration sensor
JP2000165118A (en) High frequency dielectric filter
JP4020578B2 (en) Acceleration sensor
US6786095B2 (en) Acceleration sensor
JPH08201420A (en) Impact sensor
JP2015033087A (en) Tuning-fork vibration piece and vibration device
JPH0241206B2 (en)
JP4394212B2 (en) Acceleration sensor
JPH0862242A (en) Acceleration sensor
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JPH0642211Y2 (en) Mechanical sensor
JP3139212B2 (en) Acceleration sensor
JPS6217692Y2 (en)
JPH0236188B2 (en)
JPH08201421A (en) Cantilever type impact sensor
JPH0998023A (en) Surface mount piezoelectric device
JPH0682131B2 (en) Vibration acceleration sensor
JPS6246266A (en) Oscillation sensor
JPH1183892A (en) Impact detecting sensor
JPS5975114A (en) Stress sensor
KR100280071B1 (en) Piezoelectric resonator and electric component including same
JP3451169B2 (en) Gyro sensor device
JPS618630A (en) Vibration sensor