JPH08195334A - Method for bonding silicon substrate - Google Patents

Method for bonding silicon substrate

Info

Publication number
JPH08195334A
JPH08195334A JP4039895A JP4039895A JPH08195334A JP H08195334 A JPH08195334 A JP H08195334A JP 4039895 A JP4039895 A JP 4039895A JP 4039895 A JP4039895 A JP 4039895A JP H08195334 A JPH08195334 A JP H08195334A
Authority
JP
Japan
Prior art keywords
substrates
silicon
bonding
substrate
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4039895A
Other languages
Japanese (ja)
Inventor
Hirotsugu Takagi
博嗣 高木
Masatake Akaike
正剛 赤池
Takayuki Yagi
隆行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4039895A priority Critical patent/JPH08195334A/en
Publication of JPH08195334A publication Critical patent/JPH08195334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE: To firmly bond silicon substrates at low temperature, to utilize materials which cannot stand high temperature and to prevent films from separating and voids from being produced. CONSTITUTION: The method comprises the steps of hydrophobing the surfaces of silicon substrates 1 and 2, contacting both hydrophobed silicon substrates, press-bonding them, and heating them to strengthen the bond. And the press- bonding step, the substrates 1 and 2 are brought into contact from the central portions of the substrates 1 and 2 to the peripheries.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の製造方法
に関し、特にシリコン基板どうしの接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing semiconductor substrates, and more particularly to a method for joining silicon substrates.

【0002】[0002]

【従来の方法】シリコン基板どうしの接合は、SOI
(Silicon on Insulator)基板の
作製に不可欠な技術である。従来、シリコン基板同士の
接合は、特開昭39−17869号公報あるいは特開昭
62−27040号公報に見られるように、基板を接触
後、酸化雰囲気中で加熱する、あるいは親水化処理した
基板を接触後加熱する方法が用いられており、基板は酸
化層を介して接合されている。
2. Description of the Prior Art Bonding of silicon substrates is done by SOI
(Silicon on Insulator) This is an indispensable technique for manufacturing a substrate. Conventionally, the bonding of silicon substrates has been carried out by heating the substrates in an oxidizing atmosphere or hydrophilizing the substrates after they are contacted with each other, as disclosed in JP-A-39-17869 or JP-A-62-27040. Is used after heating, and the substrates are bonded via an oxide layer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これま
での方法では、強固な接合を得るためには、接触後10
00℃前後に加熱する必要がある。従って、接合前に基
板上に素子が形成されているような場合、このような高
温に耐えるためには使用する材料が極めて制限されると
いう問題がある。
However, in the conventional methods, in order to obtain a strong joint, 10
It is necessary to heat to around 00 ° C. Therefore, when an element is formed on the substrate before joining, there is a problem that the material used is extremely limited to withstand such a high temperature.

【0004】さらに、積層された構造においては各層材
料の熱膨張差により膜剥がれが発生するという問題もあ
る。従来の方法はまた、基板表面の水酸基の脱水分解に
より発生したガスがボイドとして残りやすく、これが接
合強度を低下させるという問題もあった。
Further, in the laminated structure, there is a problem that film peeling occurs due to a difference in thermal expansion of each layer material. The conventional method also has a problem that the gas generated by the dehydration decomposition of the hydroxyl groups on the substrate surface is liable to remain as voids, which lowers the bonding strength.

【0005】(発明の目的)本発明の目的は、シリコン
基板の接合工程において、低温処理で強固な接合を可能
とすることにあり、また、これにより高温に耐える材料
以外の材料も利用可能とし、更に膜はがれや、ボイドの
発生も防止することにある。
(Object of the Invention) An object of the present invention is to enable strong bonding by low-temperature treatment in the bonding process of silicon substrates, and by this, materials other than materials that can withstand high temperatures can be used. Furthermore, it is to prevent film peeling and voids.

【0006】[0006]

【課題を解決するための手段】本発明のシリコン基板の
接合方法は、前記課題を解決するための手段としてシリ
コン基板表面の疎水化処理工程、加圧しながらの基板ど
うしの接触工程、加熱処理工程の3つの工程を有するこ
とを特徴とする。
Means for Solving the Problems In the method for joining silicon substrates according to the present invention, as means for solving the above problems, a step of hydrophobizing the surfaces of silicon substrates, a step of contacting the substrates while applying pressure, and a step of heat treatment. It is characterized by having three steps.

【0007】まず、シリコン表面の疎水化は、代表的に
はフッ酸による表面の自然酸化膜を除去することでおこ
なわれる。フッ酸処理によりシリコン表面の大部分が水
素原子で終端される。使用されるフッ酸の濃度は10重
量%以下であり、1〜5%のフッ酸処理が疎水化処理に
適している。PHを3〜6に調整したバッファーフッ酸
を使用してもよい。またフッ酸処理前に基板表面に付着
している有機物等の不純物を除去する処理をしてもよ
い。この場合、基板表面に凹凸を形成するような処理は
避けなければならない。疎水化処理方法としては上記フ
ッ酸処理の他、高真空中で基板表面に加速した不活性イ
オンを照射し、清浄なシリコン表面を形成した後、水素
ガスを真空槽に導入し、基板表面を水素原子で終端する
方法がある。
First, hydrophobization of the silicon surface is typically carried out by removing the natural oxide film on the surface with hydrofluoric acid. The hydrofluoric acid treatment terminates most of the silicon surface with hydrogen atoms. The concentration of hydrofluoric acid used is 10% by weight or less, and a hydrofluoric acid treatment of 1 to 5% is suitable for the hydrophobizing treatment. You may use the buffer hydrofluoric acid which adjusted pH to 3-6. Before the hydrofluoric acid treatment, impurities such as organic substances adhering to the surface of the substrate may be removed. In this case, it is necessary to avoid a treatment for forming irregularities on the substrate surface. As the hydrophobizing method, in addition to the above hydrofluoric acid treatment, the substrate surface is irradiated with accelerated inert ions in a high vacuum to form a clean silicon surface, and then hydrogen gas is introduced into the vacuum chamber to clean the substrate surface. There is a method of terminating with a hydrogen atom.

【0008】次に、疎水化処理された2枚の基板は圧力
を加えながら接触させられる。図1は本発明で基板の接
触に使用した装置の概略図である。この装置は第1の基
板1を平坦に保持し、流体導入口4から加圧された流体
(液体、気体のどちらでもよい)を導入し、この流体圧
を第2の基板2の裏面に印加しながら2枚の基板を近接
させるものである。図1の装置では流体圧は薄いメンブ
レン3に加えられ、このメンブレンが球面状にたわむた
め、それに接する第2基板2も球面状にたわむ。第2基
板2がたわむことにより2枚の基板はそれぞれの中央部
から接触していく。この接触方法では、接触過程で雰囲
気ガスが周辺部に追い出されるため、大気中においても
基板間にガスが残留することがない。もちろん2枚の基
板を真空中で接触させてもよい。流体圧は3kg/cm
2 以上あれば十分効果がある。
Next, the two hydrophobized substrates are brought into contact with each other while applying pressure. FIG. 1 is a schematic view of an apparatus used for contacting a substrate in the present invention. This apparatus holds the first substrate 1 flat, introduces a pressurized fluid (either liquid or gas) from a fluid inlet 4, and applies this fluid pressure to the back surface of the second substrate 2. However, the two substrates are brought close to each other. In the apparatus of FIG. 1, the fluid pressure is applied to the thin membrane 3, and the membrane bends spherically, so that the second substrate 2 in contact with it also bends spherically. As the second substrate 2 bends, the two substrates come into contact with each other from their central portions. In this contacting method, the atmospheric gas is expelled to the peripheral portion in the contacting process, so that the gas does not remain between the substrates even in the atmosphere. Of course, two substrates may be contacted in vacuum. Fluid pressure is 3kg / cm
2 or more is effective enough.

【0009】次に、接触した2枚のシリコン基板の接合
を強固にするために加熱する。本発明では加熱温度が2
50℃以上あれば実用上十分な接合強度が得られるが、
300℃〜700℃、さらに好ましくは500〜700
℃であれば従来方法に匹敵する強固な接合が達成され
る。ヒータ加熱、ランプ加熱等の加熱手段により接合基
板を昇温する。また、加熱中の雰囲気は接合には制限が
なく大気中、不活性ガス中、真空中いずれでもよい。
Next, heating is performed in order to strengthen the bond between the two silicon substrates which are in contact with each other. In the present invention, the heating temperature is 2
If the temperature is 50 ° C or higher, practically sufficient bonding strength can be obtained.
300 ° C to 700 ° C, more preferably 500 to 700
At a temperature of ° C, a strong bond comparable to the conventional method is achieved. The bonding substrate is heated by heating means such as heater heating and lamp heating. Further, the atmosphere during heating is not limited to bonding, and may be air, inert gas, or vacuum.

【0010】加熱する効果は以下のように推測される。
加熱によりシリコン基板表面に吸着している水素原子が
脱離することにより、基板最表面にあるシリコン原子同
士が直接結合するか、あるいは水素原子と大気中の酸素
原子が置き変わり、酸素原子を介してシリコン原子が結
合することによって2枚のシリコン基板の接合がおこな
われる。
The effect of heating is estimated as follows.
When the hydrogen atoms adsorbed on the surface of the silicon substrate are desorbed by heating, the silicon atoms on the outermost surface of the substrate are directly bonded to each other, or the hydrogen atoms and the oxygen atoms in the atmosphere are replaced, and The silicon atoms are bonded to each other to bond the two silicon substrates.

【0011】加熱中における接合強度の増加過程におい
て、基板周辺部より強い結合がすすんだ場合において、
基板の中央部にしばしば空孔(ボイド)が発生すること
がある。一旦強固に接合した部分はひずみを緩和するこ
とができず、未接合部にひずみが集中した結果ボイドと
して残るものと考えられる。こうしたボイドは基板温度
の不均一性により強固に接合した部分がランダムに作ら
れたときにも発生する。
In the process of increasing the bonding strength during heating, when a stronger bond is formed than the peripheral portion of the substrate,
Voids often occur in the center of the substrate. It is considered that the strain cannot be relieved in the portion that has been firmly bonded, and the strain remains in the unbonded portion, resulting in a void. Such voids also occur when the strongly bonded portions are randomly formed due to the nonuniformity of the substrate temperature.

【0012】したがって、ボイドを発生させずにシリコ
ン基板を接合させるためには一点より接合をすることが
有効である。その方法として、図3に示すように接触が
完了したシリコン基板5を石英やセラミクス等熱伝導率
が比較的小さい2枚の板6および6′で挟み、これらの
板の背後の基板中央を加熱することが有効である。こう
した手段により2枚のシリコン基板は中央より徐々に加
熱され、強固な接合部が中央より周辺に広がりボイドの
発生が抑えられる。
Therefore, in order to bond the silicon substrates without generating voids, it is effective to bond from one point. As a method for this, as shown in FIG. 3, the silicon substrate 5 which has been completely contacted is sandwiched between two plates 6 and 6'having relatively low thermal conductivity such as quartz or ceramics, and the substrate center behind these plates is heated. It is effective to do. By such means, the two silicon substrates are gradually heated from the center, and the strong joint portion spreads from the center to the periphery to suppress the generation of voids.

【0013】他の方法として図4に示すように、接触さ
せたシリコン基板8を搬送ローラ10によって細長い加
熱手段9、9′の短辺方向に搬送させ、基板の端より徐
々に強固な接合部を形成する方法がある。遮蔽板12お
よび冷却ローラ11は未接合部への熱伝導を低下させる
ことにより温度上昇部を制御する働きをする。図3、図
4いずれの方法においても加熱手段を上下2組設置する
ことにより、2枚の基板の温度差をできるだけ小さくし
ている。また、図4に示した方法においては基板を搬送
するかわりに加熱手段を基板の端より移動させても同様
の効果が期待できる。
As another method, as shown in FIG. 4, the contacted silicon substrate 8 is conveyed by the conveying roller 10 in the direction of the short sides of the elongated heating means 9 and 9 ', and the joint portion is gradually strengthened from the edge of the substrate. There is a method of forming. The shielding plate 12 and the cooling roller 11 serve to control the temperature rising portion by reducing the heat conduction to the unbonded portion. In both of the methods of FIG. 3 and FIG. 4, the temperature difference between the two substrates is minimized by installing the heating means in upper and lower two sets. Further, in the method shown in FIG. 4, the same effect can be expected by moving the heating means from the edge of the substrate instead of transporting the substrate.

【0014】[0014]

【作用】本発明によれば、あらかじめ基板表面を疎水化
処理しておくため、低温度でも強固な接合が可能とな
る。
According to the present invention, since the substrate surface is subjected to the hydrophobic treatment in advance, it is possible to perform strong bonding even at a low temperature.

【0015】また、前記疎水化処理は、フッ酸、バッフ
ァーフッ酸により行なうことにより、疎水化処理を効果
的に行なうことができる。
The hydrophobizing treatment can be effectively performed by using hydrofluoric acid or buffer hydrofluoric acid.

【0016】また、前記疎水化処理は、高真空中で基板
表面に加速した不活性イオンを照射し、清浄なシリコン
表面を形成した後、水素ガスを導入して基板表面を水素
原子で終端することにより、基板表面の疎水化を完全に
することができる。
In the hydrophobizing treatment, the surface of the substrate is irradiated with accelerated inert ions in a high vacuum to form a clean silicon surface, and then hydrogen gas is introduced to terminate the surface of the substrate with hydrogen atoms. This makes it possible to completely hydrophobize the substrate surface.

【0017】また、前記基板どうしを加圧下で接触させ
て接合する工程は、前記基板の中央部から順次接触させ
ることにより、接合界面に基体等を含むことがなくな
り、ボイドの発生を防止できる。
In the step of bringing the substrates into contact with each other under pressure and joining the substrates, the substrates are not included in the joining interface by sequentially bringing the substrates into contact with each other from the central portion, so that the occurrence of voids can be prevented.

【0018】また、前記加熱処理は250℃〜700℃
で行なうことにより、十分な接合強度を得ることができ
る。
The heat treatment is performed at 250 ° C. to 700 ° C.
By doing so, sufficient bonding strength can be obtained.

【0019】[0019]

【実施例】【Example】

[実施例1]2枚の(100)シリコン基板を2%フッ
酸で表面疎水化処理し、ただちに図1の接触装置により
5気圧のガス圧を印加しつつ、大気中で2枚のシリコン
基板を接触させた。
[Example 1] Two (100) silicon substrates were surface-hydrophobicized with 2% hydrofluoric acid, and immediately, while applying a gas pressure of 5 atm with the contact device of FIG. Were contacted.

【0020】つぎに大気中で2時間加熱して接合した。
加熱温度(熱処理温度)は、図2に示した各温度とし
た。
Next, heating was performed in the atmosphere for 2 hours to perform bonding.
The heating temperature (heat treatment temperature) was each temperature shown in FIG.

【0021】こうして作製した接合試料の曲げ強度を測
定した。図2は曲げ強度より算出した破壊時の界面せん
断応力を図示したものである。同様の方法で測定したシ
リコン基板の破壊強度は55kg/cm2 であり、25
0℃で加熱すれば十分強固に接合されていることがわか
った。
The bending strength of the joint sample thus manufactured was measured. FIG. 2 shows the interfacial shear stress at the time of fracture calculated from the bending strength. The breaking strength of the silicon substrate measured by the same method is 55 kg / cm 2 ,
It was found that heating at 0 ° C resulted in sufficiently strong bonding.

【0022】[実施例2](100)シリコン基板を2
00℃で10分間紫外線処理し、基板表面の有機不純物
を除去した後、フッ化アンモニウムでPH4に調整した
バッファーフッ酸で疎水化処理した。
Example 2 Two (100) silicon substrates were used.
After performing an ultraviolet ray treatment at 00 ° C. for 10 minutes to remove organic impurities on the surface of the substrate, a hydrophobic treatment was performed with buffer hydrofluoric acid adjusted to PH 4 with ammonium fluoride.

【0023】その後実施例1と同様に2枚の基板を接触
させた後、加熱処理を行った。
After that, two substrates were brought into contact with each other in the same manner as in Example 1, and then heat treatment was performed.

【0024】実施例1と同様にして強度を測定したとこ
ろ、同等の強度で接合することが確かめられた。
When the strength was measured in the same manner as in Example 1, it was confirmed that the bonding was performed with the same strength.

【0025】[比較例](100)シリコン基板を親水
化処理し、実施例1と同様に接触、加熱処理をした試料
の接合強度を測定したところ、図2に示したように、6
00℃以上では強固に接合したが、低温では十分な強度
が得られなかった。また、400℃以下の場合、ダイシ
ングソー切断時において接合面で剥離した。
COMPARATIVE EXAMPLE A (100) silicon substrate was subjected to a hydrophilic treatment, and the bonding strength of a sample subjected to contact and heat treatment was measured in the same manner as in Example 1. The bonding strength was 6 as shown in FIG.
A strong bond was obtained at a temperature of 00 ° C or higher, but sufficient strength was not obtained at a low temperature. Further, when the temperature was 400 ° C. or lower, the peeling occurred at the bonding surface when the dicing saw was cut.

【0026】[実施例3]2枚の(100 )シリコン基板
を85℃の硫酸および過酸化水素混合水溶液中に5分浸
漬した後、10分間純水により洗浄した。ひきつづき、
2%フッ酸水溶液で20秒間疎水化処理を行い、2分間
純水洗浄した。以上の前処理を施した2枚のシリコン基
板を図1に示した接触装置により5気圧を印加しつつ接
触させた。次に図3に概略を示すように、接触した2枚
のシリコン基板5を2枚のアルミナセラミクス板6、
6′に挟み、このアルミナセラミクス板の中央部を加熱
温度が500℃となるようにヒータ7、7′により加熱
した。
[Example 3] Two (100) silicon substrates were immersed in a mixed solution of sulfuric acid and hydrogen peroxide at 85 ° C for 5 minutes and then washed with pure water for 10 minutes. Continued,
Hydrophobization treatment was performed for 20 seconds with a 2% hydrofluoric acid aqueous solution, and pure water washing was performed for 2 minutes. The two silicon substrates subjected to the above pretreatment were brought into contact with each other while applying 5 atmospheric pressure by the contact device shown in FIG. Next, as shown schematically in FIG. 3, the two contacting silicon substrates 5 are replaced with the two alumina ceramic plates 6,
It was sandwiched between 6 ', and the central portion of this alumina ceramics plate was heated by heaters 7 and 7'so that the heating temperature was 500 ° C.

【0027】以上のように接合した2枚のシリコン基板
に赤外線を照射し、透過光を赤外線カメラにより観察し
たところ、ボイドの発生は見られなかった。また、破壊
時のせん断応力は85kg/cm2 であり十分な強度を
もつことが確認された。
When the two silicon substrates bonded as described above were irradiated with infrared rays and the transmitted light was observed with an infrared camera, no void was observed. Further, it was confirmed that the shear stress at the time of breaking was 85 kg / cm 2 , and that it had sufficient strength.

【0028】[実施例4]2枚の(100 )シリコン基板
を酸素雰囲気中で200℃に加熱しながら、紫外線を2
0分間照射したのち、2%フッ酸水溶液で20秒間疎水
化処理を行い、2分間純水洗浄した。以上の疎水化処理
を施した2枚のシリコン基板を図1に示した接触装置に
より5気圧を印加しつつ接触させた。次に図4に概略を
示す試料搬送装置を有する加熱装置により接触したシリ
コン基板8を加熱した。図4において、10は搬送用ロ
ーラ、11は水冷されたローラであり、12は熱遮蔽板
である。シリコン基板8は矢印方向に移動する過程で熱
遮蔽版12の中央部に設置されたヒータ9、9′により
加熱される。シリコン基板のヒータ直下部分は温度上昇
するが、そこからはなれた部分は水冷ローラにより熱が
遮断され低温に保たれるため、強固な接合は起こらな
い。本実施例においてはヒータ直下でのシリコン基板温
度が550℃となるようにヒータ電力を調整した。
Example 4 Two (100) silicon substrates were heated to 200 ° C. in an oxygen atmosphere while being exposed to ultraviolet rays.
After irradiation for 0 minutes, a hydrophobic treatment was performed with a 2% aqueous solution of hydrofluoric acid for 20 seconds, and a pure water wash was performed for 2 minutes. The two hydrophobized silicon substrates were brought into contact with each other while applying 5 atm by the contact device shown in FIG. Next, the contacted silicon substrate 8 was heated by a heating device having a sample transfer device schematically shown in FIG. In FIG. 4, 10 is a transport roller, 11 is a water-cooled roller, and 12 is a heat shield plate. The silicon substrate 8 is heated by the heaters 9 and 9 ′ installed in the central portion of the heat shield plate 12 while moving in the direction of the arrow. The temperature of the portion of the silicon substrate directly below the heater rises, but the portion separated from the heater is kept at a low temperature by the heat being blocked by the water-cooling roller, so that a strong joint does not occur. In this example, the heater power was adjusted so that the temperature of the silicon substrate immediately below the heater was 550 ° C.

【0029】以上のように接合したシリコン基板を実施
例3と同様に赤外線カメラで観察したがボイドの発生は
見られなかった。また、破壊時のせん断応力は91kg
/cm2 であった。
The silicon substrate bonded as described above was observed with an infrared camera as in Example 3, but no void was found. The shear stress at the time of breaking is 91 kg.
Was / cm 2 .

【0030】[0030]

【発明の効果】以上説明したように、本発明の接合方法
は、従来に比べ低温でシリコン基板の強固な接合を可能
にする効果が得られる。また、本発明の方法によれば、
低温で接合可能であるため、素子形成後のシリコン基板
どうしも接合することができ、マイクロマシン等の立体
構造体の形成に有効な手段を提供することができる。
As described above, the bonding method of the present invention has the effect of enabling strong bonding of silicon substrates at a lower temperature than conventional methods. Further, according to the method of the present invention,
Since they can be bonded at a low temperature, silicon substrates after element formation can be bonded to each other, and an effective means for forming a three-dimensional structure such as a micromachine can be provided.

【0031】また、積層構造の熱膨張差による膜はがれ
や、ボイドの発生等も、少なくすることができるため、
品質や、信頼性も向上できる。
Further, film peeling due to the difference in thermal expansion of the laminated structure and generation of voids can be reduced, so that
Quality and reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で基板の接触に使用した装置の概略図FIG. 1 is a schematic view of an apparatus used for contacting a substrate in the present invention.

【図2】曲げ強度より算出した実施例と比較例の破壊時
の界面せん断応力の図
FIG. 2 is a diagram of the interfacial shear stress at the time of failure of the example and the comparative example calculated from bending strength.

【図3】実施例3で用いた加熱方法の概略図FIG. 3 is a schematic diagram of a heating method used in Example 3.

【図4】実施例4で用いた加熱装置の概略図FIG. 4 is a schematic diagram of a heating device used in Example 4.

【符号の説明】[Explanation of symbols]

1 第1の基板 2 第2の基板 3 メンブレン 4 流体導入口 5、8 接触させたシリコン基板 6、6′、セラミクス板 7、7′、9、9′ 加熱手段 10 搬送ローラ 11 水冷ローラ 12 熱遮蔽板 1 First Substrate 2 Second Substrate 3 Membrane 4 Fluid Inlet 5, 8 Contacted Silicon Substrates 6, 6 ', Ceramics Plates 7, 7', 9, 9'Heating Means 10 Conveying Rollers 11 Water Cooling Rollers 12 Heat Shield

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板表面を疎水化処理する工程
と、該疎水化処理した前記基板どうしを加圧下で接触さ
せて接合する工程と、その後加熱処理して前記接合を強
化する工程と、を有することを特徴とするシリコン基板
の接合方法。
1. A step of hydrophobizing the surface of a silicon substrate, a step of bringing the substrates that have been hydrophobized into contact with each other under pressure to bond them, and a step of subsequently performing heat treatment to strengthen the bond. A method of bonding a silicon substrate, which comprises:
【請求項2】 前記疎水化処理は、フッ酸により前記基
板表面の自然酸化膜を除去することを特徴とする請求項
1に記載のシリコン基板の接合方法。
2. The method for bonding silicon substrates according to claim 1, wherein the hydrophobic treatment removes a natural oxide film on the substrate surface with hydrofluoric acid.
【請求項3】 前記疎水化処理は、バッファーフッ酸を
用いることを特徴とする請求項1に記載のシリコン基板
の接合方法。
3. The method for joining silicon substrates according to claim 1, wherein buffer hydrofluoric acid is used for the hydrophobic treatment.
【請求項4】 前記疎水化処理は、高真空中で基板表面
に加速した不活性イオンを照射し、清浄なシリコン表面
を形成した後、水素ガスを導入して基板表面を水素原子
で終端することを特徴とする請求項1に記載のシリコン
基板の接合方法。
4. The hydrophobic treatment is performed by irradiating the substrate surface with accelerated inert ions in a high vacuum to form a clean silicon surface, and then introducing hydrogen gas to terminate the substrate surface with hydrogen atoms. The method for joining silicon substrates according to claim 1, wherein
【請求項5】 前記基板どうしを加圧下で接触させて接
合する工程は、前記基板の中央部から順次接触させるこ
とを特徴とする請求項1に記載のシリコン基板の接合方
法。
5. The method of bonding silicon substrates according to claim 1, wherein in the step of bonding the substrates by bringing them into contact with each other under pressure, the substrates are sequentially contacted from a central portion of the substrates.
【請求項6】 前記加熱処理は250℃〜700℃で行
なうことを特徴とする請求項1に記載のシリコン基板の
接合方法。
6. The method for bonding a silicon substrate according to claim 1, wherein the heat treatment is performed at 250 ° C. to 700 ° C.
【請求項7】 前記加熱処理は、前記シリコン基板の中
央より温度上昇させることを特徴とする請求項1に記載
のシリコン基板の接合方法。
7. The method of bonding a silicon substrate according to claim 1, wherein the heat treatment includes raising the temperature from the center of the silicon substrate.
【請求項8】 前記加熱処理は、前記シリコン基板の端
部より温度上昇させることを特徴とする請求項1に記載
のシリコン基板の接合方法。
8. The method of bonding a silicon substrate according to claim 1, wherein the heat treatment is performed by raising the temperature from an end portion of the silicon substrate.
JP4039895A 1994-11-17 1995-02-28 Method for bonding silicon substrate Pending JPH08195334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4039895A JPH08195334A (en) 1994-11-17 1995-02-28 Method for bonding silicon substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-283470 1994-11-17
JP28347094 1994-11-17
JP4039895A JPH08195334A (en) 1994-11-17 1995-02-28 Method for bonding silicon substrate

Publications (1)

Publication Number Publication Date
JPH08195334A true JPH08195334A (en) 1996-07-30

Family

ID=26379865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4039895A Pending JPH08195334A (en) 1994-11-17 1995-02-28 Method for bonding silicon substrate

Country Status (1)

Country Link
JP (1) JPH08195334A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212885A (en) * 2000-02-16 2012-11-01 Ziptronix Inc Low temperature bonding method and bonded structure
US8580654B2 (en) 2010-10-12 2013-11-12 Soitec Method for molecular bonding of silicon and glass substrates
US9431368B2 (en) 1999-10-01 2016-08-30 Ziptronix, Inc. Three dimensional device integration method and integrated device
JP2017190987A (en) * 2016-04-12 2017-10-19 公立大学法人首都大学東京 Method for manufacturing x-ray optical system base material and x-ray optical system base material
JP2017537477A (en) * 2014-11-25 2017-12-14 レナ テクノロジー ゲーエムベーハーRENA Technologies GmbH Substrate underside processing method and apparatus
US10434749B2 (en) 2003-05-19 2019-10-08 Invensas Bonding Technologies, Inc. Method of room temperature covalent bonding
JP2019186288A (en) * 2018-04-03 2019-10-24 東京エレクトロン株式会社 Bonding method and bonding system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431368B2 (en) 1999-10-01 2016-08-30 Ziptronix, Inc. Three dimensional device integration method and integrated device
US9564414B2 (en) 1999-10-01 2017-02-07 Ziptronix, Inc. Three dimensional device integration method and integrated device
US10366962B2 (en) 1999-10-01 2019-07-30 Invensas Bonding Technologies, Inc. Three dimensional device integration method and integrated device
US10312217B2 (en) 2000-02-16 2019-06-04 Invensas Bonding Technologies, Inc. Method for low temperature bonding and bonded structure
JP2012212885A (en) * 2000-02-16 2012-11-01 Ziptronix Inc Low temperature bonding method and bonded structure
US9331149B2 (en) 2000-02-16 2016-05-03 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US9391143B2 (en) 2000-02-16 2016-07-12 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US11760059B2 (en) 2003-05-19 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Method of room temperature covalent bonding
US10434749B2 (en) 2003-05-19 2019-10-08 Invensas Bonding Technologies, Inc. Method of room temperature covalent bonding
US8790993B2 (en) 2010-10-12 2014-07-29 Soitec Method for molecular bonding of silicon and glass substrates
KR101410858B1 (en) * 2010-10-12 2014-06-24 소이텍 Method for molecular bonding of silicon and glass substrates
US8580654B2 (en) 2010-10-12 2013-11-12 Soitec Method for molecular bonding of silicon and glass substrates
JP2017537477A (en) * 2014-11-25 2017-12-14 レナ テクノロジー ゲーエムベーハーRENA Technologies GmbH Substrate underside processing method and apparatus
JP2017190987A (en) * 2016-04-12 2017-10-19 公立大学法人首都大学東京 Method for manufacturing x-ray optical system base material and x-ray optical system base material
JP2019186288A (en) * 2018-04-03 2019-10-24 東京エレクトロン株式会社 Bonding method and bonding system

Similar Documents

Publication Publication Date Title
JP4628580B2 (en) Manufacturing method of bonded substrate
KR102658526B1 (en) Method for manufacturing composite wafer with oxide single crystal thin film
JP6388272B1 (en) Substrate bonding method, substrate bonding system, and control method for hydrophilic treatment apparatus
JPH04119626A (en) Manufacture of junction wafer
JPH1197379A (en) Semiconductor substrate and its manufacture
EP2757574B1 (en) Method for manufacturing composite wafer
WO2010137589A1 (en) Laminated sos substrate
JP2006210898A (en) Process for producing soi wafer, and soi wafer
JP2001274368A (en) Producing method for semiconductor bonding wafer and semiconductor bonding wafer produced by the same
JP2006210899A (en) Process for producing soi wafer, and soi wafer
WO2007091639A1 (en) Method for manufacturing soi substrate
JP2006248895A (en) Bonding method, device produced by this method, and bonding device
JPH08195334A (en) Method for bonding silicon substrate
JPH11121310A (en) Manufacture of semiconductor substrate
JP4624812B2 (en) Manufacturing method of SOI wafer
JP6643873B2 (en) Method of laminating two substrates
JPS62122148A (en) Semiconductor substrate
JP4594121B2 (en) Manufacturing method of SOI wafer and SOI wafer
KR101503027B1 (en) Method of wafer bonding
JP2008235776A (en) Production process of laminated wafer
RU2382437C1 (en) Method of making silicon-on-insulator structures
JPH0468280B2 (en)
JP2006073780A (en) Normal-temperature joint method, equipment, and device
JP2004054170A (en) Method for joining laser optical crystal using ion beam etching
JPH10303089A (en) Manufacture of laminated substrate