WO1996029744A1 - Planar semiconductor device, its manufacturing method, and power converter - Google Patents

Planar semiconductor device, its manufacturing method, and power converter Download PDF

Info

Publication number
WO1996029744A1
WO1996029744A1 PCT/JP1995/000478 JP9500478W WO9629744A1 WO 1996029744 A1 WO1996029744 A1 WO 1996029744A1 JP 9500478 W JP9500478 W JP 9500478W WO 9629744 A1 WO9629744 A1 WO 9629744A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
semiconductor region
region
conductivity type
regions
Prior art date
Application number
PCT/JP1995/000478
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Murakami
Yasumichi Yasuda
Mutsuhiro Mori
Hideo Kobayashi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000478 priority Critical patent/WO1996029744A1/en
Publication of WO1996029744A1 publication Critical patent/WO1996029744A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Definitions

  • the present invention relates to a planar semiconductor device, a method of manufacturing the same, and a power converter.
  • the present invention relates to a semiconductor device, and more particularly to a high withstand voltage planar semiconductor device having high withstand voltage and high reliability.
  • a technique described in Japanese Patent Publication No. 1-20549 is known.
  • a plurality of electric field limiting ring regions are provided to annularly surround a planar type main junction, and an electrode in contact with the electric field limiting ring region is formed on an insulating film formed on the surface of a semiconductor substrate.
  • a so-called field plate effect is given to the electric-field-limited ring region.
  • a final insulating protective film is formed so as to cover the electrodes.
  • a high breakdown voltage that cannot be achieved only by the electric field limiting ring region is realized by adding a field plate to the electric field limiting ring region to reduce the electric field on the semiconductor surface. You.
  • the final insulating protective film prevents discharge between the field plates, and the blocking characteristics are improved from a soft waveform to a hard waveform. For this reason, the yield of the blocking characteristics is improved.
  • the withstand voltage is improved by being formed thinner than the vicinity of the outer periphery of the field plate.
  • a technique described in Japanese Patent Publication No. 3-58185 is known.
  • a plurality of electric field limiting ring regions are provided to annularly surround a planar type main junction, and electrodes in contact with the electric field limiting ring region are formed on an insulating film formed on the surface of a semiconductor substrate. It extends in the direction approaching. That is, a field plate effect opposite to the technique described in the above-mentioned Japanese Patent Publication No. 1-20549 is added to the electric field limiting ring region.
  • the influence of an external atmosphere such as electric charge and moisture in plastic and resin is reduced. For example, when charges having a negative polarity are accumulated on the surface of the ⁇ -type semiconductor region of the substrate, the ⁇ -type semiconductor surface is prevented from being inverted and the blocking characteristics are prevented from deteriorating.
  • the potential of the semiconductor surface may be affected by an external charge, and there is a limit to improvement in reliability.
  • two or more insulating films are formed between the electrodes, and the conductivity of the upper insulating film is made larger than the conductivity of the lower insulating film. For this reason, the electric field concentration on the semiconductor surface is caused by the potential difference between the semiconductor substrate surface and the upper insulating film, so that the breakdown voltage may be reduced.
  • the present invention has been made in consideration of the above-described problems, and has been made in consideration of the above-described problems, and provides a planar-type semiconductor device having high withstand voltage or high reliability and a device using the same.
  • a power conversion device is provided. Disclosure of the invention
  • the second semiconductor region of the second conductivity type which is the opposite conductivity type, is provided in the first semiconductor region of the first conductivity type in the semiconductor substrate.
  • the first semiconductor region and the second semiconductor region are in contact with the first main electrode and the second main electrode, respectively, to form a main element region.
  • a plurality of third semiconductor regions of the same conductivity type as this region are provided so as to surround this region. These multiple third semiconductor regions have an action as an electric field limiting ring region.
  • a conductor contacts at least one of the plurality of third semiconductor regions.
  • the surface of the semiconductor substrate has a portion covered with an insulator.
  • a second main electrode extends from the second semiconductor region, and a conductor extends from another third semiconductor region.
  • the portions of the second main electrode and the conductor extending on the insulator act as field plates.
  • a ⁇ ⁇ junction (hereinafter referred to as a main ⁇ ⁇ junction) between the first semiconductor region and the second semiconductor region is reversely biased between the first main electrode and the second main electrode.
  • a depletion layer extending from the main ⁇ junction is exposed at a portion of the semiconductor substrate surface adjacent to the second semiconductor region.
  • the second main electrode extends over this portion, the electric field distribution in the depletion layer is not affected by external contaminants or moisture.
  • the depletion layer has a ⁇ ⁇ junction between the third semiconductor region and the first semiconductor region (hereinafter referred to as a sub ⁇ ⁇ junction).
  • the depletion layer is hardly exposed on the surface of the third semiconductor region, and extends from the sub ⁇ junction.
  • the exposed region is exposed again to the surface of the semiconductor substrate.
  • the conductor extends from another adjacent third semiconductor region on the surface of the semiconductor substrate, the electric field distribution is hardly affected by external contaminants and moisture.
  • the electric field distribution on the surface of the semiconductor substrate is not affected by external contaminants or moisture, but is determined by the field plate action of the second main electrode and the conductor.
  • the electrical characteristics of the semiconductor device are stabilized, and the reliability is improved.
  • the reliability is similarly improved by replacing the second main electrode extending over the third semiconductor region with a conductor that is in contact with another adjacent third semiconductor region.
  • the thickness of the insulator on the exposed portion of the sub pn junction is larger than the thickness of the insulator adjacent to the second semiconductor region and the third semiconductor region in contact with the conductor.
  • the withstand voltage does not deteriorate even if the resin filled in the package contains moisture.
  • a first insulating film is formed on the surface of the semiconductor substrate.
  • the first insulating film on the surface of at least one third semiconductor region is removed.
  • a second insulating film is formed on the surface of the semiconductor substrate.
  • the fifth step In the method, the second insulating film adjacent to the second semiconductor region and the third semiconductor region from which the insulating film on the surface has been removed in the third step is removed.
  • the thickness of the oxide film is larger in the region where the second insulating film remains without being removed on the surface of the semiconductor substrate than in other regions. That is, the more preferable structure of the semiconductor device of the present invention described above is manufactured.
  • the manufacturing method in which an oxide film is formed as the first insulating film in the second step, and the subsequent step is replaced with a step to which a so-called LOCOS oxidation method is applied is also provided by the semiconductor device of the present invention.
  • the preferred configuration is created.
  • an antioxidant film is formed on the oxide film.
  • the antioxidant film on the surface of at least one third semiconductor region is removed.
  • the oxide film in the region where the antioxidant film has been removed grows and becomes thick.
  • the semiconductor device or the modular semiconductor device of the present invention as described above is applied as a semiconductor device such as a switching element or a diode in a device that performs power conversion or power control by turning on and off a semiconductor switching element. Then, a highly reliable and long-life high-voltage device can be realized.
  • FIG. 1 is a schematic sectional view of a high breakdown voltage planar type diode according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing one embodiment of the high breakdown voltage planar type diode according to the embodiment of the present invention.
  • FIG. 3 shows a high breakdown voltage planar diode according to an embodiment of the present invention.
  • D is a schematic sectional view showing how a depletion layer expands.
  • FIG. 4 shows the electric field distribution on the surface of the semiconductor substrate corresponding to the expansion of the depletion layer in FIG.
  • FIG. 5 is a schematic cross-sectional view showing the expansion of a depletion layer when a voltage equal to the withstand voltage is applied to the high breakdown voltage planar type diode according to the embodiment of the present invention.
  • FIG. 6 shows the electric field distribution on the surface of the semiconductor substrate corresponding to the expansion of the depletion layer in FIG.
  • FIG. 5 is a schematic sectional view of a high-breakdown-voltage planar IGBT according to an embodiment of the present invention.
  • FIG. 8 is a schematic sectional view of another high breakdown voltage planar type diode according to the embodiment of the present invention.
  • FIG. 9 is a schematic sectional view of another high-breakdown-voltage planar IGBT according to an embodiment of the present invention.
  • FIG. 10 shows a method of manufacturing the diode shown in FIG.
  • FIG. 11 shows a method of manufacturing the diode shown in FIG.
  • FIG. 12 shows a module type semiconductor device according to an embodiment of the present invention.
  • FIG. 13 shows a main circuit of an induction motor driving inverter device according to an embodiment of the present invention.
  • FIG. 1 is a schematic sectional view of a high breakdown voltage planar type diode according to an embodiment of the present invention.
  • a semiconductor substrate 100 having a pair of main surfaces 110 and 120 has an n-type semiconductor region 10 adjacent to one main surface 110 and one main surface 110.
  • a central pn junction extending from the main surface into the n-type semiconductor region 10 at the center of the n-type semiconductor region 10 with the n-type semiconductor region 10 P + -type semiconductor region 20, which is formed between the other main surface 120 and the n-type semiconductor region 10 and has an impurity concentration higher than that of the n-type semiconductor region 10.
  • n + type electric field limiting ring regions 21 to 2 extending from this main surface into n type semiconductor region 10 and surrounding p + type semiconductor region 20
  • the anode electrode 1 is in ohmic contact with the P + type semiconductor region 20, extends on the first insulating film 31 and the second insulating film 41 formed in the n type semiconductor region 10, and further has a P + type It is formed so as to cover the sub-P n junction composed of the electric field limiting ring region 21 and the n-type semiconductor region 10.
  • Force source electrode 2 makes ohmic contact with n + type semiconductor region 40.
  • the auxiliary electrode 3 is in intimate contact with the n + type ring region 30 and extends on the first insulating film 35 and the second insulating film 45 formed in the n type semiconductor region 10.
  • the field plates 11 to 14 are in ohmic contact with the ⁇ + type electric field limiting ring regions 22, 24, 26, 28, respectively, and are formed on the first insulating films 31 to 35 and the second insulating film. 41 extends over 1 to 45 and is formed so as to cover the sub ⁇ junction consisting of the ⁇ + electric field limiting ring regions 21, 23, 25, 27, 29 and the ⁇ type semiconductor region 10. You.
  • the third insulating film 70 made of polyimide silicone or the like is formed around the anode electrode 1, the surface of the auxiliary electrode 3, on the field plates 11 to 14, and further on the surface of the second insulating film. You. Further, a fourth insulating film 80 is formed on the third insulating film 70.
  • FIG. 2 shows the high breakdown voltage planar diode shown in Figure 1 on one main table.
  • FIG. 4 is a plan view from the surface 110, showing the anode electrode 1, the field plates 11 to 14, the auxiliary electrode 3, and the vicinity of the contact portion between the anode electrode 1 and the p + type semiconductor region 2a, n + The inside 3a of the contact portion with the mold ring region 30 is shown.
  • FIG. 1 is a schematic cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 3 shows how the depletion layer spreads in the high breakdown voltage planar diode shown in FIG.
  • a reverse bias voltage such that the anode electrode 1 is negative and the force source electrode 2 is positive is applied to the diode
  • the main diode consisting of the n-type semiconductor region 10 and the p + -type semiconductor region 20 is applied.
  • the depletion layer mainly extends from the pn junction into the n-type semiconductor region 10 having a low impurity concentration.
  • the depletion layer tip 201 when the applied voltage is low, the depletion layer is formed more on the surface than on the inside of the semiconductor due to the field plate effect of the anode electrode 1 extending over the n-type semiconductor region 10. Easy to spread.
  • the depletion layer When the applied voltage further increases, the depletion layer reaches the electric field limiting ring region 21 and thereafter expands from the electric field limiting ring region 21.
  • a field plate 11 that is in intimate contact with the electric field limiting ring region 22 is formed so as to cover the surface of the n-type semiconductor region 10 and reach the electric field limiting ring region 21.
  • the depletion layer is hardly spread on the surface of the n-type semiconductor region 10, as indicated by the tip 202 of the depletion layer.
  • the electric field strength on the surface of 10 is as shown in Fig. 4 (b).
  • the electric field strength on the right side of the electric field limiting ring region 21 is
  • the interval 22 By setting the interval 22 to be shorter than the interval between the p + type semiconductor region 20 and the electric field limiting ring region 21, it is possible to suppress the electric field intensity to an appropriate value. Further y As the applied voltage further increases, the depletion layer further expands, as indicated by its tip 204. The electric field strength in that case is shown in Fig. 4 (c) and (d).
  • the surface of the low impurity concentration n-type semiconductor region 10 is shielded by an electrode or a field plate. This prevents deterioration of the blocking characteristics, such as the inversion of the surface of the n-type semiconductor region 10 to the P-type due to the influence of the external atmosphere such as electric charge and moisture in the resin, which lowers the breakdown voltage and increases the leak current. Is done. Furthermore, the second insulating films 41 to 45 form an insulating film on the sub pn junction composed of the electric field limiting ring regions 21, 23, 25, 27, 29 and the n-type semiconductor region 10. Is thick. For this reason, the effect of the field plate is weakened near these sub pn junctions, and local electric field concentration near the sub pn junction is prevented.
  • the peak values of the electric field intensity between the p + semiconductor region 20 and the electric field limiting ring region 21 and between the electric field limiting ring regions are substantially uniform.
  • the electric field strength that causes avalanche drop-off can be kept below Emax.
  • the depletion layer 200 expands as shown in FIG.
  • the maximum electric field intensity at each part of the surface of the n-type semiconductor region can be kept almost equal to a constant value and suppressed to Emax or less. Therefore, according to the present invention, a high breakdown voltage of the planar semiconductor device is realized.
  • FIG. 7 is a schematic sectional view of an insulated gate bipolar transistor (IGBT) according to another embodiment of the present invention.
  • IGBT insulated gate bipolar transistor
  • an n-type semiconductor region 101, an n-type semiconductor region 60 formed adjacent to the n-type semiconductor region 101, and a p + region formed adjacent to the n-type semiconductor region 60 are formed.
  • CT / JP95 / 00478 CT / JP95 / 00478
  • An insulating film 370 such as Si 2 surrounding the gate electrode 112 and an emitter electrode 111 are provided.
  • the main pn junction composed of the p + type well region 210 and the n ⁇ type semiconductor region 101 is reverse-biased. Since the p + type well region 210 in FIG. 7 corresponds to the P + type semiconductor region 20 shown in FIG. 1, the operation of this embodiment is the same as that of the diode of FIG.
  • FIG. 8 is a schematic sectional view of a diode according to another embodiment of the present invention.
  • the first insulating film and the second insulating film are formed by L0C0S oxidation.
  • the surface of the electric field limiting ring regions 21, 23, 25, 27, the electric field limiting ring regions 21, 23, 25, 27 and the n-type semiconductor region 10 The thickness of the fifth insulating films 51 to 55 formed on the surface of the sub pn junction is thicker than others. Therefore, this embodiment operates in the same manner as the diode of FIG. 1, and has high breakdown voltage and high reliability.
  • the configuration of this embodiment can be applied to GBT as shown in FIG.
  • FIG. 10 shows a method of manufacturing the diode shown in FIG.
  • the p + type semiconductor region 20 and the electric field limiting ring region 21 to 29 are formed on one main surface 110 side of the n-type semiconductor substrate 100 by thermal diffusion or ion implantation. And n + type ring region 30 are formed, and impurities such as phosphorus are diffused from other main surface 120 to form n + type semiconductor region 40.
  • the n-type semiconductor region 10 may be formed on the n + -type semiconductor region 40 by epitaxy.
  • the first insulating film 300 is formed on the surface of the semiconductor substrate on which the bonding structure is formed as described above.
  • the first insulating film 300 is a composite film of the SiO 2 film formed by the heat treatment and the PSG film deposited by the CVD method.
  • step (b) the P + type semiconductor region 20, the electric field limiting ring regions 22, 24, 26, 28 and the n + type On the exposed surface of the region 30, the portion of the first insulating film in contact with the electrode is removed.
  • the insulating film formed in the step (a) is divided into first insulating films 31 to 35.
  • a second insulating film 400 is formed by a CVD method or a microwave plasma CVD method.
  • the surfaces of the electric field limiting ring regions 21, 23, 25, 27 and the electric field limiting ring regions 21, 23, 25, 27 and the n-type semiconductor region 10 In order to increase the thickness of the insulating film on the surface of the sub pn junction, the insulating film formed in step (c) is processed by a photoetching technique to form second insulating films 41 to 45.
  • a metal such as aluminum is selectively deposited on the substrate surface by an electron beam evaporation method or a sputtering method, or is selectively etched after being deposited on the entire substrate surface.
  • the electrode 1, field plates 11 to 14, and auxiliary electrode 3 can be formed.
  • step (f) a PSG formed by a CVD method to protect the second insulating films 41 to 45, the anode electrode 1, the field plates 11 to 14 and the auxiliary electrode 3 is formed.
  • a third insulating film 70 such as a film and a fourth insulating film 80 such as polyimide silicon are formed by a photo-etching technique.
  • a force source electrode 2 for contacting the n + type semiconductor region 40 having a high impurity concentration is formed of a multilayer film made of aluminum, nickel, chromium and silver.
  • FIG. 11 shows a method of manufacturing the diode shown in FIG.
  • the steps (b) to (d) are particularly different from the above-mentioned production method, and a so-called LOCOS oxidation method is applied.
  • LOCOS oxidation method As described below, an oxide film having a partially different thickness is formed by the LOCOS oxidation method.
  • step (b) CVD method or bra on S i ⁇ 2 film 3 0 0
  • a non-oxidizing insulating film 90 such as Si 3 N 4 is formed by the plasma CVD method.
  • the insulating film formed in the step (b) is partially removed by a photo-etching technique.
  • the remaining insulating films 91 to 96 are formed on the surface of the p + type semiconductor region 20, the electric field limiting ring regions 22, 24, 26, 28, and the n + type semiconductor region 30 and the electric field limiting ring. Overlying the surface of the sub-P n junction consisting of the silicon region and the n-type semiconductor region. Thereafter, when the semiconductor substrate is thermally oxidized, the S i 0, film at the portion where the insulating film is removed grows and becomes thicker.
  • the remaining insulating film is removed with hot phosphoric acid or the like.
  • the ho Toetsuchingu technology, p + -type semiconductor region 2 0, field limiting ring region 2 2, 2 4, 2 6, 2 8, and S i 0 2 film is partially of the n + -type semiconductor regions 3 0 of the surface Is removed.
  • a PSG film may be formed on the SiO film after the insulating film is removed by hot phosphoric acid or the like.
  • FIG. 12 shows a modular semiconductor device incorporating a semiconductor device embodying the present invention.
  • the semiconductor devices 60 1 and 60 1 ′ embodying the present invention are adhered to a metal heat sink plate 62 through an electrical insulating plate 60 3, and these semiconductor devices and the extraction electrodes 60 05 Are electrically connected by the internal wiring 604.
  • the semiconductor device and the electrodes mounted on the metal plate as described above are sealed in the plastic case 607 for mechanical protection.
  • the inside of the plastic case is filled with an insulating material 606 such as gel silicone for insulation and protection of the semiconductor device and the internal wiring 504 and the like.
  • the electrical characteristics of the semiconductor device and the module-type semiconductor device to which the present invention is applied are such that a voltage of 1600 V is applied for 1000 hours under a humidity of 85% and a temperature of 85 ° C. It is stable without deterioration in reliability tests performed.
  • the present invention is not limited to diodes and IGBTs, but can be applied to various planar semiconductor devices.
  • the present invention can be applied to a semiconductor device in which the conductivity type of each semiconductor region is reversed, that is, a semiconductor device in which p-type is replaced with n-type and n-type is replaced with p-type.
  • FIG. 13 shows a main circuit of an inverter device for driving an induction motor in which a modular semiconductor device having a built-in IGBT and a diode according to the present invention is used.
  • the portion surrounded by a square in the figure, that is, the anti-parallel circuit portion of IGBT 60] and the diode 61 1 ′ is a module type semiconductor device.
  • This inverter device has a pair of DC terminals 543 and 544, and three AC terminals 557 to 559 having the same number of phases.
  • a DC power supply is connected to the DC terminal, and each of the IGBTs 545 to 550 is switched, so that DC power is converted to AC power.
  • the AC power is output to each AC terminal, and the induction motor 100 is driven.
  • two IGBTs connected in series have both ends connected by the number equal to the number of AC phases.
  • An AC terminal is taken out from the interconnection point of the two IGBTs connected in series.
  • a diode is connected in anti-parallel to each IGB T to circulate the load current.
  • a snubber circuit consisting of a diode 600 ′, a resistor 71 0 and a capacitor 62 0 is connected in parallel.
  • the present invention may be applied to '. Note that the 1 GBT 601 and the diode 601 'may be individually packaged.
  • the life of the inverter device depends on the reliability of the semiconductor device, according to the present invention, the IGBT and the diode have a high withstand voltage and the reliability is improved.
  • the device is realized.
  • the present invention is not limited to the inverter device, and can be applied to various power conversion devices and power control devices. As described in detail above, according to the present invention, a planar semiconductor device or a module semiconductor device having high withstand voltage or high reliability is realized. Further, according to the present invention, a power conversion device such as an inverter device having a large capacity and high reliability is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

An electric field limiting ring region and n+ type ring region surround a p-type semiconductor region forming a main p-n junction are provided. One main electrode is in contact with the p-type semiconductor region. A field plate is formed in the electric field limiting ring region. An auxiliary electrode is formed in the n+ type ring region. A thick insulating film is formed on an auxiliary p-n junction composed of the electric field limiting ring region and an n-type semiconductor region. The one main electrode and field plate cover the surfaces of the n-type semiconductor region and auxiliary p-n junction.

Description

明 細 書  Specification
プレーナ型半導体装置及びその製造方法並びに電力変換装置 技術分野  TECHNICAL FIELD The present invention relates to a planar semiconductor device, a method of manufacturing the same, and a power converter.
本発明は半導体装置に係リ、 高耐圧で高信頼性を有する高耐圧プレー ナ型半導体装置に関する。  The present invention relates to a semiconductor device, and more particularly to a high withstand voltage planar semiconductor device having high withstand voltage and high reliability.
背景技術 Background art
ρ η接合が半導体基板の主表面に露出しているプレーナ型半導体装置 を高耐圧化するために、 従来から種々の技術が提案されている。  Various techniques have been conventionally proposed to increase the breakdown voltage of a planar semiconductor device in which a ρ η junction is exposed on the main surface of a semiconductor substrate.
例えば、 特公平 1— 20549号公報に記載された技術が知られている。 こ の従来技術においては、 プレーナ型の主接合を環状に取り囲む複数の電 界制限リ ング領域が設けられ、 電界制限リ ング領域と接触する電極が、 半導体基板の表面に形成された絶縁膜上において主接合 ら遠ざかる方 向に延びている。 これによつて、 いわゆるフィールドプレー 卜効果が電 界制限リ ング領域に与えられる。 さらに、 電極を覆うように最終絶縁保 護膜が形成される。 この従来技術によれば、 電界制限リ ング領域だけで は達成できないような高耐圧化が、 電界制限リ ング領域にフィ一ルドプ レー 卜を付加して半導体表面の電界を緩和することにより実現される。 また最終絶縁保護膜によリ、 フィールドブレー 卜間の放電が防止され、 また阻止特性がソフ ト波形からハー ド波形に改善される。 このため、 阻 止特性の歩留りが向上する。  For example, a technique described in Japanese Patent Publication No. 1-20549 is known. In this prior art, a plurality of electric field limiting ring regions are provided to annularly surround a planar type main junction, and an electrode in contact with the electric field limiting ring region is formed on an insulating film formed on the surface of a semiconductor substrate. At a distance from the main joint. As a result, a so-called field plate effect is given to the electric-field-limited ring region. Further, a final insulating protective film is formed so as to cover the electrodes. According to this conventional technology, a high breakdown voltage that cannot be achieved only by the electric field limiting ring region is realized by adding a field plate to the electric field limiting ring region to reduce the electric field on the semiconductor surface. You. In addition, the final insulating protective film prevents discharge between the field plates, and the blocking characteristics are improved from a soft waveform to a hard waveform. For this reason, the yield of the blocking characteristics is improved.
また、 上記従来技術と同様のフィ一ルドプレー トの効果を利用した技 術として、 特開昭 63— 38259 号公報に記載された技術が知られている。 この従来技術においては、 フィールドプレー 卜と半導体基板表面との間 に介在する絶縁膜が、 電界制限リング領域のコンタク 卜窓の外周近傍に /JP95/00478 Further, as a technique utilizing the same field plate effect as the above-mentioned prior art, a technique described in Japanese Patent Application Laid-Open No. 63-38259 is known. In this conventional technique, an insulating film interposed between a field plate and the surface of a semiconductor substrate is provided near an outer periphery of a contact window in an electric field limiting ring region. / JP95 / 00478
おいてフィールドプレー トの外周近傍より薄く形成されることにより、 耐圧が向上する。 In this case, the withstand voltage is improved by being formed thinner than the vicinity of the outer periphery of the field plate.
さらに、 プレーナ型半導体装置の高耐圧化に関する他の従来技術と し て、 特公平 3— 58185号公報に記載された技術が知られている。 この従来 技術においては、 プレーナ型の主接合を環状に取り囲む複数の電界制限 リング領域が設けられ、 電界制限リ ング領域と接触する電極が、 半導体 基板の表面に形成された絶縁膜上において主接合に近づく方向へ延びて いる。 すなわち、 前述の特公平 1— 20549号公報に記載された技術とは逆 のフィールドプレー ト効果が電界制限リ ング領域に付加されている。 本 従来技術によれば、 プラスチックやレジン中の電荷や水分等のような外 部雰囲気等の影響が緩和される。 例えば、 基板の η型半導体領域表面上 に負の極性を有する電荷が蓄積される場合に、 η型半導体表面が反転し 阻止特性が劣化することが防止される。  Further, as another conventional technique for increasing the breakdown voltage of a planar semiconductor device, a technique described in Japanese Patent Publication No. 3-58185 is known. In this prior art, a plurality of electric field limiting ring regions are provided to annularly surround a planar type main junction, and electrodes in contact with the electric field limiting ring region are formed on an insulating film formed on the surface of a semiconductor substrate. It extends in the direction approaching. That is, a field plate effect opposite to the technique described in the above-mentioned Japanese Patent Publication No. 1-20549 is added to the electric field limiting ring region. According to the prior art, the influence of an external atmosphere such as electric charge and moisture in plastic and resin is reduced. For example, when charges having a negative polarity are accumulated on the surface of the η-type semiconductor region of the substrate, the η-type semiconductor surface is prevented from being inverted and the blocking characteristics are prevented from deteriorating.
特公平 1— 20549号公報あるいは特開昭 63— 38259 号公報に記載された 技術においては、 外部雰囲気に対する信頼性が考慮されていない。 この ため、 半導体チップがプラスチックでモールドされたりシリコーンゲル 等のレジンで封止される半導体装置では、 最終保護膜上に電荷が蓄積さ れると、 η型半導体表面が反転するため阻止特性が劣化する。  The technology described in Japanese Patent Publication No. 1-20549 or Japanese Patent Application Laid-Open No. 63-38259 does not consider the reliability of the external atmosphere. For this reason, in semiconductor devices in which the semiconductor chip is molded with plastic or sealed with a resin such as silicone gel, if charge is accumulated on the final protective film, the η-type semiconductor surface is inverted and the blocking characteristics deteriorate. .
また、 特公平 3— 58 185号公報に記載された技術においては、 半導体表 面の電位が外部電荷の影響を受けるおそれがあり、 信頼性の向上に限界 がある。 更にこの従来技術では、 電極間の絶縁膜が 2層以上形成され、 上層の絶縁膜の導電率が下層の絶縁膜の導電率より大きくされている。 このため、 半導体基板表面と上層の絶縁膜の電位差により半導体表面の 電界集中が生じるので、 耐圧が低下するおそれがある。  Further, in the technique described in Japanese Patent Publication No. 3-58185, the potential of the semiconductor surface may be affected by an external charge, and there is a limit to improvement in reliability. Further, in this conventional technique, two or more insulating films are formed between the electrodes, and the conductivity of the upper insulating film is made larger than the conductivity of the lower insulating film. For this reason, the electric field concentration on the semiconductor surface is caused by the potential difference between the semiconductor substrate surface and the upper insulating film, so that the breakdown voltage may be reduced.
本発明は、 上記のような問題点が考慮されてなされたものであり、 高 耐圧あるいは高信頼性を有するプレーナ型半導体装置およびこれを用い る電力変換装置を提供する。 発明の開示 The present invention has been made in consideration of the above-described problems, and has been made in consideration of the above-described problems, and provides a planar-type semiconductor device having high withstand voltage or high reliability and a device using the same. A power conversion device is provided. Disclosure of the invention
本発明の半導体装置では、 半導体基体における第 1導電型の第 1 半導 体領域に、 反対導電型である第 2導電型の第 2半導体領域が設けられる 。 これら第 1 半導体領域及び第 2半導体領域は、 それぞれ第 1 主電極及 び第 2主電極と接触し、 主たる素子領域を形成する。 第 2半導体領域の 周囲には、 この領域を取り囲むようにこの領域と同じ導電型の複数の第 3半導体領域が設けられる。 これら複数の第 3半導体領域は、 電界制限 リ ング領域としての作用を持っている。 複数の第 3の半導体領域の少な く とも一個には、 導電体が接触する。 さらに、 半導体基体の表面には絶 縁体で覆われた部分がある。 特に第 2半導体領域に隣接する第 3半導体 領域の表面上における絶縁体上には、 第 2半導体領域から第 2主電極が 延びているとともに、 他の第 3半導体領域から導電体が延びている。 こ れら第 2主電極及び導電体の絶縁体上に延びた部分は、 フィールドプレ 一卜と して作用する。  In the semiconductor device of the present invention, the second semiconductor region of the second conductivity type, which is the opposite conductivity type, is provided in the first semiconductor region of the first conductivity type in the semiconductor substrate. The first semiconductor region and the second semiconductor region are in contact with the first main electrode and the second main electrode, respectively, to form a main element region. Around the second semiconductor region, a plurality of third semiconductor regions of the same conductivity type as this region are provided so as to surround this region. These multiple third semiconductor regions have an action as an electric field limiting ring region. A conductor contacts at least one of the plurality of third semiconductor regions. Furthermore, the surface of the semiconductor substrate has a portion covered with an insulator. In particular, on the insulator on the surface of the third semiconductor region adjacent to the second semiconductor region, a second main electrode extends from the second semiconductor region, and a conductor extends from another third semiconductor region. . The portions of the second main electrode and the conductor extending on the insulator act as field plates.
このような構成において、 第 1 主電極と第 2主電極の間に、 第 1 半導 体領域と第 2半導体領域との間の ρ η接合 (以下主 ρ η接合と記す) を 逆バイァスするような電圧が印加されるとき、 主 ρ η接合から拡がる空 乏層が、 半導体基体表面の第 2半導体領域に隣接する部分において露出 する。 しかしながら、 この部分上には第 2主電極が延びているので、 空 乏層内の電界分布は外部の汚染物や水分などに影響されない。 さらに、 空乏層は、 その先端が第 2半導体領域に隣接する第 3半導体領域に到達 した後は、 この第 3半導体領域と第 1 半導体領域との間の ρ η接合 (以 下副 ρ η接合と記す) から再び拡がっていく。 このため、 空乏層は、 そ の第 3半導体領域の表面ではほとんど露出せず、 副 ρ η接合から拡がつ ていく領域で再び半導体基体表面に露出する。 しかしながら、 この半導 体基体表面上には、 隣接する他の第 3半導体領域から導電体が延びてい るので、 電界分布は外部の汚染物や水分などに影響されにくい。 In such a configuration, a ρ η junction (hereinafter referred to as a main ρ η junction) between the first semiconductor region and the second semiconductor region is reversely biased between the first main electrode and the second main electrode. When such a voltage is applied, a depletion layer extending from the main ρη junction is exposed at a portion of the semiconductor substrate surface adjacent to the second semiconductor region. However, since the second main electrode extends over this portion, the electric field distribution in the depletion layer is not affected by external contaminants or moisture. Further, after the depletion layer has its tip reaching the third semiconductor region adjacent to the second semiconductor region, the depletion layer has a ρ η junction between the third semiconductor region and the first semiconductor region (hereinafter referred to as a sub ρ η junction). And spread again. For this reason, the depletion layer is hardly exposed on the surface of the third semiconductor region, and extends from the sub ρη junction. The exposed region is exposed again to the surface of the semiconductor substrate. However, since the conductor extends from another adjacent third semiconductor region on the surface of the semiconductor substrate, the electric field distribution is hardly affected by external contaminants and moisture.
このように、 本発明の半導体装置においては、 半導体基体表面の電界 分布が、 外部の汚染物や水分などには影響されず、 第 2主電極及び導電 体の持つフィールドプレー ト作用によって決まる。 このため、 半導体装 置の電気的特性が安定化し、 信頼性が向上する。  As described above, in the semiconductor device of the present invention, the electric field distribution on the surface of the semiconductor substrate is not affected by external contaminants or moisture, but is determined by the field plate action of the second main electrode and the conductor. Thus, the electrical characteristics of the semiconductor device are stabilized, and the reliability is improved.
なお、 第 3半導体領域上に延びる第 2主電極を、 隣接する別の第 3半 導体領域に接触する導電体に置き換えても、 同様に信頼性が向上する。  It should be noted that the reliability is similarly improved by replacing the second main electrode extending over the third semiconductor region with a conductor that is in contact with another adjacent third semiconductor region.
さらに、 好ましい構成としては、 半導体基体表面において、 副 p n接 合の露出部上における絶縁体の厚みが、 第 2半導体領域及び導電体が接 触する第 3半導体領域に隣接する絶縁体の厚みより大きい構成がある。 これにより、 副 p n接合付近における電界分布の急激な変化が緩和され 、 局所的な電界集中が防止される。 従って、 耐圧が向上する。  Further, as a preferred configuration, on the surface of the semiconductor substrate, the thickness of the insulator on the exposed portion of the sub pn junction is larger than the thickness of the insulator adjacent to the second semiconductor region and the third semiconductor region in contact with the conductor. There are large configurations. As a result, a sudden change in the electric field distribution near the sub pn junction is reduced, and local electric field concentration is prevented. Therefore, the breakdown voltage is improved.
なお、 本発明の半導体装置を内蔵するモジュール型半導体装置におい ては、 パッケージ内に充填されるレジンが水分を含んでも、 耐圧が劣化 しない。  In a modular semiconductor device incorporating the semiconductor device of the present invention, the withstand voltage does not deteriorate even if the resin filled in the package contains moisture.
次に、 本発明の半導体装置の製造方法について説明する。  Next, a method for manufacturing a semiconductor device of the present invention will be described.
まず第 1工程において、 第 1導電型の第 1 半導体領域と, 第 1 半導体 領域内に位置し半導体基体の表面に露出する第 2導電型 (反対導電型) の第 2半導体領域と, 第 2導電型で第 2半導体領域を取り囲み半導体基 体の表面に露出する複数の第 3半導体領域を有する半導体基体が準備さ れる。 次に、 第 2工程において、 半導体基体の表面に第 1絶縁膜が形成 される。 さらに、 第 3工程において、 少なく とも一個の第 3半導体領域 の表面上における第 1絶縁膜が除去される。 またさらに、 第 4工程にお いて、 半導体基体の表面に第 2絶縁膜が形成される。 その後、 第 5工程 において、 第 2半導体領域及び第 3工程において表面上の絶縁膜が除去 された第 3半導体領域に隣接する第 2絶縁膜が除去される。 First, in the first step, a first semiconductor region of the first conductivity type, a second semiconductor region of the second conductivity type (opposite conductivity type) located in the first semiconductor region and exposed on the surface of the semiconductor substrate, A semiconductor substrate having a plurality of third semiconductor regions, which is conductive and surrounds the second semiconductor region and is exposed on the surface of the semiconductor substrate, is prepared. Next, in a second step, a first insulating film is formed on the surface of the semiconductor substrate. Further, in the third step, the first insulating film on the surface of at least one third semiconductor region is removed. Further, in a fourth step, a second insulating film is formed on the surface of the semiconductor substrate. Then, the fifth step In the method, the second insulating film adjacent to the second semiconductor region and the third semiconductor region from which the insulating film on the surface has been removed in the third step is removed.
このような方法によれば、 半導体基体表面において、 第 2絶縁膜が除 去されずに残る領域では、 他の領域よりも酸化膜の厚みが大きい。 すな わち、 上で述べた本発明の半導体装置のさらに好ましい構成が作製され る。  According to such a method, the thickness of the oxide film is larger in the region where the second insulating film remains without being removed on the surface of the semiconductor substrate than in other regions. That is, the more preferable structure of the semiconductor device of the present invention described above is manufactured.
また、 第 2工程において第 1絶縁膜として酸化膜が形成され、 かつそ の後の工程がいわゆる L O C O S酸化方法が適用される工程に置き換え られる製造方法によっても、 同様に本発明の半導体装置のさらに好まし い構成が作製される。 本製造方法では、 第 3工程において、 酸化膜上に 酸化防止膜が形成される。 さらに、 第 4工程において、 少なく とも一個 の第 3半導体領域の表面上の酸化防止膜が除去される。 その後第 5工程 において、 半導体基体が酸化されると、 酸化防止膜が除去された領域の 酸化膜が成長し厚くなる。  Similarly, the manufacturing method in which an oxide film is formed as the first insulating film in the second step, and the subsequent step is replaced with a step to which a so-called LOCOS oxidation method is applied, is also provided by the semiconductor device of the present invention. The preferred configuration is created. In the present manufacturing method, in the third step, an antioxidant film is formed on the oxide film. Further, in the fourth step, the antioxidant film on the surface of at least one third semiconductor region is removed. Thereafter, in the fifth step, when the semiconductor substrate is oxidized, the oxide film in the region where the antioxidant film has been removed grows and becomes thick.
上述したような本発明の半導体装置またはモジュール型半導体装置が、 半導体スィ ツチング素子をターンオン ♦ ターンオフすることによって電 力変換あるいは電力制御を行う装置におけるスィツチング素子あるいは ダイォー ド等の半導体装置として適用されるならば、 信頼性が高く長寿 命の高電圧装置を実現できる。 図面の簡単な説明  The semiconductor device or the modular semiconductor device of the present invention as described above is applied as a semiconductor device such as a switching element or a diode in a device that performs power conversion or power control by turning on and off a semiconductor switching element. Then, a highly reliable and long-life high-voltage device can be realized. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の実施例である高耐圧プレーナ型ダイォー ドの概略断 面図である。  FIG. 1 is a schematic sectional view of a high breakdown voltage planar type diode according to an embodiment of the present invention.
第 2図は本発明の実施例である高耐圧プレーナ型ダイォー ドの一実施 例を示す概略平面図である。  FIG. 2 is a schematic plan view showing one embodiment of the high breakdown voltage planar type diode according to the embodiment of the present invention.
第 3図は本発明の実施例である高耐圧プレーナ型ダイォー ドにおける D 空乏層の拡がり方を示す概略断面図である。 FIG. 3 shows a high breakdown voltage planar diode according to an embodiment of the present invention. D is a schematic sectional view showing how a depletion layer expands.
第 4図は第 3図の空乏層の拡がリに対応する半導体基体表面での電界 分布である。  FIG. 4 shows the electric field distribution on the surface of the semiconductor substrate corresponding to the expansion of the depletion layer in FIG.
第 5図は本発明の実施例である高耐圧プレーナ型ダイォー ドにその耐 圧に等しい電圧が印加される場合における空乏層の拡がりを示す概略断 面図である。  FIG. 5 is a schematic cross-sectional view showing the expansion of a depletion layer when a voltage equal to the withstand voltage is applied to the high breakdown voltage planar type diode according to the embodiment of the present invention.
第 6図は第 5図の空乏層の拡がりに対応する半導体基体表面での電界 分布である。  FIG. 6 shows the electric field distribution on the surface of the semiconductor substrate corresponding to the expansion of the depletion layer in FIG.
第 Ί図は本発明の実施例である高耐圧プレーナ型 I G B Tの概略断面 図である。  FIG. 5 is a schematic sectional view of a high-breakdown-voltage planar IGBT according to an embodiment of the present invention.
第 8図は本発明の実施例である他の高耐圧プレーナ型ダイォー ドの概 略断面図である。  FIG. 8 is a schematic sectional view of another high breakdown voltage planar type diode according to the embodiment of the present invention.
第 9図は本発明の実施例である他の高耐圧プレーナ型 I G B Tの概略 断面図である。  FIG. 9 is a schematic sectional view of another high-breakdown-voltage planar IGBT according to an embodiment of the present invention.
第 1 0図は第 1 図が示すダイォー ドの製造方法である。  FIG. 10 shows a method of manufacturing the diode shown in FIG.
第 1 1 図は第 8図が示すダイオー ドの製造方法である。  FIG. 11 shows a method of manufacturing the diode shown in FIG.
第 1 2図は本発明の実施例であるモジュール型半導体装置である。 第 1 3図は本発明の実施例である誘導電動機駆動用ィンバ一タ装置の 主回路である。 発明を実施するための最良の形態  FIG. 12 shows a module type semiconductor device according to an embodiment of the present invention. FIG. 13 shows a main circuit of an induction motor driving inverter device according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図は、 本発明の実施例である高耐圧プレーナ型ダイォー ドの概略 断面図である。 第 1 図において、 一対の主表面 1 1 0及び 1 2 0を有す る半導体基体 1 0 0は、 一方の主表面 1 1 0に隣接する n型半導体領域 1 0, 一方の主表面 1 1 0の中央部においてこの主表面から n型半導体 領域 1 0内に延び n型半導体領域 1 0との間にプレーナ型の主 p n接合 を形成する P+ 型半導体領域 2 0 , 他方の主表面 1 2 0と n型半導体領 域 1 0との間に形成され n型半導体領域 1 0より高不純物濃度を有する n+ 型半導体領域 4 0, 一方の主表面 1 1 0の周辺部においてこの主表 面から n型半導体領域 1 0内に延びかつ p+ 型半導体領域 2 0を取り囲 む複数個の P+ 型電界制限リ ング領域 2 1〜2 9、 及び一方の主表面 1 1 0から n型半導体領域 1 0内に延びかつ p+ 型電界制限リング領域 2 1〜 2 9 を取り囲む n型半導体領域 1 0より高不純物濃度を有する n + 型リング領域 3 0 を持っている。 FIG. 1 is a schematic sectional view of a high breakdown voltage planar type diode according to an embodiment of the present invention. In FIG. 1, a semiconductor substrate 100 having a pair of main surfaces 110 and 120 has an n-type semiconductor region 10 adjacent to one main surface 110 and one main surface 110. A central pn junction extending from the main surface into the n-type semiconductor region 10 at the center of the n-type semiconductor region 10 with the n-type semiconductor region 10 P + -type semiconductor region 20, which is formed between the other main surface 120 and the n-type semiconductor region 10 and has an impurity concentration higher than that of the n-type semiconductor region 10. At the periphery of one main surface 110, a plurality of P + type electric field limiting ring regions 21 to 2 extending from this main surface into n type semiconductor region 10 and surrounding p + type semiconductor region 20 An n + -type ring having an impurity concentration higher than that of the n-type semiconductor region 10 extending from the main surface 110 into the n-type semiconductor region 10 and surrounding the p + -type electric field limiting ring region 21 to 29 It has region 30.
アノー ド電極 1 は、 P+ 型半導体領域 2 0とォーミ ック接触し、 n型 半導体領域 1 0に形成された第 1絶縁膜 3 1 上及び第 2絶縁膜 4 1 上に 延び、 さらに P+ 型電界制限リ ング領域 2 1 と n型半導体領域 1 0から なる副 P n接合を覆うように形成される。 力ソー ド電極 2は、 n+ 型半 導体領域 4 0とォーミック接触する。 また、 補助電極 3は、 n+ 型リン グ領域 3 0とォ一ミ ック接触し、 n型半導体領域 1 0に形成される第 1 絶縁膜 3 5上及び第 2絶縁膜 4 5上に延び、 さらに p+ 型電界制限リ ン グ領域 2 9 と η型半導体領域 1 0からなる副 ρ η接合を覆うように形成 される。 フィ ールドプレー ト 1 1〜 1 4は、 それぞれ ρ+ 型電界制限リ ング領域 2 2 , 2 4, 2 6 , 2 8にォーミック接触し、 第 1絶縁膜 3 1 〜 3 5上及び第 2絶縁膜 4 1〜4 5上に延びさらに ρ+ 型電界制限リン グ領域 2 1, 2 3, 2 5, 2 7 , 2 9 と η型半導体領域 1 0からなる副 Ρ η接合を覆うように形成される。  The anode electrode 1 is in ohmic contact with the P + type semiconductor region 20, extends on the first insulating film 31 and the second insulating film 41 formed in the n type semiconductor region 10, and further has a P + type It is formed so as to cover the sub-P n junction composed of the electric field limiting ring region 21 and the n-type semiconductor region 10. Force source electrode 2 makes ohmic contact with n + type semiconductor region 40. The auxiliary electrode 3 is in intimate contact with the n + type ring region 30 and extends on the first insulating film 35 and the second insulating film 45 formed in the n type semiconductor region 10. Further, it is formed so as to cover the sub ρ η junction composed of the p + type electric field limiting ring region 29 and the η type semiconductor region 10. The field plates 11 to 14 are in ohmic contact with the ρ + type electric field limiting ring regions 22, 24, 26, 28, respectively, and are formed on the first insulating films 31 to 35 and the second insulating film. 41 extends over 1 to 45 and is formed so as to cover the subΡη junction consisting of the ρ + electric field limiting ring regions 21, 23, 25, 27, 29 and the η type semiconductor region 10. You.
ポリイ ミ ドシリコーン等から成る第 3絶縁膜 7 0は、 アノー ド電極 1 の周辺, 補助電極 3の表面, フィ ール ドプレー 卜 1 1〜 1 4上、 さらに 第 2絶縁膜表面上に形成される。 また、 第 4絶縁膜 8 0が第 3絶縁膜 7 0上に形成される。  The third insulating film 70 made of polyimide silicone or the like is formed around the anode electrode 1, the surface of the auxiliary electrode 3, on the field plates 11 to 14, and further on the surface of the second insulating film. You. Further, a fourth insulating film 80 is formed on the third insulating film 70.
第 2図は、 第 1 図に示した高耐圧プレーナ型ダイオー ドを一方の主表 面 1 1 0からみた平面図であり、 ァノー ド電極 1 , フィールドブレー 卜 1 1〜 1 4, 補助電極 3、 さらにァノー ド電極 1 と p + 型半導体領域と の接触部周辺 2 a , n + 型リング領域 3 0との接触部の内側 3 a を示し ている。 なお、 第 2図において A— A ' 部で示した個所の断面の概略図 が第 1 図に相当する。 Figure 2 shows the high breakdown voltage planar diode shown in Figure 1 on one main table. FIG. 4 is a plan view from the surface 110, showing the anode electrode 1, the field plates 11 to 14, the auxiliary electrode 3, and the vicinity of the contact portion between the anode electrode 1 and the p + type semiconductor region 2a, n + The inside 3a of the contact portion with the mold ring region 30 is shown. FIG. 1 is a schematic cross-sectional view taken along the line AA ′ in FIG.
第 3図は、 第 1 図に示した高耐圧プレーナ型ダイオー ドにおける空乏 層の拡がり方を示す。 本ダイオー ドに、 アノー ド電極 1 が負, 力ソー ド 電極 2が正となるような逆バイァス電圧が印加されると、 n型半導体領 域 1 0と p + 型半導体領域 2 0からなる主 p n接合から空乏層が主とし て不純物濃度の低い n型半導体領域 1 0内に拡がる。 印加電圧が低い場 合の空乏層の先端 2 0 1 が示すように、 空乏層は、 n型半導体領域 1 0 上に延びるァノー ド電極 1 のフィールドプレー 卜効果により、 半導体の 内部よりも表面において拡がりやすい。 半導体の表面に拡がる空乏層の 先端 2 0 1 が電界制限リング領域 2 1 に到達するまでは、. n型半導体領 域 1 0の表面の電界強度は第 4図 ( a ) に示すように近似的に三角形で 表わされる。  FIG. 3 shows how the depletion layer spreads in the high breakdown voltage planar diode shown in FIG. When a reverse bias voltage such that the anode electrode 1 is negative and the force source electrode 2 is positive is applied to the diode, the main diode consisting of the n-type semiconductor region 10 and the p + -type semiconductor region 20 is applied. The depletion layer mainly extends from the pn junction into the n-type semiconductor region 10 having a low impurity concentration. As shown by the depletion layer tip 201 when the applied voltage is low, the depletion layer is formed more on the surface than on the inside of the semiconductor due to the field plate effect of the anode electrode 1 extending over the n-type semiconductor region 10. Easy to spread. Until the tip 201 of the depletion layer spreading on the surface of the semiconductor reaches the electric field limiting ring region 21. The electric field strength on the surface of the n-type semiconductor region 10 is approximated as shown in Fig. 4 (a). Are represented by triangles.
さらに印加電圧が高くなると、 空乏層は、 電界制限リング領域 2 1 に 到達し、 その後は電界制限リング領域 2 1 から拡がる。 本実施例では、 電界制限リング領域 2 2とォ一ミツク接触するフィ一ルドプレー ト 1 1 が n型半導体領域 1 0の表面を覆いかつ電界制限リング領域 2 1上に届 くように形成されているので、 空乏層の先端 2 0 2が示すように、 空乏 層は n型半導体領域 1 0の表面では拡がりにく くなり、 n型半導体領域 When the applied voltage further increases, the depletion layer reaches the electric field limiting ring region 21 and thereafter expands from the electric field limiting ring region 21. In the present embodiment, a field plate 11 that is in intimate contact with the electric field limiting ring region 22 is formed so as to cover the surface of the n-type semiconductor region 10 and reach the electric field limiting ring region 21. The depletion layer is hardly spread on the surface of the n-type semiconductor region 10, as indicated by the tip 202 of the depletion layer.
1 0の表面の電界強度は第 4図 ( b ) が示すようになる。 ここで、 電界 制限リング領域 2 1 の右側での電界強度は、 電界制限リング領域 2 1 とThe electric field strength on the surface of 10 is as shown in Fig. 4 (b). Here, the electric field strength on the right side of the electric field limiting ring region 21 is
2 2の間隔を p + 型半導体領域 2 0と電界制限リ ング領域 2 1 との間隔 よりも短く しておくことにより、 適切な電界強度に抑えられる。 さらに y いっそう、 印加電圧が高くなると、 空乏層は、 その先端 2 04が示すよ うに、 さらに拡がる。 その場合の電界強度は第 4図 ( c ), (d ) に示さ れる。 By setting the interval 22 to be shorter than the interval between the p + type semiconductor region 20 and the electric field limiting ring region 21, it is possible to suppress the electric field intensity to an appropriate value. further y As the applied voltage further increases, the depletion layer further expands, as indicated by its tip 204. The electric field strength in that case is shown in Fig. 4 (c) and (d).
本実施例においては、 低不物濃度の n型半導体領域 1 0の表面が電極 あるいはフィールドプレー トでシールドされている。 このため、 レジン 中の電荷や水分等の外部雰囲気の影響により n型半導体領域 1 0の表面 が P型に反転して耐圧が低下したり リーク電流が増大するような、 阻止 特性の劣化が防止される。 さらに、 第 2絶縁膜 4 1〜4 5により、 電界 制限リ ング領域 2 1, 2 3, 2 5, 2 7, 2 9 と n型半導体領域 1 0か ら成る副 p n接合部上の絶縁膜の厚みが大きい。 このため、 これら副 P n接合の付近ではフィールドプレー 卜の効果が弱まるので、 副 p n接 合付近での局所的な電界集中が防止される。 従って、 第 4図 ( c ) 及び ( d ) が示すように、 p+ 半導体領域 2 0と電界制限リング領域 2 1 と の間及び各電界制限リ ング領域間における電界強度のピーク値は略均一 になるとともに、 アバランシェ降服を起こす電界強度 Emax 以下に抑え られる。 印加電圧が半導体装置の耐圧まで高くされると、 第 5図に示す ように空乏層 2 0 0が拡がる。 このとき、 第 6図に示すように、 n型半 導体領域表面各部での最大電界強度は、 ほぼ一定値にそろえられるとと もに Emax 以下に抑えられる。 従って、 本発明によればプレーナ型半導 体装置の高耐圧化が実現される。  In the present embodiment, the surface of the low impurity concentration n-type semiconductor region 10 is shielded by an electrode or a field plate. This prevents deterioration of the blocking characteristics, such as the inversion of the surface of the n-type semiconductor region 10 to the P-type due to the influence of the external atmosphere such as electric charge and moisture in the resin, which lowers the breakdown voltage and increases the leak current. Is done. Furthermore, the second insulating films 41 to 45 form an insulating film on the sub pn junction composed of the electric field limiting ring regions 21, 23, 25, 27, 29 and the n-type semiconductor region 10. Is thick. For this reason, the effect of the field plate is weakened near these sub pn junctions, and local electric field concentration near the sub pn junction is prevented. Therefore, as shown in FIGS. 4 (c) and 4 (d), the peak values of the electric field intensity between the p + semiconductor region 20 and the electric field limiting ring region 21 and between the electric field limiting ring regions are substantially uniform. At the same time, the electric field strength that causes avalanche drop-off can be kept below Emax. When the applied voltage is increased to the withstand voltage of the semiconductor device, the depletion layer 200 expands as shown in FIG. At this time, as shown in FIG. 6, the maximum electric field intensity at each part of the surface of the n-type semiconductor region can be kept almost equal to a constant value and suppressed to Emax or less. Therefore, according to the present invention, a high breakdown voltage of the planar semiconductor device is realized.
第 7図は本発明の他の実施例である絶縁ゲー 卜型バイポーラ 卜ランジ スタ( I G B T)の概略断面図である。 本実施例は、 n- 型半導体領域 1 0 1, n- 型半導体領域 1 0 1 に隣接して形成される n型半導体領域 6 0, n型半導体領域 6 0に隣接して形成される p+ 型半導体領域 5 0, P+ 型半導体領域 5 0とォーミック接触しているコレクタ電極 2 2 2 , ゲー 卜電極 1 1 2 , n+ 型半導体領域 1 0 2 , p+ 型ゥエル領域 2 1 0 , ェ 。 CT/JP95/00478 FIG. 7 is a schematic sectional view of an insulated gate bipolar transistor (IGBT) according to another embodiment of the present invention. In this embodiment, an n-type semiconductor region 101, an n-type semiconductor region 60 formed adjacent to the n-type semiconductor region 101, and a p + region formed adjacent to the n-type semiconductor region 60 are formed. Electrode 22 2, gate electrode 11 2, n + type semiconductor region 10 2, p + type p-type region 2 10, ohmic contact with p-type semiconductor region 50, P + type semiconductor region 50 E. CT / JP95 / 00478
ゲー 卜電極 1 1 2を囲む S i 〇2 等の絶縁膜 3 7 0, ェミ ツタ電極 111 を有する。 第 7図が示す I G B Tにおいて、 順方向阻止状態では p+ 型 ゥエル領域 2 1 0と n- 型半導体領域 1 0 1 からなる主 p n接合が逆バ ィァスされる。 第 7図における p+ 型ゥエル領域 2 1 0は第 1 図が示す P+ 型半導体領域 2 0に相当するので、 本実施例の動作は第 1図のダイ ォー ドと同様である。 An insulating film 370 such as Si 2 surrounding the gate electrode 112 and an emitter electrode 111 are provided. In the IGBT shown in FIG. 7, in the forward blocking state, the main pn junction composed of the p + type well region 210 and the n− type semiconductor region 101 is reverse-biased. Since the p + type well region 210 in FIG. 7 corresponds to the P + type semiconductor region 20 shown in FIG. 1, the operation of this embodiment is the same as that of the diode of FIG.
第 8図は本発明の別の実施例であるダイォー ドの概略断面図である。 本実施例では、 第 1絶縁膜及び第 2絶縁膜を L 0 C 0 S酸化によリ形成 する。 本実施例においても、 電界制限リ ング領域 2 1, 2 3, 2 5, 2 7の表面及び電界制限リング領域 2 1 , 2 3, 2 5 , 2 7 と n型半導 体領域 1 0からなる副 p n接合表面に形成される第 5絶縁膜 5 1〜 5 5 の厚みが他より厚い。 従って、 本実施例は、 第 1 図のダイオー ドと同様 に動作するので、 高耐圧及び高信頼性を有する。 なお、 本実施例の構成 は、 第 9図が示すように、 ェ G B Tにも適用できる。  FIG. 8 is a schematic sectional view of a diode according to another embodiment of the present invention. In this embodiment, the first insulating film and the second insulating film are formed by L0C0S oxidation. Also in this embodiment, the surface of the electric field limiting ring regions 21, 23, 25, 27, the electric field limiting ring regions 21, 23, 25, 27 and the n-type semiconductor region 10 The thickness of the fifth insulating films 51 to 55 formed on the surface of the sub pn junction is thicker than others. Therefore, this embodiment operates in the same manner as the diode of FIG. 1, and has high breakdown voltage and high reliability. The configuration of this embodiment can be applied to GBT as shown in FIG.
第 1 0図は、 第 1 図が示すダイォー ドの製造方法を示す。  FIG. 10 shows a method of manufacturing the diode shown in FIG.
工程 ( a ) においては、 先ず n型の半導体基板 1 0 0の一方の主表面 1 1 0側に熱拡散やイオン打ち込み法によって p+ 型半導体領域 2 0, 電界制限リ ング領域 2 1〜2 9及び n+ 型リング領域 3 0が形成される とともに、 他の主表面 1 2 0からリ ンなどの不純物を拡散して n+ 型半 導体領域 4 0が形成される。 なお、 n+ 型半導体領域 4 0上にェピタキ シャル成長により n型半導体領域 1 0が形成されてもよい。 以上のよう にして接合構造が形成される半導体基板の表面に、 第 1絶縁膜 3 0 0が 形成される。 第 1絶縁膜 3 0 0は、 熱処理により形成される S i 02 膜 と C VD法によリ堆積される P S G膜との複合膜である。 In the step (a), first, the p + type semiconductor region 20 and the electric field limiting ring region 21 to 29 are formed on one main surface 110 side of the n-type semiconductor substrate 100 by thermal diffusion or ion implantation. And n + type ring region 30 are formed, and impurities such as phosphorus are diffused from other main surface 120 to form n + type semiconductor region 40. The n-type semiconductor region 10 may be formed on the n + -type semiconductor region 40 by epitaxy. The first insulating film 300 is formed on the surface of the semiconductor substrate on which the bonding structure is formed as described above. The first insulating film 300 is a composite film of the SiO 2 film formed by the heat treatment and the PSG film deposited by the CVD method.
工程 ( b ) においては、 ホ トエッチング技術により、 P+ 型半導体領 域 2 0, 電界制限リング領域 2 2, 24, 2 6, 2 8及び n+ 型リング 領域 3 0の露出表面において、 電極が接触する部分の第 1絶縁膜が除去 される。 本工程により、 工程 ( a ) において形成される絶縁膜が、 第 1 絶縁膜 3 1〜 3 5に分割される。 In step (b), the P + type semiconductor region 20, the electric field limiting ring regions 22, 24, 26, 28 and the n + type On the exposed surface of the region 30, the portion of the first insulating film in contact with the electrode is removed. By this step, the insulating film formed in the step (a) is divided into first insulating films 31 to 35.
工程 ( c ) においては、 CVD法あるいはマイクロ波プラズマ CV D 法により第 2絶縁膜 4 0 0が形成される。  In the step (c), a second insulating film 400 is formed by a CVD method or a microwave plasma CVD method.
工程 ( d ) においては、 電界制限リ ング領域 2 1, 2 3, 2 5, 2 7 の表面及び電界制限リング領域 2 1, 2 3, 2 5, 2 7 と n型半導体領 域 1 0から成る副 p n接合表面の絶縁膜を厚くするために、 ホ トエッチ ング技術で工程 ( c ) において形成される絶縁膜が加工されて、 第 2絶 縁膜 4 1〜4 5が形成される。  In the step (d), the surfaces of the electric field limiting ring regions 21, 23, 25, 27 and the electric field limiting ring regions 21, 23, 25, 27 and the n-type semiconductor region 10 In order to increase the thickness of the insulating film on the surface of the sub pn junction, the insulating film formed in step (c) is processed by a photoetching technique to form second insulating films 41 to 45.
工程 ( e ) においては、 アルミニウム等の金属が電子ビーム蒸着法や スパッタ リング法により基板表面に選択的に付着されたり、 基板表面全 面に付着された後選択的にエッチングされることにより、 ァノー ド電極 1 , フィールドプレー 卜 1 1〜 1 4, 補助電極 3が形成きれる。  In the step (e), a metal such as aluminum is selectively deposited on the substrate surface by an electron beam evaporation method or a sputtering method, or is selectively etched after being deposited on the entire substrate surface. The electrode 1, field plates 11 to 14, and auxiliary electrode 3 can be formed.
工程 ( f ) においては、 第 2絶縁膜 4 1〜 4 5, ァノー ド電極 1 , フ ィールドプレー 卜 1 1〜 1 4、 及び補助電極 3の保護のため、 C V D法 によリ形成される P S G膜のような第 3絶縁膜 7 0及びポリィ ミ ドシリ コーンのような第 4絶縁膜 8 0が、 ホ 卜エッチング技術により形成され る。 さらに、 高不純物濃度を有する n+ 型半導体領域 4 0と接触する力 ソー ド電極 2が、 アルミニウム, ニッケル, クロム及び銀からなる多層 膜によ り形成される。  In step (f), a PSG formed by a CVD method to protect the second insulating films 41 to 45, the anode electrode 1, the field plates 11 to 14 and the auxiliary electrode 3 is formed. A third insulating film 70 such as a film and a fourth insulating film 80 such as polyimide silicon are formed by a photo-etching technique. Further, a force source electrode 2 for contacting the n + type semiconductor region 40 having a high impurity concentration is formed of a multilayer film made of aluminum, nickel, chromium and silver.
第 1 1図は、 第 8図が示すダイオー ドの製造方法を示す。 本製造方法 においては、 特に工程 ( b)〜(d ) が前述の製造方法と異なり、 いわゆ る L O C O S酸化方法が適用される。 以下に述べるように、 L O C O S 酸化方法により、 部分的に厚さが異なる酸化膜が形成される。  FIG. 11 shows a method of manufacturing the diode shown in FIG. In this production method, the steps (b) to (d) are particularly different from the above-mentioned production method, and a so-called LOCOS oxidation method is applied. As described below, an oxide film having a partially different thickness is formed by the LOCOS oxidation method.
工程 ( b ) においては、 S i 〇2 膜 3 0 0上に CVD法あるいはブラ ズマ C V D法により、 S i 3 N 4のような非酸化性の絶縁膜 9 0が形成さ れる。 In step (b), CVD method or bra on S i 〇 2 film 3 0 0 A non-oxidizing insulating film 90 such as Si 3 N 4 is formed by the plasma CVD method.
工程 ( c ) においては、 ホ トエッチング技術により、 工程 ( b ) にお いて形成される絶縁膜が部分的に除去される。 残された絶縁膜 9 1 〜 9 6は、 p + 型半導体領域 2 0 , 電界制限リ ング領域 2 2, 2 4 , 2 6, 2 8 , n + 型半導体領域 3 0の表面及び電界制限リ ング領域と n型半導 体領域から成る副 P n接合の表面を覆っている。 その後、 半導体基板が 熱酸化されると、 絶縁膜が除去された部分の S i 0 , 膜が成長して厚く なる。  In the step (c), the insulating film formed in the step (b) is partially removed by a photo-etching technique. The remaining insulating films 91 to 96 are formed on the surface of the p + type semiconductor region 20, the electric field limiting ring regions 22, 24, 26, 28, and the n + type semiconductor region 30 and the electric field limiting ring. Overlying the surface of the sub-P n junction consisting of the silicon region and the n-type semiconductor region. Thereafter, when the semiconductor substrate is thermally oxidized, the S i 0, film at the portion where the insulating film is removed grows and becomes thicker.
工程 ( d ) においては、 残された絶縁膜が熱リ ン酸等により除去され る。 その後、 ホ トエツチング技術により、 p + 型半導体領域 2 0, 電界 制限リング領域 2 2 , 2 4, 2 6, 2 8、 及び n + 型半導体領域 3 0の 表面の S i 0 2 膜が部分的に除去される。 なお、 絶縁膜が熱リン酸等に より除去された後に、 S i 0 膜上に P S G膜が形成されてもよい。 第 1 2図は、 本発明を実施した半導体装置を内蔵するモジュール型半 導体装置を示す。 本発明を実施した半導体装置 6 0 1及び 6 0 1 ' が電 気的絶縁板 6 0 3 を介して金属製のヒー 卜シンク板 6 0 2に接着され、 これら半導体装置と引出電極 6 0 5が内部配線 6 0 4により電気的に接 続される。 このように金属板に搭載された半導体装置及び電極が、 機械 的保護のためにプラスチックケース 6 0 7で封止される。 プラスチック ケースの内部には、 半導体装置及び内部配線 5 0 4等の絶縁や保護のた めに、 ゲル状のシリコーンのような絶縁材 6 0 6が充填される。 In the step (d), the remaining insulating film is removed with hot phosphoric acid or the like. Thereafter, the ho Toetsuchingu technology, p + -type semiconductor region 2 0, field limiting ring region 2 2, 2 4, 2 6, 2 8, and S i 0 2 film is partially of the n + -type semiconductor regions 3 0 of the surface Is removed. Note that a PSG film may be formed on the SiO film after the insulating film is removed by hot phosphoric acid or the like. FIG. 12 shows a modular semiconductor device incorporating a semiconductor device embodying the present invention. The semiconductor devices 60 1 and 60 1 ′ embodying the present invention are adhered to a metal heat sink plate 62 through an electrical insulating plate 60 3, and these semiconductor devices and the extraction electrodes 60 05 Are electrically connected by the internal wiring 604. The semiconductor device and the electrodes mounted on the metal plate as described above are sealed in the plastic case 607 for mechanical protection. The inside of the plastic case is filled with an insulating material 606 such as gel silicone for insulation and protection of the semiconductor device and the internal wiring 504 and the like.
以上説明されたような本発明が適用される半導体装置及びモジュール 型半導体装置の電気的特性は、 湿度 8 5 %及び温度 8 5 °Cのもとで 1600 Vという電圧が 1 0 0 0時間印加される信頼性試験において劣化せず安 定である。 丄 なお、 本発明は、 ダイオー ドや I G B Tに限らず、 種々のプレーナ型 半導体装置に適用できる。 また、 各実施例において、 各半導体領域の導 電型を逆にしたもの、 すなわち p型を n型に替えて n型を p型に替えた ものに対しても、 本発明を適用できる。 As described above, the electrical characteristics of the semiconductor device and the module-type semiconductor device to which the present invention is applied are such that a voltage of 1600 V is applied for 1000 hours under a humidity of 85% and a temperature of 85 ° C. It is stable without deterioration in reliability tests performed. The present invention is not limited to diodes and IGBTs, but can be applied to various planar semiconductor devices. In each embodiment, the present invention can be applied to a semiconductor device in which the conductivity type of each semiconductor region is reversed, that is, a semiconductor device in which p-type is replaced with n-type and n-type is replaced with p-type.
第 1 3図は本発明が実施される I G B T及びダイオー ドが内蔵される モジュール型半導体装置が用いられる誘導電動機駆動用ィ ンバータ装置 の主回路を示す。 図中四角で囲んだ部分、 すなわち I G B T 6 0 】 とダ ィオー ド 6 0 1 ' の逆並列回路部がモジュール型半導体装置である。 本インバータ装置は、 一対の直流端子 5 4 3及び 5 4 4、 並びに相数 に等しい三個の交流端子 5 5 7〜 5 5 9 を持っている。 直流端子には直 流電源が接続され、 各 I G B T 5 4 5〜5 5 0がスィ ツチングされるこ とによ り、 直流電力が交流電力に変換される。 そして交流電力は各交流 端子に出力され、 誘導電動機 1 0 0 0が駆動される。 直流端子間には、 二個の I G B Tが直列に接続されたものの両端が、 交流の相数に等しい 個数だけ接続される。 二個の I G B Tが直列に接続されたものにおける 相互接続点からは交流端子が取り出される。 また、 各 I G B Tには負荷 電流を還流させるためにダイオー ドが逆並列に接続される。 また、 I GBT とダイオー ドの逆並列回路部には、 ダイオー ド 6 0 0 ' , 抵抗 7 1 0及 びコンデンサ 6 2 0からなるスナツバー回路が並列に接続される力 こ のダイオー ド 6 0 0 ' に本発明が適用されてもよい。 なお、 1 GBT601 と ダイオー ド 6 0 1 ' は個別にパッケージングされたものでもよい。  FIG. 13 shows a main circuit of an inverter device for driving an induction motor in which a modular semiconductor device having a built-in IGBT and a diode according to the present invention is used. The portion surrounded by a square in the figure, that is, the anti-parallel circuit portion of IGBT 60] and the diode 61 1 ′ is a module type semiconductor device. This inverter device has a pair of DC terminals 543 and 544, and three AC terminals 557 to 559 having the same number of phases. A DC power supply is connected to the DC terminal, and each of the IGBTs 545 to 550 is switched, so that DC power is converted to AC power. The AC power is output to each AC terminal, and the induction motor 100 is driven. Between the DC terminals, two IGBTs connected in series have both ends connected by the number equal to the number of AC phases. An AC terminal is taken out from the interconnection point of the two IGBTs connected in series. A diode is connected in anti-parallel to each IGB T to circulate the load current. In addition, in the anti-parallel circuit part of the IGBT and the diode, a snubber circuit consisting of a diode 600 ′, a resistor 71 0 and a capacitor 62 0 is connected in parallel. The present invention may be applied to '. Note that the 1 GBT 601 and the diode 601 'may be individually packaged.
ィンバータ装置の寿命は半導体装置の信頼性により左右されるが、 本 発明によれば、 I G B T及びダイォー ドが高耐圧化されかつ信頼性が向 上するので、 大容量でかつ高信頼性を有するィンバータ装置が実現され る。 なお、 本発明は、 インバータ装置に限らず、 各種の電力変換装置並 びに電力制御装置に適用され得る。 以上詳述したように、 本発明によれば、 高耐圧あるいは高信頼性を有 するプレーナ型半導体装置やモジュール型半導体装置が実現される。 さ らに、 本発明によれば、 大容量でかつ高信頼性を有するインバータ装置 のような電力変換装置が実現される。 Although the life of the inverter device depends on the reliability of the semiconductor device, according to the present invention, the IGBT and the diode have a high withstand voltage and the reliability is improved. The device is realized. The present invention is not limited to the inverter device, and can be applied to various power conversion devices and power control devices. As described in detail above, according to the present invention, a planar semiconductor device or a module semiconductor device having high withstand voltage or high reliability is realized. Further, according to the present invention, a power conversion device such as an inverter device having a large capacity and high reliability is realized.

Claims

請求の範囲 The scope of the claims
1 . 第 1 導電型の第 1 半導体領域を有する半導体基体と、  1. a semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも一個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least one of the plurality of third semiconductor regions, an insulator located on a surface of the semiconductor substrate,
を備え、 With
第 2半導体領域に隣接する第 3半導体領域の表面上における絶縁体上 に、 第 2主電極及び導電体が延びている半導体装置。  A semiconductor device in which a second main electrode and a conductor extend on an insulator on a surface of a third semiconductor region adjacent to the second semiconductor region.
2 . 請求項 1 において、 半導体基体表面における第 2半導体領域に隣接 する第 3半導体領域と第 1 半導体領域との間の接合の露出部上における 絶縁体第 1 の部分の厚みが、 第 2半導体領域及び導電体が接触する第 3 半導体領域に隣接する絶縁体の第 2の部分の厚みよりも大きい半導体装 置。  2. The insulator according to claim 1, wherein the thickness of the insulator first portion on the exposed portion of the junction between the third semiconductor region and the first semiconductor region adjacent to the second semiconductor region on the surface of the semiconductor substrate is equal to or greater than the second semiconductor thickness. A semiconductor device having a thickness greater than a thickness of a second portion of the insulator adjacent to the third semiconductor region with which the region and the conductor are in contact.
3 . 請求項 2において、 前記絶縁体の第 1 の部分が、 前記接合の露出部 を覆っている半導体装置。  3. The semiconductor device according to claim 2, wherein the first portion of the insulator covers an exposed portion of the junction.
4 . 請求項 1 において、 第 2半導体領域と第 2半導体領域に隣接する第 3半導体領域との間の間隔が、 第 2半導体領域に隣接する第 3半導体領 域と導電体が接触する第 3半導体領域との間隔よりも広くなつている半 導体装置。  4. The semiconductor device according to claim 1, wherein a distance between the second semiconductor region and a third semiconductor region adjacent to the second semiconductor region is equal to a distance between the third semiconductor region adjacent to the second semiconductor region and the third semiconductor region. A semiconductor device that is wider than the distance from the semiconductor area.
5 . 請求項 1 において、 さらに、 一個の第 3半導体領域が導電体と接触 する二個の第 3半導体領域の閒に位置し、 前記一個の第 3半導体領域の 丄 b 表面上における絶縁体上に、 前記二個の第 3半導体領域から導電体が延 びている半導体装置。 5. The semiconductor device according to claim 1, wherein one third semiconductor region is located between two third semiconductor regions in contact with the conductor, and 半導体 b A semiconductor device in which a conductor extends from the two third semiconductor regions on an insulator on the surface.
6 . 請求項 5において、 前記一個の第 3半導体領域と第 1 半導体領域と の間の接合の露出部上における絶縁体の第 1 の部分の厚みが、 前記二個 の第 3半導体領域に隣接する絶縁体の第 2の部分の厚みよりも大きい半 導体装置。  6. In Claim 5, the thickness of the first portion of the insulator on the exposed portion of the junction between the one third semiconductor region and the first semiconductor region is adjacent to the two third semiconductor regions. A semiconductor device that is larger than the thickness of the second portion of the insulating material.
7 . 請求項 6において、 前記絶縁体の第 1 の部分が、 前記接合の露出部 を覆っている半導体装置。  7. The semiconductor device according to claim 6, wherein the first portion of the insulator covers an exposed portion of the junction.
8 . 第 1導電型の第 1 半導体領域を有する半導体基体と、  8. A semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも二個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least two of the plurality of third semiconductor regions, an insulator located on the surface of the semiconductor substrate,
を備え、 With
一個の第 3半導体領域が導電体と接触する二個の第 3半導体領域の間 に位置し、 前記一個の第 3半導体領域の表面上における絶縁体上に、 前 記二個の第 3半導体領域から導電体が延びている半導体装置。  One third semiconductor region is located between two third semiconductor regions in contact with the conductor, and the two third semiconductor regions are formed on an insulator on a surface of the one third semiconductor region. A semiconductor device having a conductor extending from the semiconductor device.
9 . 請求項 8において、 前記一個の第 3半導体領域と第 1 半導体領域と の間の接合の露出部上における絶縁体の第 1 の部分の厚みが、 前記二個 の第 3半導体領域に隣接する絶縁体の第 2の部分の厚みよりも大きい半 導体装置。  9. In Claim 8, the thickness of the first portion of the insulator on the exposed portion of the junction between the one third semiconductor region and the first semiconductor region is adjacent to the two third semiconductor regions. A semiconductor device that is larger than the thickness of the second portion of the insulating material.
1 0 . 請求項 9において、 前記絶縁体の第 1 の部分が、 前記接合の露出 部を覆っている半導体装置。 10. The method of claim 9, wherein the first portion of the insulator is exposed to the junction. Semiconductor device covering part.
1 1 . 請求項 8において、 前記一個の第 3半導体領域と, 前記二個の第 3半導体領域の内第 2半導体領域側に位置する第 3半導体領域との間の 間隔よりも、 前記一個の第 3半導体領域と, 前記二個の第 3半導体領域 の内第 2半導体領域の反対側に位置する第 3半導体領域との間の間隔が 広くなっている半導体装置。  11. The device according to claim 8, wherein the distance between the one third semiconductor region and the third semiconductor region located on the side of the second semiconductor region among the two third semiconductor regions is smaller than the distance between the one third semiconductor region and the third semiconductor region. A semiconductor device in which an interval between a third semiconductor region and a third semiconductor region of the two third semiconductor regions located on the opposite side of the second semiconductor region is widened.
1 2 . 第 1 導電型の第 1 半導体領域と, 第 1 半導体領域内に位置し、 半 導体基体の表面に露出する、 第 2導電型の第 2半導体領域と, 第 1 半導 体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体の表面に露 出する、 第 2導電型の複数の第 3半導体領域と、 を有する半導体基体を 準備する第 1 工程と、  12. A first semiconductor region of the first conductivity type, a second semiconductor region of the second conductivity type located in the first semiconductor region and exposed on the surface of the semiconductor substrate, and a first semiconductor region of the first conductivity type. A plurality of third semiconductor regions of a second conductivity type, surrounding the second semiconductor region, and exposing to the surface of the semiconductor substrate; and
半導体基体の表面に第 1絶縁膜を形成する第 2工程と、  A second step of forming a first insulating film on the surface of the semiconductor substrate;
少なく とも一個の第 3半導体領域の表面上の第 1絶縁膜を除去する第 3工程と、  A third step of removing the first insulating film on the surface of at least one third semiconductor region;
半導体基体の表面に第 2絶縁膜を形成する第 2工程と、  A second step of forming a second insulating film on the surface of the semiconductor substrate;
第 2半導体領域及び前記一個の第 3半導体領域に隣接する第 2絶縁膜 を除去する第 4工程と、  A fourth step of removing the second insulating film adjacent to the second semiconductor region and the one third semiconductor region;
を有する半導体装置の製造方法。 A method for manufacturing a semiconductor device having:
1 3 . 第 1導電型の第 1 半導体領域と, 第 1 半導体領域内に位置し、 半 導体基体の表面に露出する、 第 2導電型の第 2半導体領域と, 第 1 半導 体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体の表面に露 出する、 第 2導電型の複数の第 3半導体領域と、 を有する半導体基体を 準備する第 1 工程と、  1 3. A first semiconductor region of the first conductivity type, a second semiconductor region of the second conductivity type located in the first semiconductor region and exposed on the surface of the semiconductor substrate, and in the first semiconductor region. A plurality of third semiconductor regions of a second conductivity type, surrounding the second semiconductor region, and exposing to the surface of the semiconductor substrate; and
半導体基体の表面に酸化膜を形成する第 2工程と、  A second step of forming an oxide film on the surface of the semiconductor substrate;
酸化膜上に酸化防止膜を形成する第 3工程と、  A third step of forming an antioxidant film on the oxide film,
少なく とも一個の第 3半導体領域の表面上の酸化防止膜を除去する第 1 o 工程と、 Removing the antioxidant film on the surface of at least one third semiconductor region; 1 o process and
半導体基体を酸化する第 5工程と、  A fifth step of oxidizing the semiconductor substrate;
を有する半導体装置の製造方法。 A method for manufacturing a semiconductor device having:
1 4 . 金属板と、  1 4. Metal plate and
金属板を覆うプラスチックケースと、  A plastic case that covers the metal plate,
プラスチックケース内の金属板上に接着される絶縁板と、  An insulating plate adhered to the metal plate in the plastic case,
絶縁板上に接着される半導体素子と、  A semiconductor element adhered on the insulating plate;
絶縁板上に接着されるとともにプラスチックケースの外部へ引き出さ れ、 半導体素子と電気的に接続される電極端子と、  An electrode terminal that is bonded to the insulating plate and pulled out of the plastic case, and is electrically connected to the semiconductor element;
プラスチックケース内において、 半導体素子を覆う絶縁樹脂と、 を備え、  In a plastic case, an insulating resin covering the semiconductor element is provided.
前記半導体素子が、  Wherein the semiconductor element is
第 1導電型の第 1 半導体領域を有する半導体基体と、  A semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも一個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least one of the plurality of third semiconductor regions, an insulator located on a surface of the semiconductor substrate,
を備え、 With
第 2半導体領域に隣接する第 3半導体領域の表面上における絶縁体上 に、 第 2主電極及び導電体が延びている半導体装置。  A semiconductor device in which a second main electrode and a conductor extend on an insulator on a surface of a third semiconductor region adjacent to the second semiconductor region.
1 5 . 金属板と、  1 5. Metal plate and
金属板を覆うプラスチックケースと、 プラスチックケース内の金属板上に接着される絶縁板と、 絶縁板上に接着される半導体素子と、 A plastic case that covers the metal plate, An insulating plate bonded to the metal plate in the plastic case; a semiconductor element bonded to the insulating plate;
絶縁板上に接着されるとともにプラスチックケースの外部へ引き出さ れ、 半導体素子と電気的に接続される電極端子と、  An electrode terminal that is bonded to the insulating plate and pulled out of the plastic case, and is electrically connected to the semiconductor element;
プラスチックケース内において、 半導体素子を覆う絶縁樹脂と、 を備え、  In a plastic case, an insulating resin covering the semiconductor element is provided.
前記半導体素子が、  Wherein the semiconductor element is
第 1導電型の第 1 半導体領域を有する半導体基体と、  A semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも二個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、 を備え、  A conductor contacting at least two of the plurality of third semiconductor regions; and an insulator located on a surface of the semiconductor substrate.
一個の第 3半導体領域が導電体と接触する二個の第 3半導体領域の間 に位置し、 前記一個の第 3半導体領域の表面上における絶縁体上に、 前 記二個の第 3半導体領域から導電体が延びている半導体装置。  One third semiconductor region is located between two third semiconductor regions in contact with a conductor, and the two third semiconductor regions are formed on an insulator on a surface of the one third semiconductor region. A semiconductor device having a conductor extending from the semiconductor device.
1 6 . 一対の直流端子と、  1 6. A pair of DC terminals,
交流の相数に等しい個数の交流端子と、  The number of AC terminals equal to the number of AC phases;
を有し、 Has,
複数の半導体装置を直列に接続したものを、 交流の相数に等しい個数 有し、 該複数の半導体素子を直列に接続したものは直流端子間に接続さ れ、 交流端子は、 該複数の半導体装置を直列に接続したものの相互接続点 から取り出され、 A plurality of semiconductor devices connected in series has a number equal to the number of AC phases, and a plurality of semiconductor devices connected in series is connected between DC terminals, An AC terminal is taken out from an interconnection point of the plurality of semiconductor devices connected in series,
半導体装置が、  Semiconductor device
第 1 導電型の第 1 半導体領域を有する半導体基体と、  A semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも一個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least one of the plurality of third semiconductor regions, an insulator located on a surface of the semiconductor substrate,
を備え、 With
第 2半導体領域に隣接する第 3半導体領域の表面上における絶縁体上 に、 第 2主電極及び導電体が延びている電力変換装置。  A power converter in which a second main electrode and a conductor extend on an insulator on a surface of a third semiconductor region adjacent to the second semiconductor region.
1 7 . 一対の直流端子と、  1 7. A pair of DC terminals,
交流の相数に等しい個数の交流端子と、  The number of AC terminals equal to the number of AC phases;
を有し、 Has,
複数の半導体装置を直列に接続したものを、 交流の相数に等しい個数 有し、 該複数の半導体装置を直列に接続したものは直流端子間に接続さ れ、  A plurality of semiconductor devices connected in series has a number equal to the number of AC phases, and a plurality of semiconductor devices connected in series is connected between DC terminals,
交流端子は、 該複数の半導体装置を直列に接続したものの相互接続点 から取り出され、  An AC terminal is taken out from an interconnection point of the plurality of semiconductor devices connected in series,
半導体装置が、  Semiconductor device
第 1導電型の第 1半導体領域を有する半導体基体と、  A semiconductor base having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、 A second conductive layer located in the first semiconductor region and exposed on the surface of the semiconductor substrate; A second semiconductor region of the mold;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも二個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least two of the plurality of third semiconductor regions, an insulator located on the surface of the semiconductor substrate,
を備え、 With
一個の第 3半導体領域が導電体と接触する二個の第 3半導体領域の間 に位置し、 前記一個の第 3半導体領域の表面上における絶縁体上に、 前 記二個の第 3半導体領域から導電体が延びている電力変換装置。  One third semiconductor region is located between two third semiconductor regions in contact with a conductor, and the two third semiconductor regions are formed on an insulator on a surface of the one third semiconductor region. A power converter in which a conductor extends from the power converter.
1 8 . 一対の直流端子と、  1 8. A pair of DC terminals,
交流の相数に等しい個数の交流端子と、  The number of AC terminals equal to the number of AC phases;
を有し、 Has,
複数の半導体装置を直列に接続したものを、 交流の相数に等しい個数 有し、 該複数の半導体装置を直列に接続したものは直流端子間に接続さ れ、  A plurality of semiconductor devices connected in series has a number equal to the number of AC phases, and a plurality of semiconductor devices connected in series is connected between DC terminals,
交流端子は、 該複数の半導体素子を直列に接続したものの相互接続点 から取り出され、  The AC terminal is taken out from an interconnection point of the plurality of semiconductor elements connected in series,
半導体装置が、  Semiconductor device
金属板と、  A metal plate,
金属板を覆うプラスチックケースと、  A plastic case that covers the metal plate,
プラスチックケース内の金属板上に接着される絶縁板と、  An insulating plate adhered to the metal plate in the plastic case,
絶縁板上に接着される半導体素子と、  A semiconductor element adhered on the insulating plate;
絶縁板上に接着されるとともにプラスチックケースの外部へ引き出さ れ、 半導体素子と電気的に接続される電極端子と、 プラスチックケース内において、 半導体素子を覆う絶縁樹脂と、 を備え、 An electrode terminal that is bonded to the insulating plate and pulled out of the plastic case, and is electrically connected to the semiconductor element; In a plastic case, an insulating resin covering the semiconductor element is provided.
前記半導体素子が、  Wherein the semiconductor element is
第 1 導電型の第 1 半導体領域を有する半導体基体と、  A semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも一個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least one of the plurality of third semiconductor regions, an insulator located on a surface of the semiconductor substrate,
を備え、 With
第 2半導体領域に隣接する第 3半導体領域の表面上における絶縁体上 に、 第 2主電極及び導電体が延びている電力変換装置。  A power converter in which a second main electrode and a conductor extend on an insulator on a surface of a third semiconductor region adjacent to the second semiconductor region.
1 9 . 一対の直流端子と、  1 9. A pair of DC terminals,
交流の相数に等しい個数の交流端子と、  The number of AC terminals equal to the number of AC phases;
を有し、 Has,
複数の半導体装置を直列に接続したものを、 交流の相数に等しい個数 有し、 該複数の半導体装置を直列に接続したものは直流端子間に接続さ れ、  A plurality of semiconductor devices connected in series has a number equal to the number of AC phases, and a plurality of semiconductor devices connected in series is connected between DC terminals,
交流端子は、 該複数の半導体素子を直列に接続したものの相互接続点 から取り出され、  The AC terminal is taken out from an interconnection point of the plurality of semiconductor elements connected in series,
半導体装置が、  Semiconductor device
金属板と、  A metal plate,
金属板を覆うプラスチックケースと、 プラスチックケース内の金属板上に接着される絶縁板と、 絶縁板上に接着される半導体素子と、 A plastic case that covers the metal plate, An insulating plate bonded to the metal plate in the plastic case; a semiconductor element bonded to the insulating plate;
絶縁板上に接着されるとともにプラスチックケースの外部へ引き出さ れ、 半導体素子と電気的に接続される電極端子と、  An electrode terminal that is bonded to the insulating plate and pulled out of the plastic case, and is electrically connected to the semiconductor element;
プラスチックケース内において、 半導体素子を覆う絶縁樹脂と、 を備え、  In a plastic case, an insulating resin covering the semiconductor element is provided.
前記半導体素子が、  Wherein the semiconductor element is
第 1導電型の第 1 半導体領域を有する半導体基体と、  A semiconductor substrate having a first semiconductor region of a first conductivity type;
第 1 半導体領域内に位置し、 半導体基体の表面に露出する、 第 2導電 型の第 2半導体領域と、  A second semiconductor region of the second conductivity type, which is located in the first semiconductor region and is exposed on the surface of the semiconductor substrate;
第 1 半導体領域内に位置し、 第 2半導体領域を取り囲み、 半導体基体 の表面に露出する、 第 2導電型の複数の第 3半導体領域と、  A plurality of third semiconductor regions of the second conductivity type, located in the first semiconductor region, surrounding the second semiconductor region, and exposed on the surface of the semiconductor substrate;
第 1 半導体領域に接触する第 1 主電極と、  A first main electrode contacting the first semiconductor region;
第 2半導体領域に接触する第 2主電極と、  A second main electrode contacting the second semiconductor region;
複数の第 3半導体領域の少なく とも二個に接触する導電体と、 半導体基体の表面に位置する絶縁体と、  A conductor contacting at least two of the plurality of third semiconductor regions, an insulator located on the surface of the semiconductor substrate,
を備え、 With
一個の第 3半導体領域が導電体と接触する二個の第 3半導体領域の間 に位置し、 前記一個の第 3半導体領域の表面上における絶縁体上に、 前 記二個の第 3半導体領域から導電体が延びている電力変換装置。  One third semiconductor region is located between two third semiconductor regions in contact with a conductor, and the two third semiconductor regions are formed on an insulator on a surface of the one third semiconductor region. A power converter in which a conductor extends from the power converter.
PCT/JP1995/000478 1995-03-17 1995-03-17 Planar semiconductor device, its manufacturing method, and power converter WO1996029744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000478 WO1996029744A1 (en) 1995-03-17 1995-03-17 Planar semiconductor device, its manufacturing method, and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000478 WO1996029744A1 (en) 1995-03-17 1995-03-17 Planar semiconductor device, its manufacturing method, and power converter

Publications (1)

Publication Number Publication Date
WO1996029744A1 true WO1996029744A1 (en) 1996-09-26

Family

ID=14125759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000478 WO1996029744A1 (en) 1995-03-17 1995-03-17 Planar semiconductor device, its manufacturing method, and power converter

Country Status (1)

Country Link
WO (1) WO1996029744A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031734A1 (en) * 1997-12-16 1999-06-24 Siemens Aktiengesellschaft High-threshold soi thin film transistor
DE10019813A1 (en) * 2000-04-20 2001-12-13 Infineon Technologies Ag Avalanche resistant semiconductor component with body of one conductivity and surface zone of other conductivity
JP2013172088A (en) * 2012-02-22 2013-09-02 Toyota Motor Corp Semiconductor device
JP2022047410A (en) * 2020-09-11 2022-03-24 株式会社東芝 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154874A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Manufacture of semiconductor device
JPS57160159A (en) * 1981-03-28 1982-10-02 Toshiba Corp High breakdown voltage planar type semiconductor device
JPS5817676A (en) * 1981-07-24 1983-02-01 Toshiba Corp High-dielectric resistance planar type semiconductor device
JPS58100460A (en) * 1981-12-11 1983-06-15 Hitachi Ltd Vertical type metal oxide semiconductor device
JPS6338259A (en) * 1986-08-01 1988-02-18 Fujitsu Ltd Semiconductor device
JPS63138766A (en) * 1986-11-29 1988-06-10 Nec Kansai Ltd Semiconductor element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154874A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Manufacture of semiconductor device
JPS57160159A (en) * 1981-03-28 1982-10-02 Toshiba Corp High breakdown voltage planar type semiconductor device
JPS5817676A (en) * 1981-07-24 1983-02-01 Toshiba Corp High-dielectric resistance planar type semiconductor device
JPS58100460A (en) * 1981-12-11 1983-06-15 Hitachi Ltd Vertical type metal oxide semiconductor device
JPS6338259A (en) * 1986-08-01 1988-02-18 Fujitsu Ltd Semiconductor device
JPS63138766A (en) * 1986-11-29 1988-06-10 Nec Kansai Ltd Semiconductor element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031734A1 (en) * 1997-12-16 1999-06-24 Siemens Aktiengesellschaft High-threshold soi thin film transistor
DE10019813A1 (en) * 2000-04-20 2001-12-13 Infineon Technologies Ag Avalanche resistant semiconductor component with body of one conductivity and surface zone of other conductivity
DE10019813C2 (en) * 2000-04-20 2002-10-31 Infineon Technologies Ag Avalanche-proof semiconductor device
JP2013172088A (en) * 2012-02-22 2013-09-02 Toyota Motor Corp Semiconductor device
US9048085B2 (en) 2012-02-22 2015-06-02 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2022047410A (en) * 2020-09-11 2022-03-24 株式会社東芝 Semiconductor device
JP7401416B2 (en) 2020-09-11 2023-12-19 株式会社東芝 semiconductor equipment

Similar Documents

Publication Publication Date Title
JP5757145B2 (en) Semiconductor device
US6323509B1 (en) Power semiconductor device including a free wheeling diode and method of manufacturing for same
JP4167294B2 (en) Semiconductor elements and electrical equipment
US7791308B2 (en) Semiconductor element and electrical apparatus
US7808070B2 (en) Power semiconductor component
US6323539B1 (en) High voltage integrated circuit, high voltage junction terminating structure, and high voltage MIS transistor
JPH03226291A (en) Semiconductor integrated circuit and motor controller employing the same
JPH0955498A (en) High-voltage resistant ic, high-voltage resistant junction terminal structure used for the ic and high-voltage mis transistor
JP2002373989A (en) Semiconductor device
JPH05152574A (en) Semiconductor device
JPH1187698A (en) Semiconductor device having high breakdown strength and power converter employing the same
JPWO2002063695A1 (en) Insulated gate bipolar transistor, semiconductor device, method of manufacturing insulated gate bipolar transistor, and method of manufacturing semiconductor device
JPH09237799A (en) Dielectric isolation-type semiconductor device
JPH0613648A (en) Optical voltage insulator and optical voltage stack
US6914270B2 (en) IGBT with PN insulation and production method
US5635734A (en) Insulated gate type semiconductor device in which the reliability and characteristics thereof are not deteriorated due to pressing action and power inverter using the same
JP2019161181A (en) Semiconductor device, power module and power conversion device
WO1996029744A1 (en) Planar semiconductor device, its manufacturing method, and power converter
JP4432332B2 (en) Semiconductor device and manufacturing method thereof
WO2018066496A1 (en) Power module and electric power converter
JP6047429B2 (en) Semiconductor device and power conversion device using the same
JPH08236762A (en) Reverse check type semiconductor device and its manufacture
JPH0974187A (en) High withstand voltage lateral type semiconductor device
JP3952967B2 (en) High voltage IC
JP7334678B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE DK FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase