JPH0236188B2 - - Google Patents

Info

Publication number
JPH0236188B2
JPH0236188B2 JP58141586A JP14158683A JPH0236188B2 JP H0236188 B2 JPH0236188 B2 JP H0236188B2 JP 58141586 A JP58141586 A JP 58141586A JP 14158683 A JP14158683 A JP 14158683A JP H0236188 B2 JPH0236188 B2 JP H0236188B2
Authority
JP
Japan
Prior art keywords
acceleration
piezoelectric vibrator
crystal resonator
support member
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58141586A
Other languages
Japanese (ja)
Other versions
JPS6033056A (en
Inventor
Tetsuo Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP14158683A priority Critical patent/JPS6033056A/en
Publication of JPS6033056A publication Critical patent/JPS6033056A/en
Publication of JPH0236188B2 publication Critical patent/JPH0236188B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Description

【発明の詳細な説明】 本発明は加速度を測定する加速度センサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration sensor that measures acceleration.

実開昭53−69283号公報に開示されている加速
度検出器がある。この加速度検出器は、ケース内
に収納してある高分子振動体の一端部に重錘を配
設し、高分子圧電震動体に生じる電流を出力用の
リード端子を介して取り出すようにしたものであ
る。
There is an acceleration detector disclosed in Japanese Utility Model Application Publication No. 53-69283. This acceleration detector has a weight attached to one end of a polymeric piezoelectric vibrator housed in a case, and the current generated in the polymeric piezoelectric vibrator is extracted through an output lead terminal. It is.

加速度を検出する場合には、先ず、この加速度
検出装置を被観測物に取付ける。そしてこの被観
測物がある加速度をもつて運動すると、加速度検
出装置の重錘に慣性力が作用し、この慣性力によ
つて高分子圧電体が変形される。これにより、高
分子圧電体は圧電作用によつて発電し、リード端
子を介して加速度に対応した電流が出力される。
この電流は電流計などによつて測定され、これに
基づいて加速度が算出される。
When detecting acceleration, first, this acceleration detection device is attached to the object to be observed. When the object to be observed moves with a certain acceleration, an inertial force acts on the weight of the acceleration detection device, and the piezoelectric polymer is deformed by this inertial force. As a result, the polymer piezoelectric material generates electricity through piezoelectric action, and a current corresponding to the acceleration is outputted via the lead terminal.
This current is measured with an ammeter or the like, and acceleration is calculated based on this.

しかしながら、この従来技術においては、高分
子圧電振動体から出力される電流を直接測定し、
測定した電流計から加速度を算出するようにして
いるため、加速度の検出作業が煩雑である上、微
小な加速度の検出精度が悪いという欠点もあつ
た。さらに加速度の情報をコンピユータなどに接
続する場合、A−D変換器が必要であつた。
However, in this conventional technology, the current output from the polymer piezoelectric vibrator is directly measured.
Since the acceleration is calculated from the measured ammeter, the acceleration detection work is complicated, and there is also the disadvantage that the detection accuracy of minute accelerations is poor. Furthermore, when connecting acceleration information to a computer or the like, an AD converter was required.

本発明は上記欠点を除去するものであり、検出
精度が高く、直接デジタル処理が可能な加速度セ
ンサを提供するものである。
The present invention eliminates the above-mentioned drawbacks and provides an acceleration sensor that has high detection accuracy and allows direct digital processing.

以下本発明の一実施例を詳細に説明する。 An embodiment of the present invention will be described in detail below.

第1〜2図において、1は基体であるセラミツ
ク基板であり、導電ペーストにて形成した入力パ
ターン2a,2b、出力パターン2c、保持パタ
ーン2d,2eが設けてある。3は圧電振動子で
あるATカツトの水晶振動子であり、厚みすべり
振動を行うものである。水晶振動子3は長手方向
がX軸方向と一致する短冊型をしており、両主面
に駆動電極4,4が形成してある。5,5は保持
バネであり、リン青銅、ステンレス鋼などから形
成されており、一端は水晶振動子3の駆動電極
4,4のそれぞれに導通状態に固着され、他端は
基板1の保持パターン2d,2eのそれぞれに導
通状態に固着され、水晶振動子3を片持保持する
ものである。6は水晶振動子3の自由端に固着さ
れた係合片である。7は水晶振動子3の係合片6
と基板1の取付ねじ8との間に張設された支持部
材であり、ワイヤ7aとバネ7bとからなり、中
間部に質量mの重錘9を支持している。本実施例
では水晶振動子3は湿気などの影響を受けにくく
するため、保持バネ5,5、係合片6を含めてテ
フロンコーテイングされている。10は集積回路
素子であり、水晶振動子3の発振回路を含んでお
り、基板1にダイボンデイングされ各パターン2
a〜2eとワイヤボンデイングされている。集積
回路素子10はモールド材11によりモールドさ
れている。
In FIGS. 1 and 2, reference numeral 1 denotes a ceramic substrate as a base, on which input patterns 2a, 2b, output patterns 2c, and holding patterns 2d, 2e formed of conductive paste are provided. 3 is an AT-cut crystal oscillator that is a piezoelectric oscillator, and performs thickness-shear vibration. The crystal resonator 3 has a rectangular shape whose longitudinal direction coincides with the X-axis direction, and drive electrodes 4, 4 are formed on both main surfaces. Reference numerals 5 and 5 denote holding springs, which are made of phosphor bronze, stainless steel, etc., one end of which is fixed in a conductive state to each of the driving electrodes 4 of the crystal resonator 3, and the other end of which is connected to the holding pattern of the substrate 1. 2d and 2e in a conductive state, and holds the crystal resonator 3 in a cantilevered manner. 6 is an engagement piece fixed to the free end of the crystal resonator 3. 7 is an engagement piece 6 of the crystal resonator 3
This support member is stretched between the mounting screw 8 of the substrate 1, and is made up of a wire 7a and a spring 7b, and supports a weight 9 having a mass m at the intermediate portion. In this embodiment, the crystal resonator 3, including the holding springs 5, 5 and the engagement piece 6, is coated with Teflon in order to be less susceptible to moisture and the like. Reference numeral 10 denotes an integrated circuit element, which includes an oscillation circuit for the crystal resonator 3, and is die-bonded to the substrate 1 and connected to each pattern 2.
It is wire bonded to a to 2e. Integrated circuit element 10 is molded with molding material 11 .

第3図は発振回路の一例としてのCMOS発振
回路であり、12はCMOSインバータ、13は
抵抗、14は負荷容量である。
FIG. 3 shows a CMOS oscillation circuit as an example of an oscillation circuit, in which 12 is a CMOS inverter, 13 is a resistor, and 14 is a load capacitor.

第4図はATカツト水晶振動子に外力を加えた
ときの共振周波数の変化率を示している。直線1
5は水晶振動子にX軸方向に押力を加えた場合を
示し、約0.1〜0.2PPM/gの変化率を示してい
る。また直線16は水晶振動子にZ軸方向に押力
を加えた場合を示し、約−0.06PPM/gの変化
率を示している。
Figure 4 shows the rate of change in the resonant frequency when an external force is applied to the AT-cut crystal resonator. straight line 1
5 shows the case where a pressing force is applied to the crystal resonator in the X-axis direction, and shows a rate of change of about 0.1 to 0.2 PPM/g. Further, straight line 16 shows the case where a pressing force is applied to the crystal resonator in the Z-axis direction, and shows a rate of change of about -0.06 PPM/g.

つぎに加速度の測定について述べる。加速度が
0のときの水晶振動子3の発振回路の出力周波数
0とする。そして本発明の加速度センサがX軸
方向に加速度aにて移動する物体に取付けられる
と、質量がmの重錘9にはF=maの力がX軸に
沿つて、第1図示の矢印と反対方向に作用する。
このため支持部材7のワイヤ7aの張力はバネ7
bの張力から上記の力Fをひいたものとなる。こ
のようにして水晶振動子3に加わる張力が減少す
る。ATカツトの水晶振動子は第4図示のように
X軸方向に押力が加わると共振周波数は増加する
ため、上記のように張力が減少すると換言すると
押力が増加すると共振周波数は増加し、0+Δ
となる。また加速度が反対方向すなわち−X方向
に作用する場合には重錘9にはF=maの力が+
x方向に作用する。このため支持部材7のワイヤ
7aの張力はバネ7bの張力と上記の力Fとを加
えたものとなり、水晶振動子3に加わる張力が増
加する。このように張力が増加すると換言すると
押力が減少すると水晶振動子3の共振周波数は減
少し、0−Δとなる。このようにして加速度を
水晶振動子3を用いた発振器の出力周波数として
あるいは出力周波数の変化として測定するのであ
る。このため微小な加速度でも高精度に測定でき
る。また本発明の加速度センサは加速度の計測値
の再現性にも優れている。そしてA−D変換器な
しでマイクロコンピユータに接続できる。さらに
消費電力は極めて小さい。
Next, the measurement of acceleration will be described. Let the output frequency of the oscillation circuit of the crystal resonator 3 be 0 when the acceleration is 0. When the acceleration sensor of the present invention is attached to an object moving at an acceleration a in the X-axis direction, a force F=ma is applied to the weight 9 having a mass m along the X-axis, as shown by the arrow shown in the first figure. Acts in the opposite direction.
Therefore, the tension of the wire 7a of the support member 7 is
It is obtained by subtracting the above force F from the tension of b. In this way, the tension applied to the crystal resonator 3 is reduced. As shown in Figure 4, the resonant frequency of the AT-cut crystal oscillator increases when a pushing force is applied in the X-axis direction, so if the tension decreases as described above, in other words, when the pushing force increases, the resonant frequency increases. 0
becomes. Furthermore, when acceleration acts in the opposite direction, that is, in the -X direction, the force F = ma is +
Acts in the x direction. Therefore, the tension of the wire 7a of the support member 7 is the sum of the tension of the spring 7b and the above-mentioned force F, and the tension applied to the crystal resonator 3 increases. In this way, when the tension increases, or in other words, when the pressing force decreases, the resonance frequency of the crystal resonator 3 decreases and becomes 0 - Δ. In this way, acceleration is measured as the output frequency of the oscillator using the crystal resonator 3 or as a change in the output frequency. Therefore, even minute accelerations can be measured with high precision. The acceleration sensor of the present invention also has excellent reproducibility of measured acceleration values. And it can be connected to a microcomputer without an A-D converter. Furthermore, power consumption is extremely low.

なお圧電振動子としてATカツト水晶振動子を
用いたが、力を印加することにより共振周波数が
変化するものなら他の圧電材料を用いたものでも
よい。
Although an AT-cut crystal resonator was used as the piezoelectric resonator, other piezoelectric materials may be used as long as the resonant frequency changes when force is applied.

また重錘9は一方向のみ移動可能なようにガイ
ドするようにしてもよい。そして三次元直交座標
の軸方向に各々加速度センサを設置し、各軸方向
の加速度を計測することもできる。
Further, the weight 9 may be guided so as to be movable in only one direction. It is also possible to install acceleration sensors in each axial direction of the three-dimensional orthogonal coordinates and measure the acceleration in each axial direction.

さらに支持部材はワイヤとバネとから構成した
が一体としてもよく、また一体の支持部材に直接
重錘をかしめて固着してもよい。そして支持部材
をZ′軸方向に連結すると、出力周波数の増加、減
少は本例とは逆になる。
Furthermore, although the support member is composed of a wire and a spring, it may be integrally formed, or a weight may be directly caulked and fixed to the integral support member. If the supporting members are connected in the Z'-axis direction, the increase and decrease in the output frequency will be opposite to that in this example.

以上述べたように本発明によれば、高精度な加
速度が測定できる。また加速度センサはデータの
再現性もよい。そしてA−D変換器なしでデータ
をマイクロコンピユータに接続できる。さらに極
めて低消費電力であるなどの効果を奏する。
As described above, according to the present invention, highly accurate acceleration can be measured. Acceleration sensors also have good data reproducibility. The data can then be connected to a microcomputer without an A-D converter. Furthermore, it has effects such as extremely low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は平面
図、第2図は正面図、第3図は発振回路図、第4
図はATカツト水晶振動子にX軸、Z′軸方向に力
を印加したときの共振周波数変化率を示すグラフ
である。 1……基板、3……水晶振動子、7……支持部
材、7a……ワイヤ、7b……バネ、9……重
錘、10……集積回路素子、12……CMOSイ
ンバータ、13……抵抗、14……負荷容量。
The drawings show one embodiment of the present invention, and FIG. 1 is a plan view, FIG. 2 is a front view, FIG. 3 is an oscillation circuit diagram, and FIG.
The figure is a graph showing the rate of change in resonance frequency when force is applied to the AT-cut crystal resonator in the X-axis and Z'-axis directions. DESCRIPTION OF SYMBOLS 1... Substrate, 3... Crystal resonator, 7... Support member, 7a... Wire, 7b... Spring, 9... Weight, 10... Integrated circuit element, 12... CMOS inverter, 13... Resistance, 14...Load capacity.

Claims (1)

【特許請求の範囲】 1 基体上に一端が保持された圧電振動子と、上
記圧電振動子の他端と上記基体との間に張設され
た支持部材と、上記支持部材に装着された重錘
と、上記圧電振動子を励振する発振回路とを用
い、上記基体が加速度をもつて運動したときに、
上記重錘を介して上記加速度に対応した応力を上
記圧電振動子に与え、このときの上記圧電振動子
の発振周波数またはその変化率によつて上記加速
度を検知することを特徴とする加速度検出方法。 2 上記圧電振動子としてATカツト水晶振動子
を使用し、上記支持部材の張設方向を上記水晶振
動子のX軸方向と一致させることを特徴とする特
許請求の範囲第1項に記載の加速度検出方法。
[Scope of Claims] 1 A piezoelectric vibrator with one end held on a base, a support member stretched between the other end of the piezoelectric vibrator and the base, and a weight attached to the support member. When the base body moves with acceleration using a weight and an oscillation circuit that excites the piezoelectric vibrator,
An acceleration detection method characterized by applying stress corresponding to the acceleration to the piezoelectric vibrator via the weight, and detecting the acceleration based on the oscillation frequency of the piezoelectric vibrator or its rate of change at this time. . 2. Acceleration according to claim 1, characterized in that an AT-cut crystal oscillator is used as the piezoelectric oscillator, and the tensioning direction of the support member is made to coincide with the X-axis direction of the crystal oscillator. Detection method.
JP14158683A 1983-08-02 1983-08-02 Acceleration sensor Granted JPS6033056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14158683A JPS6033056A (en) 1983-08-02 1983-08-02 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14158683A JPS6033056A (en) 1983-08-02 1983-08-02 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPS6033056A JPS6033056A (en) 1985-02-20
JPH0236188B2 true JPH0236188B2 (en) 1990-08-15

Family

ID=15295444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14158683A Granted JPS6033056A (en) 1983-08-02 1983-08-02 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS6033056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412274U (en) * 1990-05-22 1992-01-31

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634690Y2 (en) * 1987-08-18 1994-09-07 株式会社アルファ Motion sensor
JPH0645895Y2 (en) * 1989-03-25 1994-11-24 トヨタ自動車株式会社 Acceleration detection device
US8117917B2 (en) * 2008-03-27 2012-02-21 Honeywell International Inc. Vibrating beam accelerometer with improved performance in vibration environments
US8616054B2 (en) 2008-08-06 2013-12-31 Quartz Seismic Sensors, Inc. High-resolution digital seismic and gravity sensor and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153660A (en) * 1978-05-24 1979-12-04 Yokogawa Hokushin Electric Corp Vortex flowmeter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269283U (en) * 1975-11-18 1977-05-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153660A (en) * 1978-05-24 1979-12-04 Yokogawa Hokushin Electric Corp Vortex flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412274U (en) * 1990-05-22 1992-01-31

Also Published As

Publication number Publication date
JPS6033056A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US7353707B2 (en) Acceleration sensor
US4215570A (en) Miniature quartz resonator force transducer
US5585562A (en) Vibration-sensing gyro
CA1234705A (en) Angular velocity sensor
JPH0769230B2 (en) Vibrating beam force transducer
JPS5924230A (en) Detecting element
US7134339B2 (en) Acceleration sensor
US20110259101A1 (en) Vibration-type force detection sensor and vibration-type force detection device
JP4004129B2 (en) Motion sensor
EP0585862A1 (en) Accelerometer
JPH0236188B2 (en)
WO2012098901A1 (en) Acceleration sensor
EP0518200A1 (en) Oscillator type accelerometer
JPS62194720A (en) Contour shear crystal resonator
JPH0334829B2 (en)
JPH022105B2 (en)
JPH09145736A (en) Composite acceleration/angular velocity sensor
JP2000258260A (en) Capacitive force measuring apparatus
JPH0242190B2 (en)
EP0563762B1 (en) Vibratory gyroscope with piezoelectric elements in vicinities of nodal points
JPS6246266A (en) Oscillation sensor
JP3762814B2 (en) Driving method of piezoelectric chopper for pyroelectric infrared sensor
JP3129022B2 (en) Acceleration sensor
US5952573A (en) Micro-beam motion sensor
JPS5975114A (en) Stress sensor