JPH08195488A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08195488A
JPH08195488A JP459395A JP459395A JPH08195488A JP H08195488 A JPH08195488 A JP H08195488A JP 459395 A JP459395 A JP 459395A JP 459395 A JP459395 A JP 459395A JP H08195488 A JPH08195488 A JP H08195488A
Authority
JP
Japan
Prior art keywords
conductivity type
insulating film
film
region
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP459395A
Other languages
Japanese (ja)
Other versions
JP3265886B2 (en
Inventor
Isao Yoshikawa
功 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP00459395A priority Critical patent/JP3265886B2/en
Publication of JPH08195488A publication Critical patent/JPH08195488A/en
Application granted granted Critical
Publication of JP3265886B2 publication Critical patent/JP3265886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE: To prevent discharge in a withstand voltage structure part by forming the first insulating film on the surface of the first conductivity type layer caught with the second conductivity type regions, and forming the second insulating film as a discharge protection film on this surface. CONSTITUTION: A second p-region 21 is made at the same time with the first p region 2 so that it may surround the first p region 2, and an oxide film 51 to form withstand voltage structure is made on the n-layer 1 between the first and second p regions, and an amorphous silicon film 8 to serve as a field plate is made on this and an emitter electrode 7. Furthermore, to accelerate the lightening of the intensity of an electric field, a polyimide film or a palyren oxide film being an insulating film 40 for protection from discharge is overlaid on an amorphous silicon film 8 on the withstand voltage structure part. Hereby, the surface of planar type withstand voltage structure can be covered with an insulating film without adding a special process, and even if a planar element chip is accommodated in an air-tightly sealed package, the discharge phenomena can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プレーナ型の耐圧構
造を有し、気密封止型パッケージに半導体チップを内蔵
した構造の素子で、主として車両駆動用に用いられる半
導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device which has a planar withstand voltage structure and has a semiconductor chip built in a hermetically sealed package and is mainly used for driving a vehicle.

【0002】[0002]

【従来の技術】絶縁ゲート形バイポーラトランジスタ
(IGBT)などのプレーナ型の半導体素子(以下プレ
ーナ素子と呼ぶ)ではその耐圧構造はガードリングやフ
ィールドプレートなどのプレーナ構造となっている。こ
の構造はメサ型半導体素子(以下メサ型素子と呼ぶ)と
異なり、通電する活性領域の表面と同一表面に耐圧構造
を作り込むことができ、メサ型素子の耐圧構造であるベ
ベル加工や表面処理などによる重金属汚染や機械加工歪
み等が入らずにクリーンな状態で耐圧構造を活性領域の
作り込みとほぼ同一の工程で形成できるメリットがあ
る。一方、気密封止型パッケージとしてはメサ型素子で
ある大電力用サイリスタなどで採用されているセラミッ
クケースがよく知られており、プレーナ素子のモジュー
ル構造などのパッケージで用いられるゲル等の封止材は
使わず、窒素ガス等の不活性ガスでパッケージ内を充満
させ、サイリスタのメサ型の耐圧構造部をシリコーンゴ
ムなどの表面保護膜を被覆させ耐圧構造部での放電を防
止し、長時間に亘って耐圧特性を安定に確保している。
2. Description of the Related Art In a planar type semiconductor device (hereinafter referred to as a planar device) such as an insulated gate bipolar transistor (IGBT), its breakdown voltage structure is a planar structure such as a guard ring or a field plate. This structure is different from a mesa type semiconductor device (hereinafter referred to as a mesa type device), and a withstand voltage structure can be formed on the same surface as the surface of the active region to which current is applied. There is a merit that the breakdown voltage structure can be formed in almost the same process as the formation of the active region in a clean state without introducing heavy metal contamination or mechanical processing distortion due to the above. On the other hand, as a hermetically sealed package, a ceramic case adopted in a high power thyristor, which is a mesa type element, is well known, and a sealing material such as gel used in a package such as a module structure of a planar element. The inside of the package is filled with an inert gas such as nitrogen gas, and the mesa-type pressure-resistant structure of the thyristor is covered with a surface protective film such as silicone rubber to prevent discharge at the pressure-resistant structure for a long time. Stable pressure resistance characteristics are secured throughout.

【0003】[0003]

【発明が解決しようとする課題】しかし2000V以上
の高耐圧プレーナ素子チップをセラミック等の気密封止
パッケージに内蔵する場合、プレーナ型の耐圧構造部で
電界強度が極めて高くなり放電が発生して、耐圧構造を
破壊し、素子が正常に動作しない。この発明の目的は、
前記課題を解決して、耐圧構造部での放電を生じずに気
密封止パッケージにプレーナ型耐圧構造の半導体チップ
を内蔵した半導体装置を提供することにある。
However, when a high withstand voltage planar device chip of 2000 V or more is built in a hermetically sealed package such as ceramic, the electric field strength becomes extremely high in the planar withstand voltage structure portion, and discharge occurs, The breakdown voltage structure is destroyed and the device does not operate normally. The purpose of this invention is
It is an object of the present invention to solve the above problems and provide a semiconductor device in which a semiconductor chip having a planar withstand voltage structure is built in a hermetically sealed package without causing discharge in the withstand voltage structure portion.

【0004】[0004]

【課題を解決するための手段】前記の課題を解決するた
めに、気密封止されたパッケージを有する半導体装置に
おいて、第1導電形層の表面部に第1の第2導電形領域
が選択的に形成されるか、または、さらに第1の第2導
電形領域の表面部に高濃度第1導電形領域が選択的に形
成され、第1の第2導電形領域に挟まれる第1導電形層
の表面上にゲート絶縁膜を介してゲート電極が形成され
るもので、第1導電形層の表面部に第1の第2導電形領
域を取り囲むように一個以上の第2の第2導電形領域が
設けられ、第1の第2導電形領域と第2の第2導電形領
域に挟まれた第1導電形層の表面上および第2導電形領
域間に挟まれた第1導電形層の表面上に第1絶縁膜を形
成し、第1絶縁膜の表面上に放電保護膜としての第2絶
縁膜を形成する。
To solve the above problems, in a semiconductor device having a hermetically sealed package, a first second conductivity type region is selectively formed on a surface portion of a first conductivity type layer. Or a high-concentration first conductivity type region is selectively formed on the surface portion of the first second conductivity type region and is sandwiched between the first second conductivity type regions. A gate electrode is formed on the surface of the layer via a gate insulating film, and at least one second conductive layer is formed on the surface of the first conductive layer so as to surround the first second conductive region. And a first conductivity type sandwiched between a first second conductivity type region and a second second conductivity type region, and a first conductivity type sandwiched between the second conductivity type regions. A first insulating film is formed on the surface of the layer, and a second insulating film as a discharge protection film is formed on the surface of the first insulating film.

【0005】またこの第1絶縁膜と第2絶縁膜の間にア
モルファスシリコン膜を介在させると効果的である。さ
らに第2絶縁膜をポリイミド膜、もしくはパリレン酸化
膜で形成するとよい。
It is also effective to interpose an amorphous silicon film between the first insulating film and the second insulating film. Further, the second insulating film may be formed of a polyimide film or a parylene oxide film.

【0006】[0006]

【作用】プレーナ素子チップを樹脂封止パッケージに収
納させる場合、ゲル等の封止材を充填する。この封止材
がプレーナ素子の耐圧構造部での電界強度の緩和に寄与
している。一方メサ型素子チップを気密封止パッケージ
に収納した場合、気密封止パッケージ内は不活性ガスを
充填し、かつ耐圧構造となっているチップ周縁部はガラ
スやシリコーンゴムなどでコーテングして耐圧を維持し
ている。プレーナ素子チップを気密封止パッケージに収
納すると、プレーナ型耐圧構造が不活性ガスの雰囲気に
触れ、耐圧構造を構成している酸化膜もしくは酸化膜と
アモルファスシリコンのみでは耐圧の確保が困難であ
り、ゲル等の封止材がないために、電界強度が高まり放
電を起こす。特に2500V以上の高耐圧になると放電
現象が起きやすくなる。このプレーナ型耐圧構造の酸化
膜や酸化膜の上のアモルファスシリコンの表面にポリイ
ミドやパリレン絶縁膜を被覆することで、電界強度の緩
和を促進し、2500V以上の耐圧にも耐えられる気密
封止パッケージのプレーナ素子を得ることができる。
When the planar element chip is housed in the resin-sealed package, it is filled with a sealing material such as gel. This sealing material contributes to the relaxation of the electric field strength in the breakdown voltage structure portion of the planar element. On the other hand, when the mesa type element chip is housed in a hermetically sealed package, the inside of the hermetically sealed package is filled with an inert gas, and the periphery of the chip, which has a pressure resistant structure, is coated with glass or silicone rubber to increase the pressure resistance. I am maintaining. When the planar element chip is housed in the hermetically sealed package, the planar withstand voltage structure comes into contact with the atmosphere of the inert gas, and it is difficult to secure the withstand voltage only with the oxide film or the oxide film and the amorphous silicon forming the withstand voltage structure. Since there is no sealing material such as gel, the electric field strength increases and discharge occurs. In particular, when the breakdown voltage is 2500 V or higher, the discharge phenomenon is likely to occur. By covering the surface of the oxide film of this planar type withstand voltage structure or the surface of the amorphous silicon on the oxide film with a polyimide or parylene insulating film, relaxation of the electric field strength is promoted, and a hermetically sealed package capable of withstanding a withstand voltage of 2500 V or more. The planar element of can be obtained.

【0007】[0007]

【実施例】図1はこの発明をIGBTに適用した第1実
施例で、耐圧構造部を放電保護用絶縁膜で被覆した要部
断面図を示す。n- 層1の表面部に第1のp領域2を形
成し、この第1のp領域2の表面部にn+ 領域3を形成
する。第1のp領域2に挟まれたn- 層1表面にゲート
酸化膜5を介してポリシリコンのゲート電極4が形成さ
れ、このゲート電極4の一部に金属膜でゲートパッド電
極10が形成される。またゲート電極4上に層間絶縁膜
6を介してエミッタ電極7が形成される。第1のp領域
2を取り囲むように第2のp領域21が第1のp領域2
と同時に形成され、第1と第2のp領域の間のn- 層1
上に耐圧構造を形成する酸化膜51とこの酸化膜51上
とエミッタ電極7上にフィールドプレートとなるアモル
ファスシリコン膜8が形成される。さらに電界強度の緩
和を促進するために、耐圧構造部上のアモルファスシリ
コン膜8上に放電保護用絶縁膜40であるポリイミド膜
もしくはパリレン酸化膜を被覆する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a first embodiment in which the present invention is applied to an IGBT, and shows a cross-sectional view of a main portion in which a breakdown voltage structure portion is covered with an insulating film for discharge protection. First p region 2 is formed on the surface of n layer 1, and n + region 3 is formed on the surface of first p region 2. A gate electrode 4 of polysilicon is formed on the surface of the n layer 1 sandwiched between the first p regions 2 via a gate oxide film 5, and a gate pad electrode 10 is formed on a part of the gate electrode 4 with a metal film. To be done. Further, an emitter electrode 7 is formed on the gate electrode 4 with an interlayer insulating film 6 interposed therebetween. The second p region 21 surrounds the first p region 2 and the first p region 2
N layer 1 formed at the same time and between the first and second p regions
An oxide film 51 forming a breakdown voltage structure is formed thereon, and an amorphous silicon film 8 serving as a field plate is formed on the oxide film 51 and the emitter electrode 7. Further, in order to promote the relaxation of the electric field strength, a polyimide film or a parylene oxide film which is the discharge protection insulating film 40 is coated on the amorphous silicon film 8 on the breakdown voltage structure portion.

【0008】図2はこの発明をIGBTに適用した第2
実施例で活性領域上と耐圧構造部を放電保護用絶縁膜で
被覆した要部断面図を示す。図1と異なるのは放電保護
用絶縁膜40をゲートパッド電極10の一部を除いた活
性領域上と耐圧構造部上とに被覆した点である。図3は
この発明を複数個のゲート電極を有するIGBTに適用
した第3実施例で耐圧構造部上を放電保護用絶縁膜で被
覆した要部断面図を示す。断面構造は図1とほぼ同じで
あるので、ここでは異なる点について説明する。ゲート
電極4が複数個に分割され、各ゲート電極に対応するよ
うにゲートパッド電極10が形成され、ゲート電極4と
エミッタ電極7間のゲート耐圧が規格値以下のゲート電
極4を切り離し、かつ切り離したゲート電極4が浮遊電
位を持たないようにエミッタ電極7と貫通孔32を通し
て短絡することにより、規格値を満足するゲート電極4
のみ有効に働く様にする。この貫通孔32はゲートリペ
ア用絶縁膜9に窓開けすることで設けられる。同図では
規格値以上のゲート電極4を有する部分の要部断面図を
示し、エミッタ電極7とゲート電極4とを短絡する必要
がないため、貫通孔32はポリイミド樹脂33などで塞
がれている。そのポリイミド樹脂33上とゲートパッド
電極10上にはAl配線30、31が形成され、ポリイ
ミド樹脂33上のAl配線31はエミッタ電極7に接続
する。もし規格値以下のゲート電極4であればポリイミ
ド樹脂33の代わりにAl配線31のAl金属で埋めら
れ、エミッタ電極7と短絡接続される。活性領域部およ
び耐圧構造部に放電保護用保護膜40としてのポリイミ
ド膜もしくはパリレン酸化膜を被覆する。
FIG. 2 shows a second example in which the present invention is applied to an IGBT.
FIG. 3 is a cross-sectional view of a main part in which an insulating film for discharge protection covers the active region and the withstand voltage structure in the example. The difference from FIG. 1 is that the discharge protection insulating film 40 is coated on the active region excluding a part of the gate pad electrode 10 and on the breakdown voltage structure portion. FIG. 3 is a cross-sectional view of an essential part in which the present invention is applied to an IGBT having a plurality of gate electrodes, and the breakdown voltage structure part is covered with an insulating film for discharge protection in a third embodiment. Since the cross-sectional structure is almost the same as that in FIG. 1, different points will be described here. The gate electrode 4 is divided into a plurality of parts, the gate pad electrode 10 is formed so as to correspond to each gate electrode, and the gate electrode 4 whose gate breakdown voltage between the gate electrode 4 and the emitter electrode 7 is less than or equal to the standard value is cut off and cut off. By short-circuiting the emitter electrode 7 and the through hole 32 so that the gate electrode 4 does not have a floating potential, the gate electrode 4 satisfying the standard value is obtained.
Only work effectively. The through hole 32 is provided by opening a window in the gate repair insulating film 9. In the figure, a cross-sectional view of a main part of a portion having a gate electrode 4 of a standard value or more is shown, and since it is not necessary to short-circuit the emitter electrode 7 and the gate electrode 4, the through hole 32 is blocked with a polyimide resin 33 or the like. There is. Al wirings 30 and 31 are formed on the polyimide resin 33 and the gate pad electrode 10, and the Al wiring 31 on the polyimide resin 33 is connected to the emitter electrode 7. If the gate electrode 4 is less than the standard value, it is filled with the Al metal of the Al wiring 31 instead of the polyimide resin 33 and short-circuited to the emitter electrode 7. A polyimide film or a parylene oxide film as the protective film 40 for discharge protection is coated on the active region and the breakdown voltage structure.

【0009】図4はこの発明を複数個のゲート電極を有
するIGBTに適用した第4実施例で耐圧構造部をゲー
トリペア用絶縁膜で被覆した要部断面図を示す。断面構
造は図3とほぼ同じである。ここでは異なる点について
説明する。ポリイミド膜またはパリレン酸化膜をゲート
リペア用絶縁膜9として用い、さらにこのゲートリペア
用絶縁膜9を耐圧構造部上にも被覆させ、放電保護用絶
縁膜としても用いた点が図3と異なる。このようにすれ
ば製造工程が簡略化され、図3より工程数を減少でき
る。
FIG. 4 is a cross-sectional view of an essential part in which the breakdown voltage structure part is covered with an insulating film for gate repair in a fourth embodiment in which the present invention is applied to an IGBT having a plurality of gate electrodes. The sectional structure is almost the same as in FIG. Here, different points will be described. 3 is different from that in FIG. 3 in that a polyimide film or a parylene oxide film is used as the insulating film 9 for gate repair, and the insulating film 9 for gate repair is also coated on the breakdown voltage structure portion and used as an insulating film for discharge protection. In this way, the manufacturing process is simplified and the number of processes can be reduced as compared with FIG.

【0010】図1ないし図4とも耐圧構造部上の最終被
覆材はポリイミド膜もしくはパリレン酸化膜となり、こ
れらの被覆材なしでは、2500V以下で90%以上放
電したのに対し、被覆材をコーティングした場合は殆ど
の素子が2500V以下では放電しない。ここではIG
BTに適用した場合について説明したが、プレーナ型の
ダイオードやサイリスタにも勿論適用できる。
1 to 4, the final coating material on the pressure resistant structure is a polyimide film or a parylene oxide film. Without these coating materials, 90% or more of the discharge was generated at 2500 V or less, whereas the coating material was coated. In this case, most of the devices do not discharge below 2500V. IG here
Although the case where it is applied to the BT has been described, it can be applied to a planar type diode or a thyristor.

【0011】[0011]

【発明の効果】この発明によれば、特別な工程を追加す
ることなく、プレーナ型の耐圧構造の表面に絶縁膜を被
覆でき、気密封止パッケージにプレーナ素子チップを収
納しても、放電現象を防止でき、2500Vクラスの高
耐圧のプレーナ型の半導体装置を得ることができる。
According to the present invention, the surface of the planar withstand voltage structure can be covered with an insulating film without adding a special process, and even if the planar element chip is housed in the hermetically sealed package, the discharge phenomenon occurs. Can be prevented, and a planar type semiconductor device with high withstand voltage of 2500 V class can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明をIGBTに適用した第1実施例の要
部断面図
FIG. 1 is a sectional view of an essential part of a first embodiment in which the present invention is applied to an IGBT.

【図2】この発明をIGBTに適用した第2実施例の要
部断面図
FIG. 2 is a sectional view of an essential part of a second embodiment in which the present invention is applied to an IGBT.

【図3】この発明を複数個のゲート電極を有するIGB
Tに適用した第3実施例の要部断面図
FIG. 3 shows an IGB having a plurality of gate electrodes according to the present invention.
Sectional drawing of the principal part of 3rd Example applied to T

【図4】この発明を複数個のゲート電極を有するIGB
Tに適用した第4実施例の要部断面図
FIG. 4 shows an IGB having a plurality of gate electrodes according to the present invention.
Sectional drawing of the principal part of 4th Example applied to T.

【符号の説明】[Explanation of symbols]

1 n- 層 2 第1のp領域 21 第2のp領域 3 n+ 領域 4 ゲート電極 5 ゲート酸化膜 51 酸化膜 6 層間絶縁膜 7 エミッタ電極 8 アモルファスシリコン膜 9 ゲートリペア用絶縁膜 10 ゲートパッド電極 30 Al配線 31 Al配線 32 貫通孔 33 ポリイミド樹脂 40 放電保護用絶縁膜1 n Layer 2 First p Region 21 Second p Region 3 n + Region 4 Gate Electrode 5 Gate Oxide Film 51 Oxide Film 6 Interlayer Insulation Film 7 Emitter Electrode 8 Amorphous Silicon Film 9 Insulation Film for Gate Repair 10 Gate Pad Electrode 30 Al wiring 31 Al wiring 32 Through hole 33 Polyimide resin 40 Insulation film for discharge protection

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】気密封止されたパッケージを有する半導体
装置において、第1導電形層の表面部に第1の第2導電
形領域が選択的に形成され、第1導電形層の表面部に第
1の第2導電形領域を取り囲むように一個以上の第2の
第2導電形領域が設けられ、第1の第2導電形領域と第
2の第2導電形領域に挟まれた第1導電形層の表面上お
よび第2導電形領域間に挟まれた第1導電形層の表面上
に第1の絶縁膜を形成し、第1絶縁膜の表面上に放電保
護膜としての第2絶縁膜を形成することを特徴とする半
導体装置。
1. In a semiconductor device having a hermetically sealed package, a first second conductivity type region is selectively formed on a surface portion of a first conductivity type layer, and a first conductivity type layer is formed on a surface portion of the first conductivity type layer. One or more second second conductivity type regions are provided so as to surround the first second conductivity type region, and the first second conductivity type region is sandwiched between the first second conductivity type region and the second second conductivity type region. A first insulating film is formed on the surface of the conductive type layer and on the surface of the first conductive type layer sandwiched between the second conductive type regions, and a second insulating film is formed on the surface of the first insulating film as a discharge protection film. A semiconductor device comprising an insulating film.
【請求項2】気密封止されたパッケージを有する半導体
装置において、第1導電形層の表面部に第1の第2導電
形領域が選択的に形成され、第1の第2導電形領域の表
面部に高濃度第1導電形領域が選択的に形成され、第1
の第2導電形領域に挟まれる第1導電形層の表面上にゲ
ート絶縁膜を介してゲート電極が形成され、第1導電形
層の表面部に第1の第2導電形領域を取り囲むように一
個以上の第2の第2導電形領域が設けられ、第1の第2
導電形領域と第2の第2導電形領域に挟まれた第1導電
形層の表面上および第2導電形領域間に挟まれた第1導
電形層の表面上に第1の絶縁膜を形成し、第1絶縁膜の
表面上に放電保護膜としての第2絶縁膜を形成すること
を特徴とする半導体装置。
2. A semiconductor device having a hermetically sealed package, wherein a first second conductivity type region is selectively formed on a surface portion of a first conductivity type layer, and a first second conductivity type region is formed. A high-concentration first conductivity type region is selectively formed on the surface portion,
A gate electrode is formed on the surface of the first conductivity type layer sandwiched between the second conductivity type regions by a gate insulating film so as to surround the first second conductivity type region on the surface portion of the first conductivity type layer. One or more second second conductivity type regions are provided in the first second
A first insulating film is provided on the surface of the first conductivity type layer sandwiched between the conductivity type region and the second second conductivity type region and on the surface of the first conductivity type layer sandwiched between the second conductivity type regions. And a second insulating film as a discharge protection film formed on the surface of the first insulating film.
【請求項3】第1絶縁膜と第2絶縁膜の間にアモルファ
スシリコン膜を介在させることを特徴とする請求項1ま
たは2記載の半導体装置。
3. The semiconductor device according to claim 1, wherein an amorphous silicon film is interposed between the first insulating film and the second insulating film.
【請求項4】第2絶縁膜がポリイミド膜、もしくはパリ
レン酸化膜で形成されることを特徴とする請求項1また
は2記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the second insulating film is formed of a polyimide film or a parylene oxide film.
JP00459395A 1995-01-17 1995-01-17 Planar type semiconductor device Expired - Fee Related JP3265886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00459395A JP3265886B2 (en) 1995-01-17 1995-01-17 Planar type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00459395A JP3265886B2 (en) 1995-01-17 1995-01-17 Planar type semiconductor device

Publications (2)

Publication Number Publication Date
JPH08195488A true JPH08195488A (en) 1996-07-30
JP3265886B2 JP3265886B2 (en) 2002-03-18

Family

ID=11588350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00459395A Expired - Fee Related JP3265886B2 (en) 1995-01-17 1995-01-17 Planar type semiconductor device

Country Status (1)

Country Link
JP (1) JP3265886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627552B2 (en) 2006-07-31 2017-04-18 Vishay-Siliconix Molybdenum barrier metal for SiC Schottky diode and process of manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038933A1 (en) * 2009-08-18 2011-02-24 Denso Corporation, Kariya-City Semiconductor chip and metal plate semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627552B2 (en) 2006-07-31 2017-04-18 Vishay-Siliconix Molybdenum barrier metal for SiC Schottky diode and process of manufacture

Also Published As

Publication number Publication date
JP3265886B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
US20100327359A1 (en) Semiconductor device and manufacturing method of the same
US4764802A (en) Semiconductor devices
US7135751B2 (en) High breakdown voltage junction terminating structure
JPH07326744A (en) Semiconductor device and manufacture thereof
KR930011702B1 (en) High power semiconductor device
JP3296936B2 (en) Power semiconductor device
JP7258124B2 (en) Semiconductor equipment and semiconductor modules
US4881106A (en) DV/DT of power MOSFETS
JP3257394B2 (en) Voltage driven semiconductor device
JP2962136B2 (en) Insulated gate semiconductor device and power conversion device using the same
JPH0266975A (en) Semiconductor device
JP3612226B2 (en) Semiconductor device and semiconductor module
JPH1154747A (en) Semiconductor device and semiconductor module
JPH08195488A (en) Semiconductor device
JPH06177242A (en) Semiconductor integrated circuit device
JPH0794704A (en) Semiconductor device
WO2021060085A1 (en) Semiconductor device
JPH10289977A (en) Composite semiconductor device
JP2006100481A (en) Semiconductor apparatus
JP2003115590A (en) Semiconductor device
JPS5923115B2 (en) Mesa type semiconductor device
JPH07202202A (en) Mos device chip for electric power and package assembly
WO1996029744A1 (en) Planar semiconductor device, its manufacturing method, and power converter
JP2004228593A (en) Semiconductor device
JPH10256542A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100111

LAPS Cancellation because of no payment of annual fees