JPH08193759A - Control device for freezer with freezer oil non-compatible with refrigerant - Google Patents

Control device for freezer with freezer oil non-compatible with refrigerant

Info

Publication number
JPH08193759A
JPH08193759A JP488595A JP488595A JPH08193759A JP H08193759 A JPH08193759 A JP H08193759A JP 488595 A JP488595 A JP 488595A JP 488595 A JP488595 A JP 488595A JP H08193759 A JPH08193759 A JP H08193759A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
output
outputting
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP488595A
Other languages
Japanese (ja)
Inventor
Shigeto Yamaguchi
成人 山口
Akira Fujitaka
章 藤高
Toru Yasuda
透 安田
Kiyoshi Sawai
澤井  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP488595A priority Critical patent/JPH08193759A/en
Publication of JPH08193759A publication Critical patent/JPH08193759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To evaporate condensed and liquified refrigerant and to prevent a compressor from being damaged under poor lubrication by a method wherein a heater is turned ON to heat the compressor under a condition in which it is assumed that a surrounding air temperature is decreased, the refrigerant in the compressor is condensed and liquified to cause the refrigerant and the oil of the freezer to be separated in two-phase state. CONSTITUTION: A compressor 1 is provided with a heater 6, and a surrounding air temperature sensor 7 for detecting a surrounding air temperature and outputting it is mounted at an outdoor heat exchanger 3. When the surrounding air temperature is decreased, the refrigerant is condensed and liquified within the compressor 1, and under a condition in which the refrigerant and the oil of the freezer are assumed to be separated in two-phase (not soluble to each other), the heater 6 is turned ON so as to heat the compressor. In this way, the condensed and liquified refrigerant is evaporated and a damage caused by a poor lubrication with flowing-in of the liquid refrigerant at the time of energization at a sliding part in the compressor 1 is prevented. With such an arrangement as above, it is possible to perform the most- suitable operation at the time of energization and to realize a freezing cycle control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒に非相溶の冷凍機
油を用いた冷凍装置および冷凍装置の制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using a refrigerating machine oil which is incompatible with a refrigerant and a control apparatus for the refrigerating apparatus.

【0002】[0002]

【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
オロカーボン)についても1996年より総量規制が開
始され、将来的には全廃される事が決定している。従っ
て、冷媒としてフロンを用いた機器について、その代替
冷媒の開発が進められており、オゾン層を破壊しないH
FC(ハイドロフルオロカーボン)が検討されている
が、冷凍機や空調機に用いられているHCFCの代替冷
媒として単独で用いることのできるものはHFCの中に
は見あたらず、従って2種類以上のHFC系冷媒を混合
させた非共沸の混合冷媒が有望視されている。
2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, regulations on CFCs that destroy the ozone layer have been strengthened, and it has been decided to abolish CFC (chlorofluorocarbon), which has a particularly high destructive power, at the end of 1995. Also, regarding the FCFC (hydrochlorofluorocarbon), which has a relatively small destructive power, the total amount regulation was started in 1996, and it has been decided that it will be completely abolished in the future. Therefore, for equipment that uses CFCs as a refrigerant, alternative refrigerants are being developed, and H that does not destroy the ozone layer is being developed.
Although FC (hydrofluorocarbon) has been studied, HFCs that cannot be used alone as an alternative refrigerant to HCFCs used in refrigerators and air conditioners have not been found. Therefore, two or more types of HFCs are used. Non-azeotropic mixed refrigerants mixed with refrigerants are considered promising.

【0003】従来の冷凍装置には、圧縮機内の摺動部の
潤滑性を保つ為、冷媒と良く溶け合う相溶性の冷凍機油
を使うことが必須とされてきた。エステル系オイルはH
FC系冷媒を混合させた非共沸混合冷媒と相溶性がある
ため、HFC系混合冷媒を用いた場合の冷凍機油の候補
としてあげられているが、エステル系オイルは吸湿性が
強いため、水分管理を怠ると冷凍装置内で冷凍機油が加
水分解を起こしたり、異物と化学反応を起こし易いため
圧縮機メカの摩耗等によって冷凍能力およびCOP(成
績係数)が低下する。また、HCFC系冷媒はClを含
むため冷媒自体に潤滑性能があるが、HFC系冷媒には
ないため潤滑性は全て冷凍機油に依存するになるため、
冷凍機油の選定は重要な問題である。
In the conventional refrigeration system, it has been indispensable to use compatible refrigerating machine oil that is well compatible with the refrigerant in order to maintain the lubricity of the sliding portion in the compressor. Ester oil is H
Since it is compatible with the non-azeotropic mixed refrigerant mixed with the FC type refrigerant, it is listed as a candidate for the refrigerating machine oil when the HFC type mixed refrigerant is used. If it is not managed properly, the refrigerating machine oil will be hydrolyzed in the refrigerating machine, or it will easily react chemically with foreign substances, and the refrigerating capacity and COP (coefficient of performance) will be deteriorated due to abrasion of the compressor mechanism. Also, since the HCFC-based refrigerant contains Cl, the refrigerant itself has a lubricating performance, but since the HFC-based refrigerant does not have it, the lubricity depends entirely on the refrigerating machine oil.
The selection of refrigeration oil is an important issue.

【0004】そこで、HFC系の混合冷媒を用いた冷凍
装置の冷凍機油として、非相溶の冷凍機油(例えばアル
キルベンゼン油)についても現在見直され、検討が行わ
れている。
Therefore, as a refrigerating machine oil for a refrigerating apparatus using an HFC-based mixed refrigerant, an incompatible refrigerating machine oil (for example, alkylbenzene oil) is now reviewed and studied.

【0005】[0005]

【発明が解決しようとする課題】ところが、HFC系混
合冷媒を用いた冷凍装置の冷凍機油として、非相溶の冷
凍機油(例えばアルキルベンゼン油)を用いた場合、圧
縮機の温度が低下したときに、冷媒と冷凍機油が二相分
離(冷媒と冷凍機油が溶け合わない状態)をおこし摺動
部の潤滑不良を起こし、圧縮機を破損させる課題を有し
ていた。本発明は上記従来例の課題を解決するもので、
圧縮機内の冷媒と冷凍機油の二相分離を防ぎ、摺動部の
潤滑性を向上させることを目的としている。
However, when an incompatible refrigerating machine oil (for example, alkylbenzene oil) is used as the refrigerating machine oil of the refrigerating apparatus using the HFC-based mixed refrigerant, when the temperature of the compressor decreases. However, there is a problem that the refrigerant and the refrigerating machine oil are separated into two phases (the refrigerant and the refrigerating machine oil are not melted) to each other, resulting in poor lubrication of the sliding portion and damaging the compressor. The present invention solves the problems of the above conventional examples,
The purpose is to prevent the two-phase separation of the refrigerant and the refrigerating machine oil in the compressor and to improve the lubricity of the sliding part.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する為に
本発明の冷凍装置の制御装置は、冷媒に非相溶の冷凍機
油を用いた圧縮機、四方弁、室外熱交換器、減圧器、室
内熱交換器を環状に連結して冷媒回路を構成し、前記圧
縮機に加熱手段と、前記室外熱交換器には外気温度を検
出して出力する外気温度検出手段を設置し、冷暖房の各
運転起動前に前記外気温度検出手段から出力される外気
温度と設定値とを比較して制御信号を出力する第一の比
較手段、前記加熱手段が動作している時間を測定して出
力する加熱時間検出手段、前記加熱時間検出手段から出
力される値と設定値とを比較して制御信号を出力する第
二の比較手段、前記加熱手段のON/OFFを制御する
出力モードを記憶した記憶手段、前記第一、第二の比較
手段から発生する制御信号により前記記憶手段の出力モ
ードの一つを選択する選択手段と、前記記憶手段の出力
モードに従い前記加熱手段のON/OFFを制御する出
力手段を有するものである。
In order to solve the above-mentioned problems, a control device for a refrigerating machine of the present invention is a compressor, a four-way valve, an outdoor heat exchanger, and a decompressor using refrigerating machine oil incompatible with a refrigerant. , An indoor heat exchanger is annularly connected to form a refrigerant circuit, a heating means is installed in the compressor, and an outdoor air temperature detecting means for detecting and outputting the outdoor air temperature is installed in the outdoor heat exchanger, for cooling and heating. Before starting each operation, the first comparing means for comparing the outside air temperature output from the outside air temperature detecting means with a set value and outputting a control signal, the time during which the heating means is operating is measured and output. Heating time detecting means, second comparing means for outputting a control signal by comparing a value output from the heating time detecting means with a set value, and a memory storing an output mode for controlling ON / OFF of the heating means Means, originating from said first and second comparing means Those having a selection means for selecting one of the output modes of the memory means by the control signal, an output means for controlling the ON / OFF of the heating means in accordance with the output mode of the storage means.

【0007】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機に加熱手段、前記室内熱
交換器には室内ファン制御手段、前記室外熱交換器に室
外ファン制御調節手段を設け、前記室外熱交換器に外気
温度を検出して出力する外気温度検出手段を設置し、冷
暖房の各運転起動前に前記外気温度検出手段から出力さ
れる外気温度と設定値とを比較して制御信号を出力する
第一の比較手段と、前記加熱手段が動作している時間を
測定して出力する加熱時間検出手段と、前記加熱時間検
出手段から出力される値と設定値とを比較して制御信号
を出力する第二の比較手段と、前記加熱手段と前記室内
ファン制御手段と前記室外ファン制御手段のON/OF
Fを制御する出力モードを記憶した記憶手段と、前記第
一、第二の比較手段から発生する制御信号により前記記
憶手段の出力モードの一つを選択する選択手段と、前記
記憶手段の出力モードに従い前記加熱手段と前記室内フ
ァン制御手段と前記室外ファン制御手段のON/OFF
を制御する出力手段を有するものである。
Further, another control device for a refrigerating apparatus of the present invention is a compressor using a non-compatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a decompressor, and an indoor heat exchanger are annularly connected to form a refrigerant circuit. The compressor is provided with heating means, the indoor heat exchanger is provided with indoor fan control means, and the outdoor heat exchanger is provided outdoors. An outside air temperature detecting means for detecting and outputting the outside air temperature is installed in the outdoor heat exchanger, and an outside air temperature and a set value output from the outside air temperature detecting means before starting each operation of cooling and heating. And a first comparison means for outputting a control signal, a heating time detecting means for measuring and outputting the time during which the heating means is operating, and a value output from the heating time detecting means. ON / OF of second heating means, the indoor fan control means, and the outdoor fan control means, the second comparison means comparing the values with each other and outputting a control signal.
Storage means for storing an output mode for controlling F; selection means for selecting one of the output modes of the storage means by a control signal generated from the first and second comparison means; and an output mode of the storage means ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means
It has an output means for controlling.

【0008】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機に加熱手段、前記室内熱
交換器に室内ファン制御手段、前記室外熱交換器に室外
ファン制御手段を設け、前記室外熱交換器に外気温度を
検出して出力する外気温度検出手段を設置し、冷暖房の
各運転起動前に前記外気温度検出手段から出力される外
気温度と複数の設定値とを比較して制御信号を出力する
第一の比較手段と、前記加熱手段が動作している時間を
測定して出力する加熱時間検出手段と、前記加熱時間検
出手段から出力される値と設定値とを比較して制御信号
を出力する第二の比較手段と、前記加熱手段と前記室内
ファン制御手段と前記室外ファン制御手段のON/OF
Fを制御する出力モードを記憶した記憶手段、前記の第
一、第二の比較手段から発生する制御信号により前記記
憶手段の出力モードの一つを選択する選択手段と、前記
記憶手段の出力モードに従い前記加熱手段と前記室内フ
ァン制御手段と前記室外ファン制御手段のON/OFF
を制御する出力手段を有するものである。
Further, another control device for a refrigerating machine of the present invention is a compressor using a non-compatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the compressor has heating means, the indoor heat exchanger has indoor fan control means, and the outdoor heat exchanger has an outdoor fan. A control means is provided, and an outdoor air temperature detection means for detecting and outputting the outdoor air temperature is installed in the outdoor heat exchanger, and the outdoor air temperature output from the outdoor air temperature detection means and a plurality of set values before starting each operation of cooling and heating. And a first comparison means for outputting a control signal, a heating time detecting means for measuring and outputting the time during which the heating means is operating, and a value output from the heating time detecting means. ON / OF of second heating means, the indoor fan control means, and the outdoor fan control means, the second comparison means comparing the values with each other and outputting a control signal.
Storage means for storing an output mode for controlling F, selection means for selecting one of the output modes of the storage means by a control signal generated from the first and second comparison means, and an output mode of the storage means ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means
It has an output means for controlling.

【0009】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機に加熱手段、前記室内熱
交換器に室内ファン制御手段、前記室外熱交換器に室外
ファン制御手段を設け、前記圧縮機に圧縮機の温度を検
出して出力する圧縮機温度検出手段を設置し、冷暖房の
各運転起動前に前記圧縮機温度検出手段から出力される
値と設定値とを比較して制御信号を出力する比較手段
と、前記加熱手段と前記室内ファン制御手段と前記室外
ファン制御手段のON/OFFを制御する出力モードを
記憶した記憶手段、前記比較手段から発生する制御信号
により前記記憶手段の出力モードの一つを選択する選択
手段と、前記記憶手段の出力モードに従い前記加熱手段
と前記室内ファン制御手段と前記室外ファン制御手段の
ON/OFFを制御する出力手段を有するものである。
Further, another control device for a refrigerating apparatus of the present invention is a compressor using a non-compatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the compressor has heating means, the indoor heat exchanger has indoor fan control means, and the outdoor heat exchanger has an outdoor fan. A control means is provided, and a compressor temperature detecting means for detecting and outputting the temperature of the compressor is installed in the compressor, and a value and a set value output from the compressor temperature detecting means before starting each operation of cooling and heating. Comparing means for outputting a control signal, storage means for storing an output mode for controlling ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means, and control generated by the comparison means. Selection means for selecting one of the output modes of the storage means by a signal, and ON / OFF control of the heating means, the indoor fan control means, and the outdoor fan control means according to the output mode of the storage means Those having an output means that.

【0010】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機に加熱手段、前記室内熱
交換器に室内ファン制御手段と、前記室外熱交換器に室
外ファン制御手段を設け、前記圧縮機に圧縮機の温度を
検出して出力する圧縮機温度検出手段と、前記圧縮機に
圧縮機内の圧力を検出して飽和温度を演算し出力する圧
縮機内飽和温度検出手段を設置し、冷暖房の各運転起動
前に前記圧縮機温度検出手段から出力される値と前記圧
縮機飽和温度検出手段から出力される値を比較して制御
信号を出力する比較手段と、前記加熱手段と前記室内フ
ァン制御手段と前記室外ファン制御手段のON/OFF
を制御する出力モードを記憶した記憶手段、前記比較手
段から発生する制御信号により前記記憶手段の出力モー
ドの一つを選択する選択手段と、前記記憶手段の出力モ
ードに従い前記加熱手段と前記室内ファン制御手段と前
記室外ファン制御手段のON/OFFを制御する出力手
段を有するものである。
Further, another control device for a refrigerating apparatus of the present invention is a compressor using a refrigerating machine oil incompatible with a refrigerant, a four-way valve,
An outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the compressor has heating means, the indoor heat exchanger has indoor fan control means, and the outdoor heat exchanger has outdoor air. Compressor temperature detection means for providing a fan control means to detect and output the temperature of the compressor to the compressor, and saturation temperature in the compressor to detect the pressure in the compressor to the compressor and calculate and output the saturation temperature. A detection means is installed, and a comparison means for outputting a control signal by comparing the value output from the compressor temperature detection means with the value output from the compressor saturation temperature detection means before starting each operation of cooling and heating. ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means
Storage means for storing the output mode for controlling the heating means, selection means for selecting one of the output modes of the storage means by a control signal generated from the comparison means, the heating means and the indoor fan according to the output mode of the storage means. It has a control means and an output means for controlling ON / OFF of the outdoor fan control means.

【0011】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機に加熱手段、前記圧縮機
の温度を検出して出力する圧縮機温度検出手段、前記圧
縮機内の圧力を検出して出力する圧縮機内圧力検出手段
を設置し、冷暖房の各運転中に前記圧縮機内圧力検出手
段より検出された値から冷媒の飽和温度を演算して出力
する演算手段と、前記演算手段により出力された値と前
記圧縮機温度検出手段から検出された値を比較し制御信
号を出力する比較手段と、前記加熱手段のON/OFF
を制御する出力モードを記憶した記憶手段、前記比較手
段から発生する制御信号により前記記憶手段の出力モー
ドの一つを選択する選択手段と、前記記憶手段の出力モ
ードに従い前記加熱手段のON/OFFを制御する出力
手段を有するものである。
Further, another control device for a refrigerating machine of the present invention is a compressor using a non-compatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and heating means for the compressor, compressor temperature detection means for detecting and outputting the temperature of the compressor, and the compression An in-compressor pressure detecting means for detecting and outputting the pressure inside the machine is installed, and a calculating means for calculating and outputting the saturation temperature of the refrigerant from the value detected by the in-compressor pressure detecting means during each operation of cooling and heating, and ON / OFF of comparing means for comparing the value output by the computing means with the value detected by the compressor temperature detecting means and outputting a control signal, and the heating means
Storage means for storing an output mode for controlling the heating means, selection means for selecting one of the output modes of the storage means by a control signal generated from the comparison means, and ON / OFF of the heating means according to the output mode of the storage means. It has an output means for controlling.

【0012】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記四方弁には運転モードを検知し
て出力する運転モード検出手段、前記室内熱交換器に室
内ファン制御手段と室内ファンの回転数を検出して出力
する室内ファン回転数検出手段、前記室外熱交換器に室
外ファン制御手段と室外ファンの回転数を検出し出力す
る室外ファン回転数検出手段、前記圧縮機の温度を検出
して出力する圧縮機温度検出手段、前記圧縮機内の圧力
を検出して出力する圧縮機内圧力検出手段を設置し、冷
暖房の各運転中に前記圧縮機内圧力検出手段より検出さ
れた値から冷媒の飽和温度を演算して出力する演算手段
と、前記演算手段により出力された値と前記圧縮機温度
検出手段から検出された値を比較し制御信号を出力する
比較手段と、前記室内ファンと前記室外ファンの回転数
を制御する出力モードを記憶した記憶手段、前記比較手
段から発生する制御信号により前記記憶手段の出力モー
ドの一つを選択する選択手段と、前記記憶手段の出力モ
ードに従い前記室内ファンと前記室外ファンの回転数を
制御する出力手段を有するものである。
Further, another control device for a refrigerating apparatus of the present invention is a compressor using an incompatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the four-way valve has an operation mode detecting means for detecting and outputting an operation mode, and an indoor fan for the indoor heat exchanger. Indoor fan rotation speed detection means for detecting and outputting the rotation speed of the control means and the indoor fan; outdoor fan rotation speed detection means for detecting and outputting the rotation speed of the outdoor fan control means and the outdoor fan to the outdoor heat exchanger; A compressor temperature detecting means for detecting and outputting the temperature of the compressor and a compressor internal pressure detecting means for detecting and outputting the pressure inside the compressor are installed, and detected by the internal pressure detecting means during each operation of cooling and heating. Computation means for computing and outputting the saturation temperature of the refrigerant from the value, and comparison means for comparing the value output by the computation means and the value detected by the compressor temperature detection means and outputting a control signal, The above A storage unit that stores an output mode for controlling the rotational speeds of the internal fan and the outdoor fan, a selection unit that selects one of the output modes of the storage unit according to a control signal generated from the comparison unit, and an output of the storage unit. It has an output means for controlling the rotational speeds of the indoor fan and the outdoor fan according to the mode.

【0013】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記四方弁には運転モードを検知し
て出力する運転モード検出手段、前記室外熱交換器に室
外ファン制御手段と室外ファンの回転数を検知し出力す
る室外ファン回転数検出手段、前記圧縮機に圧縮機の温
度を検出して出力する圧縮機温度検出手段、前記圧縮機
内の圧力を検出して出力する圧縮機内圧力検出手段を設
置し、冷暖房の各運転中に前記圧縮機内圧力検出手段よ
り検出された値から冷媒の飽和温度を演算して出力する
演算手段と、前記演算手段により出力された値と前記圧
縮機温度検出手段から検出された値を比較し制御信号を
出力する比較手段と、前記室外ファンの回転数を制御す
る出力モードを記憶した記憶手段、前記比較手段から発
生する制御信号により前記記憶手段の出力モードの一つ
を選択する選択手段と、前記記憶手段の出力モードに従
い前記室外ファンの回転数を制御する出力手段を有する
ものである。
Further, another control device for a refrigerating apparatus of the present invention is a compressor using an incompatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a decompressor, and an indoor heat exchanger are connected in a ring to form a refrigerant circuit, and an operation mode detecting means for detecting and outputting an operation mode to the four-way valve, an outdoor fan to the outdoor heat exchanger. Control means and outdoor fan rotation speed detecting means for detecting and outputting the rotation speed of the outdoor fan, compressor temperature detecting means for detecting and outputting the temperature of the compressor to the compressor, and detecting and outputting the pressure inside the compressor The compressor pressure detecting means is installed, and the calculating means for calculating and outputting the saturation temperature of the refrigerant from the value detected by the compressor pressure detecting means during each operation of cooling and heating, and the value output by the calculating means. And a comparison means for comparing a value detected by the compressor temperature detection means and outputting a control signal, a storage means for storing an output mode for controlling the rotation speed of the outdoor fan, and a control signal generated by the comparison means. Selection means for selecting one of the output modes of the memory means Ri, and has an output means for controlling the rotational speed of the outdoor fan in accordance with the output mode of the storage means.

【0014】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機には圧縮機運転周波数を
検出して出力する運転周波数検出手段、前記圧縮機の温
度を検出して出力する圧縮機温度検出手段、前記圧縮機
内の圧力を検出して出力する圧縮機内圧力検出手段を設
置し、冷暖房の各運転中に前記圧縮機内圧力検出手段よ
り検出された値から冷媒の飽和温度を演算して出力する
演算手段と、前記演算手段により出力された値と前記圧
縮機温度検出手段から検出された値を比較し制御信号を
出力する比較手段と、前記圧縮機の運転周波数を制御す
る出力モードを記憶した記憶手段、前記比較手段から発
生する制御信号により前記記憶手段の出力モードの一つ
を選択する選択手段と、前記記憶手段の出力モードに従
い前記圧縮機の運転周波数を制御する出力手段を有する
ものである。
Further, another control device for a refrigerating apparatus of the present invention is a compressor using an incompatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a decompressor, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and an operating frequency detecting means for detecting and outputting a compressor operating frequency is output to the compressor. A compressor temperature detecting means for detecting and outputting, and a compressor internal pressure detecting means for detecting and outputting the pressure in the compressor are installed, and a refrigerant from a value detected by the compressor internal pressure detecting means during each operation of cooling and heating. Operating means for calculating and outputting the saturation temperature of the compressor, comparing means for comparing the value output by the operating means with the value detected by the compressor temperature detecting means, and outputting a control signal. Storage means for storing an output mode for controlling the frequency, selection means for selecting one of the output modes of the storage means by a control signal generated from the comparison means, and operation of the compressor according to the output mode of the storage means. Those having an output means for controlling the frequency.

【0015】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機、四方弁、
室外熱交換器、減圧器、室内熱交換器を環状に連結して
冷媒回路を構成し、前記圧縮機の温度を検出して出力す
る圧縮機温度検出手段、前記圧縮機内の圧力を検出して
出力する圧縮機内圧力検出手段、前記減圧器の開度を検
出して出力する開度検出手段を設置し、冷暖房の各運転
中に前記圧縮機内圧力検出手段より検出された値から冷
媒の飽和温度を演算して出力する演算手段と、前記演算
手段により出力された値と前記圧縮機温度検出手段から
検出された値を比較し制御信号を出力する比較手段と、
前記減圧器の開度の制御を行う出力モードを記憶した記
憶手段、前記比較手段から発生する制御信号により前記
記憶手段の出力モードの一つを選択する選択手段と、前
記記憶手段の出力モードに従い前記減圧器の開度の制御
を行う出力手段を有するものである。
Further, another control device for a refrigerating machine of the present invention is a compressor using a non-compatible refrigerating machine oil as a refrigerant, a four-way valve,
An outdoor heat exchanger, a decompressor, a refrigerant circuit configured by annularly connecting the indoor heat exchanger, a compressor temperature detecting means for detecting and outputting the temperature of the compressor, detecting the pressure in the compressor. The compressor internal pressure detecting means for outputting, the opening detecting means for detecting and outputting the opening degree of the pressure reducer are installed, and the saturation temperature of the refrigerant from the value detected by the internal pressure detecting means during each operation of cooling and heating. Calculating means for calculating and outputting, and comparing means for comparing the value output by the calculating means with the value detected by the compressor temperature detecting means and outputting a control signal,
According to an output mode of the storage unit, a storage unit that stores an output mode for controlling the opening degree of the pressure reducer, a selection unit that selects one of the output modes of the storage unit according to a control signal generated from the comparison unit, and an output mode of the storage unit. It has an output means for controlling the opening degree of the pressure reducer.

【0016】また、本発明の他の冷凍装置の制御装置
は、冷媒に非相溶の冷凍機油を用いた圧縮機の下部に冷
凍機油の吸入口を有し、また、前記圧縮機の下部を局部
的に加熱する加熱手段を有するものである。
Further, another control device for a refrigerating apparatus of the present invention has a refrigerating machine oil suction port at a lower portion of a compressor using refrigerating machine oil incompatible with a refrigerant, and further, at a lower portion of the compressor. It has a heating means for locally heating.

【0017】[0017]

【作用】本発明は、上記手段により次のような作用を有
する。
The present invention has the following actions due to the above means.

【0018】すなわち、外気温度検出手段により検出し
た外気温度と設定値とを比較して制御信号を出力する第
一の比較手段、加熱時間検出手段から出力される値と設
定値とを比較して制御信号を出力する第二の比較手段
と、加熱手段を有することで、外気温度が低下したとき
に、圧縮機内で冷媒が凝縮液化し、冷媒と冷凍機油が二
相分離(溶け合わない)状態であると考えられる条件で
は、ヒータ加熱器をONにして圧縮機を加熱することに
より、凝縮液化した冷媒を蒸発させて、起動時の液冷媒
の圧縮機摺動部に流れ込みによる潤滑不良による破損を
防ぎ、最適な起動時の運転の実現を図ることができる。
That is, the first output means compares the outside air temperature detected by the outside air temperature detecting means with a set value and outputs a control signal, and compares the value output from the heating time detecting means with the set value. By having the second comparison means that outputs a control signal and the heating means, when the outside air temperature decreases, the refrigerant condenses and liquefies in the compressor, and the refrigerant and refrigerating machine oil are separated into two phases (do not mix). Under the condition that is considered to be, the heater heater is turned on to heat the compressor to evaporate the condensed and liquefied refrigerant, and damage due to poor lubrication due to the liquid refrigerant flowing into the sliding part of the compressor at startup. It is possible to prevent this, and to realize the optimal start-up operation.

【0019】また、外気温度検出手段により検出した外
気温度と設定値とを比較して制御信号を出力する第一の
比較手段、加熱時間検出手段から出力される値と設定値
とを比較して制御信号を出力する第二の比較手段と、ヒ
ータ加熱手段、室内ファン制御手段、室外ファン制御手
段を有することで、外気温度が低下したときに、圧縮機
内で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶
け合わない)状態であると考えられる条件では、ヒータ
加熱器をONにして圧縮機を加熱することにより、凝縮
液化した冷媒を蒸発させて圧縮機外に追い出し、ヒータ
加熱器をONと同時に室内ファンまたは室外ファンをO
Nすることにより、蒸発した冷媒を速やかに室内熱交換
器と室外熱交換器に凝縮させることができ、起動時の液
冷媒の圧縮機摺動部に流れ込みによる潤滑不良による破
損を防ぎ、最適な起動時の運転の実現を図ることができ
る。
Further, the value output from the heating time detecting means and the first comparing means for comparing the outside air temperature detected by the outside air temperature detecting means with the set value and outputting the control signal are compared with the set value. By having the second comparison means for outputting a control signal, the heater heating means, the indoor fan control means, and the outdoor fan control means, when the outside air temperature decreases, the refrigerant condenses and liquefies in the compressor, and the refrigerant and the freezing Under conditions where the machine oil is considered to be in a two-phase separated (not melted) state, the heater heater is turned on to heat the compressor, causing the condensed and liquefied refrigerant to evaporate and be expelled to the outside of the compressor to heat the heater. Turn on the unit and turn on the indoor or outdoor fan at the same time.
By N, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, and the damage due to poor lubrication due to the liquid refrigerant flowing into the compressor sliding portion at the time of start-up can be prevented, which is optimal. It is possible to realize the operation at startup.

【0020】また、外気温度検出手段により検出した外
気温度と複数の設定値とを比較して制御信号を出力する
第一の比較手段、加熱時間検出手段から出力される値と
設定値とを比較して制御信号を出力する第二の比較手段
と、加熱手段、室内ファン制御手段、室外ファン制御手
段を有することで、外気温度が低下したときに、圧縮機
内で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶
け合わない)状態であると考えられる条件では、ヒータ
加熱器をONにし、外気温度に対し圧縮機を加熱する時
間を変更することにより、凝縮液化した冷媒を効率よく
蒸発させて圧縮機外に追い出し、ヒータ加熱器ONと同
時に室内ファンおよび室外ファンをONすることによ
り、蒸発した冷媒を速やかに室内熱交換器と室外熱交換
器に凝縮させることができ、起動時の液冷媒の圧縮機摺
動部に流れ込みによる潤滑不良による破損を防ぎ、最適
な起動時の運転の実現を図ることができる。
Further, the first comparison means for comparing the outside air temperature detected by the outside air temperature detecting means with a plurality of set values and outputting a control signal, the value output from the heating time detecting means and the set value are compared. By having a second comparing means for outputting a control signal, a heating means, an indoor fan control means, and an outdoor fan control means, when the outside air temperature decreases, the refrigerant is condensed and liquefied in the compressor, and Under conditions where the refrigerator oil is considered to be in a two-phase separated (not melted) state, the heater heater is turned on and the time for heating the compressor is changed with respect to the outside air temperature, so that the condensed and liquefied refrigerant can be efficiently discharged. Evaporate it to the outside of the compressor, and simultaneously turn on the heater heater and turn on the indoor fan and outdoor fan to quickly condense the evaporated refrigerant to the indoor heat exchanger and the outdoor heat exchanger. Can prevent damage due to lubrication failure due to flow into the compressor sliding parts of the liquid refrigerant during startup, it is possible to realize the operation of the optimum start time.

【0021】また、圧縮機温度検出手段により検出した
圧縮機温度と設定値とを比較して制御信号を出力する第
一の比較手段、加熱時間検出手段から出力される値と設
定値とを比較して制御信号を出力する第二の比較手段
と、加熱手段、室内ファン制御手段、室外ファン制御手
段を有することで、圧縮機温度が低下したときに、圧縮
機内で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離
(溶け合わない)状態であると考えられる条件では、ヒ
ータ加熱器をONにして圧縮機を加熱することにより、
凝縮液化した冷媒を蒸発させて圧縮機外に追い出し、室
内ファンおよび室外ファンを同時にONすることによ
り、蒸発した冷媒を速やかに室内熱交換器と室外熱交換
器に凝縮させることができ、起動時の液冷媒の圧縮機摺
動部に流れ込みによる潤滑不良による破損を防ぎ、最適
な起動時の運転の実現を図ることができる。
Also, the value output from the heating time detecting means and the first comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the set value and outputting a control signal are compared with the set value. By having the second comparison means for outputting a control signal, and the heating means, the indoor fan control means, the outdoor fan control means, when the compressor temperature is reduced, the refrigerant is condensed and liquefied in the compressor, Under the condition that the oil and the refrigerating machine oil are considered to be in a two-phase separated state (do not melt), by turning on the heater heater to heat the compressor,
By evaporating the condensed and liquefied refrigerant to the outside of the compressor and turning on the indoor fan and the outdoor fan at the same time, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger. It is possible to prevent damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor, and to realize an optimal start-up operation.

【0022】また、圧縮機温度検出手段により検出した
圧縮機温度と演算手段から出力される圧縮機内圧力の飽
和温度を比較して制御信号を出力する比較手段と、加熱
手段、室内ファン制御手段、室外ファン制御手段を有す
ることで、圧縮機温度が低下したときに、圧縮機内で冷
媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶け合わ
ない)状態であると考えられる条件では、ヒータ加熱器
をONにして圧縮機を加熱することにより、凝縮液化し
た冷媒を蒸発させて圧縮機外に追い出し、ヒータ加熱器
ONと同時に室内ファンおよび室外ファンをONするこ
とにより、蒸発した冷媒を速やかに室内熱交換器と室外
熱交換器に凝縮させることができ、起動時の液冷媒の圧
縮機摺動部に流れ込みによる潤滑不良による破損を防
ぎ、最適な起動時の運転の実現を図ることができる。
Further, comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the saturation temperature of the compressor internal pressure output from the calculating means and outputting a control signal, heating means, indoor fan control means, By including the outdoor fan control means, when the temperature of the compressor is lowered, the refrigerant is condensed and liquefied in the compressor, and under the condition that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state, By turning on the heater and heating the compressor, the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor. By turning on the heater and the indoor fan and the outdoor fan at the same time, the evaporated refrigerant is quickly discharged. Can be condensed in the indoor heat exchanger and the outdoor heat exchanger to prevent damage due to poor lubrication due to liquid refrigerant flowing into the sliding parts of the compressor at startup, It is possible to achieve the realization of the rolling.

【0023】また、圧縮機温度検出手段により検出した
圧縮機温度と演算手段から出力される圧縮機内圧力の飽
和温度を比較して制御信号を出力する比較手段と、加熱
手段を有することで、運転中に圧縮機温度が低下したと
きに、圧縮機内に冷媒が凝縮液化し、冷媒と冷凍機油が
二相分離(溶け合わない)状態であると考えられる条件
では、ヒータ加熱器をONにして圧縮機を加熱すること
により、凝縮液化した冷媒を蒸発させて圧縮機外に追い
出し、運転中での液冷媒の圧縮機摺動部に流れ込みによ
る潤滑不良による破損を防ぎ、最適な状態での運転実現
を図ることができる。
Further, by providing a heating means and a comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the saturation temperature of the compressor internal pressure output from the calculating means and outputting a control signal. When the temperature of the compressor drops during cooling, the refrigerant is condensed and liquefied in the compressor, and under the condition that the refrigerant and the refrigerating machine oil are separated into two phases (do not melt), turn on the heater heater and compress By heating the machine, the condensed and liquefied refrigerant is evaporated and driven out of the compressor, preventing damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor during operation, and realizes optimal operation. Can be achieved.

【0024】また、圧縮機温度検出手段により検出した
圧縮機温度と演算手段から出力される圧縮機内圧力の飽
和温度を比較して制御信号を出力する比較手段と、運転
モード検出手段、室内ファン制御手段と室外ファン制御
手段を有することで、運転中に圧縮機温度が低下したと
きに、四方弁のON、OFFにより暖房運転か冷房運転
かを確認し、暖房運転の場合は室外ファン回転数をUP
して能力を向上させ、室内ファン回転数をDOWNして
能力を低下させ、冷房運転の場合は室外ファン回転数を
DOWNして能力を低下させ、室内ファン回転数をUP
して能力を向上させることにより圧縮機内圧力の上昇と
共に圧縮機の温度を上昇させることで、圧縮機内に冷媒
が凝縮液化し、冷媒と冷凍機油が二相分離(溶け合わな
い)状態であると考えられる条件では、凝縮液化した冷
媒を蒸発させて圧縮機外に追い出し、運転中での液冷媒
の圧縮機摺動部に流れ込みによる潤滑不良による破損を
防ぎ、最適な状態での運転実現を図ることができる。
Further, comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the saturation temperature of the compressor internal pressure output from the calculating means and outputting a control signal, an operating mode detecting means, and an indoor fan control. By having a means and an outdoor fan control means, when the compressor temperature drops during operation, it is confirmed whether the heating operation or the cooling operation is performed by turning the four-way valve ON and OFF. UP
To improve the capacity, DOWN the indoor fan speed to reduce the capacity, and in the case of cooling operation, DOWN the outdoor fan speed to decrease the capacity to increase the indoor fan speed.
By increasing the internal pressure of the compressor and increasing the temperature of the compressor by improving the capacity, the refrigerant is condensed and liquefied in the compressor, and the refrigerant and refrigerating machine oil are in a two-phase separated (not melted) state. Under conceivable conditions, the condensed and liquefied refrigerant is evaporated and driven out of the compressor to prevent damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor during operation, aiming to realize optimal operation. be able to.

【0025】また、圧縮機温度検出手段により検出した
圧縮機温度と演算手段から出力される飽和温度を比較し
て制御信号を出力する比較手段と、運転モード検出手
段、室外ファン制御手段を有することで、運転中に圧縮
機温度が低下したときに、四方弁のON、OFFにより
暖房運転か冷房運転かを確認し、暖房運転の場合は室外
ファン回転数をDOWN、冷房運転の場合は室外ファン
回転数をUPさせることにより圧縮機内圧力の上昇と共
に圧縮機の温度を上昇させることで、圧縮機内に冷媒が
凝縮液化し、冷媒と冷凍機油が二相分離(溶け合わな
い)状態であると考えられる条件では、凝縮液化した冷
媒を蒸発させて圧縮機外に追い出し、運転中での液冷媒
の圧縮機摺動部に流れ込みによる潤滑不良による破損を
防ぎ、最適な状態での運転実現を図ることができる。
Further, it has a comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the saturation temperature output from the calculating means and outputting a control signal, an operating mode detecting means, and an outdoor fan controlling means. Then, when the compressor temperature drops during operation, check the heating operation or cooling operation by turning the four-way valve on and off. In the heating operation, the outdoor fan rotation speed is DOWN, and in the cooling operation, the outdoor fan. It is considered that the refrigerant is condensed and liquefied in the compressor by increasing the internal pressure of the compressor and the temperature of the compressor by increasing the rotation speed, and the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state. Under the conditions, the condensed and liquefied refrigerant is evaporated and driven out of the compressor to prevent damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor during operation. Rolling implementation can be achieved.

【0026】また、圧縮機温度検出手段により検出した
圧縮機温度と演算手段から出力される飽和温度を比較し
て制御信号を出力する比較手段と、運転周波数検出手段
を有することで、運転中に圧縮機温度が低下したとき
に、圧縮機内に冷媒が凝縮液化し、冷媒と冷凍機油が二
相分離(溶け合わない)状態であると考えられる条件で
は、圧縮機の運転周波数を上げることにより圧縮機内圧
力の上昇と共に圧縮機の温度を上昇させることで、凝縮
液化した冷媒を蒸発させて圧縮機外に追い出し、運転中
での液冷媒の圧縮機摺動部に流れ込みによる潤滑不良に
よる破損を防ぎ、最適な状態での運転実現を図ることが
できる。
Further, by having a comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the saturation temperature output from the calculating means and outputting a control signal, and an operating frequency detecting means, the operating frequency is detected during operation. Under conditions where the refrigerant is condensed and liquefied in the compressor when the compressor temperature drops and the refrigerant and refrigerating machine oil are in two-phase separation (do not melt), increase the operating frequency of the compressor By raising the temperature of the compressor as the internal pressure rises, the condensed and liquefied refrigerant is evaporated and driven out of the compressor, preventing damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor during operation. Therefore, it is possible to realize the operation in the optimum state.

【0027】また、圧縮機温度検出手段により検出した
圧縮機温度と演算手段から出力される飽和温度を比較し
て制御信号を出力する比較手段と、弁開度検出手段を有
することで、運転中に圧縮機温度が低下したときに、圧
縮機内に冷媒が凝縮液化し、冷媒と冷凍機油が二相分離
(溶け合わない)状態であると考えられる条件では、電
動式膨張弁の弁開度を絞ることにより圧縮機内圧力の上
昇と共に圧縮機の温度を上昇させることで、凝縮液化し
た冷媒を蒸発させて圧縮機外に追い出し、運転中での液
冷媒の圧縮機摺動部に流れ込みによる潤滑不良による破
損を防ぎ、最適な状態での運転実現を図ることができ
る。
In addition, by having a valve opening detecting means and a comparing means for comparing the compressor temperature detected by the compressor temperature detecting means with the saturation temperature output from the calculating means and outputting a control signal, When the compressor temperature decreases, the refrigerant is condensed and liquefied in the compressor, and under the condition that the refrigerant and the refrigerating machine oil are separated into two phases (do not melt), the valve opening degree of the electric expansion valve is changed. By squeezing the pressure inside the compressor and raising the temperature of the compressor, the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor, causing poor lubrication due to liquid refrigerant flowing into the sliding parts of the compressor during operation. It is possible to prevent the damage due to, and to realize the operation in the optimum state.

【0028】また、冷媒に非相溶の冷凍機油を用いた圧
縮機の下部に冷凍機油の吸入口を有し、また、前記圧縮
機の下部を局部的に加熱する加熱手段を有することで、
圧縮機温度が低下して冷媒が圧縮機内部で凝縮液化した
場合に冷凍機油と共に圧縮機底部に滞留するため、圧縮
機の加熱は底部に限定することにより、より効果的に発
生した液冷媒を気化除去することができ、よって、より
確実に圧縮機吸入口に直接液冷媒が流れ込むのを防止で
きる。
Further, by having a suction port for the refrigerating machine oil in the lower part of the compressor using refrigerating machine oil which is incompatible with the refrigerant, and having heating means for locally heating the lower part of the compressor,
When the compressor temperature is lowered and the refrigerant is condensed and liquefied inside the compressor, it stays at the bottom of the compressor together with the refrigerating machine oil, so that the heating of the compressor is limited to the bottom, so that the more effectively generated liquid refrigerant is generated. It can be vaporized and removed, so that the liquid refrigerant can be more reliably prevented from directly flowing into the compressor suction port.

【0029】[0029]

【実施例】以下、本発明の実施例について、図1〜4を
参考に説明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.

【0030】図1は、本発明の第1の実施例における冷
凍サイクル図である。同図において、1は圧縮機、2は
四方弁、3は室外熱交換器、4は減圧器、5は室内熱交
換器であり、これらは順に環状に連結されている。6は
圧縮機を加熱するヒータ加熱器、7は外気温度を検出す
る外気温度検出器で、6aはヒータ加熱器6の加熱時間
を検出する加熱時間検出器である。9はマイクロコンピ
ュータ(以下LSIと称す)であり、入力回路20、C
PU21、メモリ22、出力回路23を有している。入
力回路20には、加熱時間検出器6aの出力と外気温度
検出器7の出力がA/D変換器8を通じて入力され、出
力回路23の出力によりヒータ加熱器6のON/OFF
を制御する。
FIG. 1 is a refrigeration cycle diagram in the first embodiment of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a decompressor, and 5 is an indoor heat exchanger, and these are sequentially connected in an annular shape. 6 is a heater heater that heats the compressor, 7 is an outside air temperature detector that detects the outside air temperature, and 6a is a heating time detector that detects the heating time of the heater heater 6. Reference numeral 9 denotes a microcomputer (hereinafter referred to as an LSI), which has an input circuit 20, C
It has a PU 21, a memory 22, and an output circuit 23. The output of the heating time detector 6a and the output of the outside air temperature detector 7 are input to the input circuit 20 through the A / D converter 8, and the output of the output circuit 23 turns the heater / heater 6 ON / OFF.
Control.

【0031】ここで、図3に示すブロック図と図2に示
す電子制御回路図について説明する。図2の外気温度検
出器7は外気温度を検出して出力する外気温度検出手段
であり、図2のLSI9のメモリに外気温度検出手段に
より検出された値と設定値とを比較し制御信号を出力す
る第一の比較手段と、加熱時間検出手段から検出された
値と設定値とを比較し制御信号を出力する第二の比較手
段と、ヒータ加熱器6のON/OFFを制御する出力モ
ードを記憶した記憶手段と、第一、第二の比較手段から
発生する出力信号により、前記記憶手段の出力モードの
一つを選択する選択手段に相当する。上記構成におい
て、冷凍装置運転起動前の制御回路の構成と動作を図4
を参考に説明する。図4はLSI9のメモリ22に記憶
された冷凍装置のプログラムを示すフローチャートであ
る。このフローチャートから判るように、本発明におい
ては、外気温度が低下したときに、圧縮機内で冷媒が凝
縮液化し、冷媒と冷凍機油が二相分離(溶け合わない)
状態であると考えられる条件下においてのみヒータ加熱
器6のON/OFFを制御する。
The block diagram shown in FIG. 3 and the electronic control circuit diagram shown in FIG. 2 will now be described. The outside air temperature detector 7 of FIG. 2 is an outside air temperature detecting means for detecting and outputting the outside air temperature, and compares the value detected by the outside air temperature detecting means with the set value in the memory of the LSI 9 of FIG. An output mode for controlling ON / OFF of the heater heater 6, a first comparing means for outputting, a second comparing means for comparing the value detected by the heating time detecting means with a set value and outputting a control signal. It corresponds to selection means for selecting one of the output modes of the storage means by means of the storage means that has stored therein and the output signals generated from the first and second comparison means. In the above-mentioned configuration, the configuration and operation of the control circuit before starting the operation of the refrigeration system are shown in FIG.
Will be explained with reference. FIG. 4 is a flowchart showing a program of the refrigerating apparatus stored in the memory 22 of the LSI 9. As can be seen from this flowchart, in the present invention, when the outside air temperature decreases, the refrigerant condenses and liquefies in the compressor, and the refrigerant and refrigerating machine oil are separated into two phases (do not melt).
ON / OFF of the heater / heater 6 is controlled only under the condition considered to be the state.

【0032】冷凍装置運転前の運転停止中の状態におい
て、図4のステップ30が実行されて、タイマ計測t=
0にリセットされ、ステップ31に進み、外気温度検出
器により外気温度Tgが検出された後、ステップ32で
外気温度Tgと設定温度T1(例:20度)との比較演
算により、Tg<T1であれば「YES」の判定がなさ
れステップ33に進む。Tg>T1であれば「NO」の
判定がなされステップ30に戻る。ステップ33ではメ
モリ22内蔵の選択手段により記憶回路の第一の出力モ
ードが選択され、出力回路23により制御信号が出力さ
れヒータ加熱器6がONされ、ステップ34に進み、加
熱時間検出器により時間tが検出された後、ステップ3
5で、加熱時間tと設定時間t1(例:10分)の比較
演算により、t>t1であれば「YES」の判定がなさ
れステップ36に進む。t<t1であれば「NO」の判
定がなされステップ34に戻る。ステップ36ではタイ
マ計測t=0リセットされ、ステップ37においてメモ
リ22内蔵の選択手段により記憶回路の第二の出力モー
ドが選択され、出力回路23により制御信号が出力され
ヒータ加熱器6がOFFされ、ステップ38に進み、再
びタイマ計測され、ステップ39において計測時間tと
設定時間t2(例:5分)の比較演算によりt>t2で
あれば「YES」の判定がなされステップ30に、t<
t2であれば「NO」の判定がなされステップ38に戻
る。
In the state in which the refrigeration system is stopped before the operation, step 30 in FIG. 4 is executed and the timer measurement t =
After resetting to 0 and proceeding to step 31, after the outside air temperature Tg is detected by the outside air temperature detector, in step 32, by comparison calculation of the outside air temperature Tg and the set temperature T1 (example: 20 degrees), Tg <T1 If there is, a “YES” determination is made and the operation proceeds to step 33. If Tg> T1, a "NO" determination is made and the process returns to step 30. In step 33, the first output mode of the storage circuit is selected by the selection means built in the memory 22, the control signal is output by the output circuit 23 and the heater heater 6 is turned on, and the process proceeds to step 34 where the heating time detector detects the time. Step 3 after t is detected
At 5, the comparison calculation of the heating time t and the set time t1 (for example, 10 minutes) makes a determination of “YES” if t> t1, and the process proceeds to step 36. If t <t1, a "NO" determination is made and the process returns to step 34. In step 36, the timer measurement t = 0 is reset, in step 37 the second output mode of the memory circuit is selected by the selection means built in the memory 22, the control signal is output by the output circuit 23, and the heater heater 6 is turned off. In step 38, the timer measurement is performed again, and in step 39, if t> t2 by the comparison operation of the measurement time t and the set time t2 (for example, 5 minutes), it is determined as “YES”, and in step 30, t <
If t2, a "NO" determination is made and the process returns to step 38.

【0033】即ち、圧縮機内で冷媒が凝縮液化し、冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを判断し、ヒータ加熱器のON/OFFの制御を決
定し、更に、ステップ39ではヒータ加熱器が無意味に
連続してONしないように設定してある。
That is, it is judged whether or not the refrigerant is condensed and liquefied in the compressor and the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state, and the ON / OFF control of the heater / heater is determined. In step 39, the heater heater is set so as not to be continuously turned on without meaning.

【0034】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、外気温度が低下したときに、圧縮機内で
冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶け合
わない)状態であると考えられる条件では、ヒータ加熱
器をONにして圧縮機を加熱することにより、凝縮液化
した冷媒を蒸発させて、起動時の液冷媒の圧縮機摺動部
に流れ込みによる潤滑不良による破損を防ぎ、最適な起
動時の運転と冷凍サイクル制御の実現を図ることができ
る。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the outside air temperature is lowered, the refrigerant is condensed and liquefied in the compressor, and the refrigerant and the refrigerating machine oil are separated into two phases (do not melt). ) Condition, the heater heater is turned on to heat the compressor to evaporate the condensed and liquefied refrigerant, causing poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor at startup. It is possible to prevent the damage due to, and to realize the optimal operation at the time of startup and the refrigeration cycle control.

【0035】次に、本発明の第2の実施例について、図
1と図5〜7を参考に説明する。本発明の第2の実施例
における冷凍サイクル図は第1の実施例と同じである。
第1の実施例と異なるのは、図5の電子制御回路図に示
す室内熱交換器5と室外熱交換器3各々の室内外ファン
をON/OFF制御することである。
Next, a second embodiment of the present invention will be described with reference to FIGS. 1 and 5-7. The refrigeration cycle diagram in the second embodiment of the present invention is the same as that in the first embodiment.
The difference from the first embodiment is that the indoor and outdoor fans of the indoor heat exchanger 5 and the outdoor heat exchanger 3 shown in the electronic control circuit diagram of FIG. 5 are turned on / off.

【0036】この冷凍装置運転起動前の制御回路の構成
と動作を図7を参考に説明する。図7はLSI9のメモ
リ22に記憶された冷凍装置のプログラムを示すフロー
チャートである。このフローチャートから判るように、
本発明においては、外気温度が低下したときに、圧縮機
内で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶
け合わない)状態であると考えられる条件下においての
みヒータ加熱器6、室内ファン16、室外ファン17の
ON/OFFを制御する。
The structure and operation of the control circuit before the activation of the refrigeration system will be described with reference to FIG. FIG. 7 is a flow chart showing a program of the refrigeration apparatus stored in the memory 22 of the LSI 9. As you can see from this flowchart,
In the present invention, when the outside air temperature is reduced, the refrigerant is condensed and liquefied in the compressor, and the heater and the heater heater 6 are considered to be in a two-phase separated (non-melting) state between the refrigerant and the refrigerating machine oil, ON / OFF of the indoor fan 16 and the outdoor fan 17 is controlled.

【0037】冷凍装置運転前の運転停止中の状態におい
て、図7のステップ40が実行されて、タイマ計測t=
0にリセットされ、ステップ41に進み、外気温度検出
器により外気温度Tgが検出された後、ステップ42で
外気温度Tgと設定温度T1(例:20度)との比較演
算により、Tg<T1であれば「YES」の判定がなさ
れステップ43に進む。Tg>T1であれば「NO」の
判定がなされステップ40に戻る。ステップ43と44
ではメモリ22内蔵の選択手段により記憶回路の第一の
出力モードと第三の出力モードと第五の出力モードが選
択され、出力回路23により制御信号が出力されヒータ
加熱器6と室内ファン16と室外ファン17がONさ
れ、ステップ45に進み、タイマ計測され、ステップ4
6において計測時間tと設定時間t1(例:10分)の
比較演算により、t>t1であれば「YES」の判定が
なされステップ47に進む。t<t1であれば「NO」
の判定がなされステップ45に戻る。ステップ47では
タイマ計測t=0にリセットされステップ48と49に
進み、ステップ48と49ではメモリ22内蔵の選択手
段により記憶回路の第二の出力モードと第四の出力モー
ドと第六の出力モードが選択され、出力回路23により
制御信号が出力されヒータ加熱器6と室内ファン16と
室外ファン17がOFFされ、ステップ50に進み、タ
イマ計測され、ステップ51において計測時間tと設定
時間t2(例:5分)の比較演算により、t>t2であ
れば「YES」の判定がなされステップ40に、t<t
2であれば「NO」の判定がなされステップ50に戻
る。
In the state in which the refrigeration system is stopped before the operation, step 40 of FIG. 7 is executed and the timer measurement t =
After being reset to 0 and proceeding to step 41, the outside air temperature Tg is detected by the outside air temperature detector, and then in step 42, by comparison calculation between the outside air temperature Tg and the set temperature T1 (example: 20 degrees), Tg <T1 If there is, a “YES” determination is made and the process proceeds to step 43. If Tg> T1, a "NO" determination is made and the process returns to step 40. Steps 43 and 44
Then, the first output mode, the third output mode, and the fifth output mode of the storage circuit are selected by the selection means built in the memory 22, and the control signal is output by the output circuit 23 to output the heater heater 6 and the indoor fan 16 to each other. The outdoor fan 17 is turned on, the process proceeds to step 45, the timer is measured, and step 4
At t6, if t> t1, a determination of "YES" is made by comparing the measured time t with the set time t1 (example: 10 minutes), and the routine proceeds to step 47. If t <t1, “NO”
Is determined and the process returns to step 45. At step 47, the timer measurement t = 0 is reset and the process proceeds to steps 48 and 49. At steps 48 and 49, the second output mode, the fourth output mode and the sixth output mode of the memory circuit are selected by the selection means incorporated in the memory 22. Is selected, the control signal is output by the output circuit 23, the heater heater 6, the indoor fan 16, and the outdoor fan 17 are turned off, the process proceeds to step 50, the timer is measured, and the measured time t and the set time t2 (example: : 5 minutes), if t> t2, a determination of “YES” is made and t <t
If it is 2, a "NO" determination is made and the process returns to step 50.

【0038】ステップの意図を説明する。即ち、圧縮機
内で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶
け合わない)状態であるかどうかを判断し、ヒータ加熱
器、室内ファン、室外ファンのON/OFFの制御を決
定し、更に、ステップ51ではヒータ加熱器、室内ファ
ン、室外ファンが無意味に連続してONしないように設
定してある。
The intention of the steps will be described. That is, the refrigerant is condensed and liquefied in the compressor, and it is determined whether the refrigerant and the refrigerating machine oil are in a two-phase separated state (do not melt), and the ON / OFF control of the heater heater, indoor fan, and outdoor fan is determined. Further, in step 51, the heater heater, the indoor fan, and the outdoor fan are set so as not to be continuously turned on without meaning.

【0039】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、外気温度が低下したときに、圧縮機内で
冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶け合
わない)状態であると考えられる条件では、ヒータ加熱
器をONにして圧縮機を加熱することにより、凝縮液化
した冷媒を蒸発させて圧縮機外に追い出し、ヒータ加熱
器をONと同時に室内ファンと室外ファンをONするこ
とにより、蒸発した冷媒を速やかに室内熱交換器と室外
熱交換器に凝縮させることができ、起動時の液冷媒の圧
縮機摺動部に流れ込みによる潤滑不良による破損を防
ぎ、最適な起動時の運転と冷凍サイクル制御の実現を図
ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the outside air temperature is lowered, the refrigerant is condensed and liquefied in the compressor, and the refrigerant and the refrigerating machine oil are separated into two phases (do not mix). ) Condition, the heater heater is turned on to heat the compressor to evaporate the condensed and liquefied refrigerant and drive it out of the compressor. At the same time when the heater heater is turned on, the indoor fan and the outdoor By turning on the fan, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, and the damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor at startup can be prevented. It is possible to realize the optimal start-up operation and refrigeration cycle control.

【0040】次に、本発明の第3の実施例について、図
1と図5、6と図8を参考に説明する。本発明の第3の
実施例における冷凍サイクル図は第1、2の実施例と同
じである。第2の実施例と異なるのは、図6のブロック
図に示す温度設定値と時間設定値を三つに分けて設定
し、外気温度の違いによりヒータ加熱器6、室内熱交換
器5と室外熱交換器3各々の室内外ファンをON/OF
Fの制御する時間を変更したことである。
Next, a third embodiment of the present invention will be described with reference to FIGS. 1, 5, 6 and 8. The refrigeration cycle diagram in the third embodiment of the present invention is the same as in the first and second embodiments. The second embodiment is different from the second embodiment in that the temperature set value and the time set value shown in the block diagram of FIG. 6 are set separately, and the heater heater 6, the indoor heat exchanger 5, and the outdoor are set depending on the difference in the outside air temperature. ON / OF the indoor and outdoor fans of each heat exchanger 3
That is, the time that F controls is changed.

【0041】この冷凍装置運転起動前の制御回路の構成
と動作を図8を参考に説明する。図8はLSI9のメモ
リ22に記憶された冷凍装置のプログラムを示すフロー
チャートである。このフローチャートから判るように、
本発明においては、外気温度が低下したときに、圧縮機
内で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶
け合わない)状態であると考えられる条件下においての
みヒータ加熱器6、室内ファン16、室外ファン17の
ON/OFF時間を制御する。
The configuration and operation of the control circuit before the start of operation of the refrigeration system will be described with reference to FIG. FIG. 8 is a flow chart showing a program of the refrigeration apparatus stored in the memory 22 of the LSI 9. As you can see from this flowchart,
In the present invention, when the outside air temperature is reduced, the refrigerant is condensed and liquefied in the compressor, and the heater and the heater heater 6 are considered to be in a two-phase separated (non-melting) state between the refrigerant and the refrigerating machine oil, The ON / OFF time of the indoor fan 16 and the outdoor fan 17 is controlled.

【0042】冷凍装置運転前の運転停止中の状態におい
て、図8のステップ60が実行されて、タイマ計測t=
0にリセットされ、ステップ61に進み、外気温度検出
器により外気温度Tgが検出された後、ステップ62で
外気温度Tgと設定温度T1(例:20度)との比較演
算により、Tg<T1であれば「YES」の判定がなさ
れステップ63に進む。Tg>T1であれば「NO」の
判定がなされステップ67に進む。
In the state in which the refrigeration system is stopped before the operation, step 60 in FIG. 8 is executed and the timer measurement t =
After being reset to 0 and proceeding to step 61, the outside air temperature Tg is detected by the outside air temperature detector, and then in step 62, the comparison operation between the outside air temperature Tg and the set temperature T1 (example: 20 degrees) is performed, and Tg <T1 If there is, a “YES” determination is made and the operation proceeds to step 63. If Tg> T1, a "NO" determination is made and control proceeds to step 67.

【0043】ステップ67ではメモリ22内蔵の選択手
段により記憶回路の第一の出力モードと第三の出力モー
ドと第五の出力モードが選択され、出力回路23により
制御信号が出力されヒータ加熱器6と室内ファン16と
室外ファン17がONされ、ステップ68に進み、タイ
マ計測され、ステップ69において計測時間tと設定時
間t1(例:10分)の比較演算により、t>t1であ
れば「YES」の判定がなされステップ70、71に進
み、t<t1であれば「NO」の判定がなされステップ
68に戻る。ステップ70、71ではメモリ22内蔵の
選択手段により記憶回路の第二の出力モードと第四の出
力モードと第六の出力モードが選択され、出力回路23
により制御信号が出力されヒータ加熱器6と室内ファン
16と室外ファン17がOFFされステップ72へ進
む。
In step 67, the first output mode, the third output mode and the fifth output mode of the storage circuit are selected by the selection means built in the memory 22, and the output circuit 23 outputs a control signal to output the heater heater 6. Then, the indoor fan 16 and the outdoor fan 17 are turned on, the process proceeds to step 68, the timer measurement is performed, and in step 69, if t> t1 by comparison calculation of the measured time t and the set time t1 (example: 10 minutes), "YES". Is determined and the process proceeds to steps 70 and 71. If t <t1, a determination of "NO" is made and the process returns to step 68. In steps 70 and 71, the second output mode, the fourth output mode, and the sixth output mode of the storage circuit are selected by the selection means built in the memory 22, and the output circuit 23
Then, a control signal is output, the heater heater 6, the indoor fan 16, and the outdoor fan 17 are turned off, and the process proceeds to step 72.

【0044】ステップ63では外気温度Tgと設定温度
T2(例:10度)との比較演算により、Tg<T2で
あれば「YES」の判定がなされステップ64に進む。
Tg>T2であれば「NO」の判定がなされステップ7
4に進む。ステップ74ではメモリ22内蔵の選択手段
により記憶回路の第一の出力モードと第三の出力モード
と第五の出力モードが選択され、出力回路23により制
御信号が出力されヒータ加熱器6と室内ファン16と室
外ファン17がONされ、ステップ75に進み、タイマ
計測され、ステップ76において計測時間tと設定時間
t3(例:20分)の比較演算により、t>t3であれ
ば「YES」の判定がなされステップ77、78に進
み、t<t3であれば「NO」の判定がなされステップ
75に戻る。ステップ77、78ではメモリ22内蔵の
選択手段により記憶回路の第二の出力モードと第四の出
力モードと第六の出力モードが選択され、出力回路23
により制御信号が出力されヒータ加熱器6と室内ファン
16と室外ファン17がOFFされステップ72へ進
む。
In step 63, the outside air temperature Tg is compared with the set temperature T2 (for example, 10 degrees), and if Tg <T2, a "YES" determination is made and the routine proceeds to step 64.
If Tg> T2, a "NO" determination is made and step 7
Go to 4. In step 74, the first output mode, the third output mode and the fifth output mode of the storage circuit are selected by the selection means built in the memory 22, and the control signal is output by the output circuit 23 to output the heater heater 6 and the indoor fan. 16 and the outdoor fan 17 are turned on, the process proceeds to step 75, the timer measurement is performed, and in step 76, if t> t3, it is determined as “YES” by the comparison calculation of the measured time t and the set time t3 (for example, 20 minutes). Then, the process proceeds to steps 77 and 78, and if t <t3, a "NO" determination is made and the process returns to step 75. In steps 77 and 78, the second output mode, the fourth output mode, and the sixth output mode of the storage circuit are selected by the selection means built in the memory 22, and the output circuit 23
Then, a control signal is output, the heater heater 6, the indoor fan 16, and the outdoor fan 17 are turned off, and the process proceeds to step 72.

【0045】ステップ64では外気温度Tgと設定温度
T3(例:0度)との比較演算により、Tg<T3であ
れば「YES」の判定がなされステップ65、66に進
み第一の出力モードと第三の出力モードと第五の出力モ
ードが選択され、出力回路23により制御信号が出力さ
れヒータ加熱器6と室内ファン16と室外ファン17が
ONされた後、ステップ60に戻る。ステップ64でT
g>T3であれば「NO」の判定がなされステップ79
に進む。ステップ79ではメモリ22内蔵の選択手段に
より記憶回路の第一の出力モードと第三の出力モードと
第五の出力モードが選択され、出力回路23により制御
信号が出力されヒータ加熱器6と室内ファン16と室外
ファン17がONされ、ステップ80に進み、タイマ計
測され、ステップ81において計測時間tと設定時間t
3(例:20分)の比較演算により、t>t3であれば
「YES」の判定がなされステップ82、83に進み、
t<t3であれば「NO」の判定がなされステップ80
に戻る。ステップ82、83ではメモリ22内蔵の選択
手段により記憶回路の第二の出力モードと第四の出力モ
ードと第六の出力モードが選択され、出力回路23によ
り制御信号が出力されヒータ加熱器6と室内ファン16
と室外ファン17がOFFされステップ72へ進む。
At step 64, a comparison operation between the outside air temperature Tg and the set temperature T3 (for example, 0 degree) makes a "YES" determination if Tg <T3, and the routine proceeds to steps 65 and 66, where the first output mode is set. After the third output mode and the fifth output mode are selected, the output circuit 23 outputs a control signal to turn on the heater heater 6, the indoor fan 16, and the outdoor fan 17, and then the process returns to step 60. T at step 64
If g> T3, a "NO" determination is made and step 79
Proceed to. In step 79, the first output mode, the third output mode and the fifth output mode of the storage circuit are selected by the selection means built in the memory 22, and the control signal is output by the output circuit 23 to output the heater heater 6 and the indoor fan. 16 and the outdoor fan 17 are turned on, the process proceeds to step 80, the timer is measured, and the measured time t and the set time t are calculated in step 81.
If t> t3 by the comparison calculation of 3 (for example, 20 minutes), the determination of “YES” is made, and the process proceeds to steps 82 and 83,
If t <t3, "NO" is determined and step 80 is performed.
Return to In steps 82 and 83, the second output mode, the fourth output mode and the sixth output mode of the memory circuit are selected by the selection means built in the memory 22, and the output circuit 23 outputs the control signal to the heater / heater 6. Indoor fan 16
Then, the outdoor fan 17 is turned off and the routine proceeds to step 72.

【0046】ステップ72では、タイマ計測され、ステ
ップ73において計測時間tと設定時間t2(例:5
分)の比較演算により、t>t2であれば「YES」の
判定がなされステップ60に、t<t2であれば「N
O」の判定がなされステップ72に戻る。
In step 72, the timer measurement is performed. In step 73, the measurement time t and the set time t2 (for example, 5
If t> t2, the determination of “YES” is made by the comparison operation of (min), and if t <t2, then “N” is determined.
The determination of "O" is made, and the process returns to step 72.

【0047】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、外気温度が低下したときに、圧縮機内で
冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶け合
わない)状態であると考えられる条件では、ヒータ加熱
器をONにし、外気温度に対し圧縮機を加熱する時間を
変更することにより、凝縮液化した冷媒を効率よく蒸発
させて圧縮機外に追い出し、ヒータ加熱器ONと同時に
室内ファンと室外ファンをONすることにより、蒸発し
た冷媒を速やかに室内熱交換器と室外熱交換器に凝縮さ
せることができ、起動時の液冷媒の圧縮機摺動部に流れ
込みによる潤滑不良による破損を防ぎ、最適な起動時の
運転と冷凍サイクル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the outside air temperature is lowered, the refrigerant is condensed and liquefied in the compressor, and the refrigerant and the refrigerating machine oil are separated into two phases (do not mix). ) Condition, the heater heater is turned on and the time for heating the compressor is changed with respect to the outside air temperature, so that the condensed and liquefied refrigerant is efficiently evaporated and discharged to the outside of the compressor. By turning on the indoor fan and the outdoor fan at the same time as turning on the heater, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, and the liquid refrigerant compressor slides at startup. It is possible to prevent damage due to poor lubrication due to inflow, and to realize optimal start-up operation and refrigeration cycle control.

【0048】次に、本発明の第4の実施例について、図
9〜12を参考に説明する。図9は本発明の第4の実施
例における冷凍サイクル図である。第2の実施例と異な
るのは、外気温度検出器7と加熱時間検出器6aの代わ
りに、圧縮機温度を検出して出力する圧縮機温度検出器
10を使用したことである。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a refrigeration cycle diagram in the fourth embodiment of the present invention. The difference from the second embodiment is that a compressor temperature detector 10 that detects and outputs the compressor temperature is used instead of the outside air temperature detector 7 and the heating time detector 6a.

【0049】本発明においては、圧縮機の温度が低下し
たときに、圧縮機内で冷媒が凝縮液化し、冷媒と冷凍機
油が二相分離(溶け合わない)状態であると考えられる
条件下においてのみヒータ加熱器6と室内ファン16と
室外ファン17のON/OFFを制御する。
In the present invention, the refrigerant is condensed and liquefied in the compressor when the temperature of the compressor is lowered, and only under the condition that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state. The heater heater 6, the indoor fan 16, and the outdoor fan 17 are turned on / off.

【0050】冷凍装置運転前の運転停止中の状態におい
て、図12のステップ90が実行されて、圧縮機温度検
出器10により圧縮機温度Tsが検出された後、ステッ
プ91で圧縮機温度Tsと設定温度T4(例:25度)
との比較演算により、Ts<T4であれば「YES」の
判定がなされステップ92、93に進む。Ts>T4で
あれば「NO」の判定がなされステップ90に戻る。ス
テップ92、93ではメモリ22内蔵の選択手段により
記憶回路の第一の出力モードと第三の出力モードと第五
の出力モードが選択され、出力回路23により制御信号
が出力されヒータ加熱器6と室内ファン16と室外ファ
ン17がONされステップ94へ進む。
In the state where the refrigeration system is not in operation before operation, step 90 in FIG. 12 is executed, and the compressor temperature Ts is detected by the compressor temperature detector 10, and then the compressor temperature Ts is set in step 91. Set temperature T4 (Example: 25 degrees)
If Ts <T4, a “YES” determination is made by the comparison calculation with and the process proceeds to steps 92 and 93. If Ts> T4, a "NO" determination is made and control returns to step 90. In steps 92 and 93, the first output mode, the third output mode and the fifth output mode of the memory circuit are selected by the selection means built in the memory 22, and the output circuit 23 outputs the control signal to the heater / heater 6. The indoor fan 16 and the outdoor fan 17 are turned on and the routine proceeds to step 94.

【0051】ステップ94で圧縮機温度検出器10によ
り圧縮機温度Tsが検出された後、ステップ95では圧
縮機温度Tsと設定温度T4+α(例:30度)との比
較演算により、Ts>T4+αであれば「YES」の判
定がなされ二相分離状態であると判断し、ステップ9
6、97に進む。Ts<T4+αであれば「NO」の判
定がなされ二相分離状態であると判断し、ステップ94
に戻る。
After the compressor temperature Ts is detected by the compressor temperature detector 10 in step 94, in step 95, Ts> T4 + α is calculated by comparing the compressor temperature Ts with the set temperature T4 + α (eg, 30 degrees). If there is, a determination of "YES" is made and it is determined that the two-phase separation state is established, and step 9
Proceed to 6, 97. If Ts <T4 + α, a “NO” determination is made and it is determined that the two-phase separation state is established, and step 94
Return to

【0052】ステップ96、97ではヒータ加熱器6と
室内ファン16と室外ファン17がOFFされステップ
90に戻る。
In steps 96 and 97, the heater heater 6, the indoor fan 16, and the outdoor fan 17 are turned off, and the process returns to step 90.

【0053】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
で冷媒が凝縮液化し、冷媒と冷凍機油が二相分離(溶け
合わない)状態であると考えられる条件では、ヒータ加
熱器をONにして圧縮機を加熱することにより、外気温
度の変化に影響されず確実に凝縮液化した冷媒を蒸発さ
せて圧縮機外に追い出し、ヒータ加熱器と同時に室内フ
ァンと室外ファンをONすることにより、蒸発した冷媒
を速やかに室内熱交換器と室外熱交換器に凝縮させるこ
とができ、起動時の液冷媒の圧縮機摺動部に流れ込みに
よる潤滑不良による破損を防ぎ、最適な起動時の運転と
冷凍サイクル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature is lowered, the refrigerant is condensed and liquefied in the compressor, and the refrigerant and the refrigerating machine oil are separated into two phases (melting together). In the condition that is considered to be the (no) state, the heater heater is turned on to heat the compressor, thereby reliably evaporating the condensed and liquefied refrigerant without being affected by the change in the outside air temperature, and expelling it outside the compressor. By turning on the indoor fan and the outdoor fan at the same time as the heater heater, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, and the liquid refrigerant compressor slides at startup. It is possible to prevent damage due to poor lubrication due to inflow, and to realize optimal start-up operation and refrigeration cycle control.

【0054】次に、本発明の第5の実施例について、図
13〜16を参考に説明する。図13は本発明の第5の
実施例における冷凍サイクル図である。第4の実施例と
異なるのは、圧縮機内圧力検出器11が圧縮機内の圧力
を検出して出力する圧縮機内圧力検出手段であり、メモ
リ22に圧縮機内圧力検出手段より出力された値から、
飽和温度を算出したことである。
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 13 is a refrigeration cycle diagram in the fifth embodiment of the present invention. What is different from the fourth embodiment is the in-compressor pressure detection means that the in-compressor pressure detector 11 detects and outputs the pressure in the compressor, and from the value output from the in-compressor pressure detection means in the memory 22,
That is, the saturation temperature was calculated.

【0055】本発明においては、圧縮機の温度が低下し
たきとに、圧縮機内圧力に対する飽和温度と冷媒温度の
比較より、冷媒と冷凍機油が二相分離(溶け合わない)
状態であるかを検出する。
In the present invention, when the temperature of the compressor is lowered, the refrigerant and the refrigerating machine oil are separated into two phases (not melted) by comparing the saturation temperature with the refrigerant temperature and the refrigerant temperature.
It detects whether it is in a state.

【0056】冷凍装置運転前の運転停止中の状態におい
て、図16のステップ100が実行されて、圧縮機温度
検出器10により圧縮機温度Tsが検出された後、ステ
ップ101に進み、圧縮機内圧力検出器11により圧縮
機内の圧力Psが出力され、ステップ102でCPU2
1により圧力Psでの飽和温度Twが算出された後、ス
テップ103に進み、ステップ103では圧縮機温度T
sと飽和定温度Twとの比較演算により、Ts<Twで
あれば「YES」の判定がなされステップ104、10
5に進む。Ts>Twであれば「NO」の判定がなされ
ステップ100に戻る。ステップ104、105ではメ
モリ22内蔵の選択手段により記憶回路の第一の出力モ
ードと第三の出力モードと第五の出力モードが選択さ
れ、出力回路23により制御信号が出力されヒータ加熱
器6と室内ファン16と室外ファン17がONされ、同
様にステップ106、107、108に進み、圧縮機温
度Tsと圧縮機内の圧力Psでの飽和温度Twが算出さ
れた後、ステップ109に進み、ステップ109では圧
縮機温度Tsと飽和定温度Twとの比較演算により、T
s>Tw+αであれば「YES」の判定がなされステッ
プ110、111に進む。Ts<Tw+αであれば「N
O」の判定がなされステップ106に戻る。ステップ1
10、111ではヒータ加熱器6と室内ファン16と室
外ファン17がOFFされステップ100に戻る。
In the state where the refrigeration system is not in operation before operation, step 100 of FIG. 16 is executed, and after the compressor temperature Ts is detected by the compressor temperature detector 10, the process proceeds to step 101, and the pressure in the compressor is increased. The pressure Ps in the compressor is output by the detector 11, and in step 102 the CPU 2
After the saturation temperature Tw at the pressure Ps is calculated by 1, the process proceeds to step 103, in which the compressor temperature Tw is calculated.
If Ts <Tw is determined by the comparison calculation between s and the saturation constant temperature Tw, a determination of “YES” is made and steps 104 and 10 are performed.
Go to 5. If Ts> Tw, a "NO" determination is made and the process returns to step 100. In steps 104 and 105, the first output mode, the third output mode and the fifth output mode of the storage circuit are selected by the selection means built in the memory 22, and the output circuit 23 outputs the control signal to the heater / heater 6. The indoor fan 16 and the outdoor fan 17 are turned on, and similarly, the process proceeds to steps 106, 107 and 108, and after the compressor temperature Ts and the saturation temperature Tw at the pressure Ps in the compressor are calculated, the process proceeds to step 109 and step 109. Then, by comparing the compressor temperature Ts with the saturated constant temperature Tw, T
If s> Tw + α, a “YES” determination is made and the routine proceeds to steps 110 and 111. If Ts <Tw + α, then “N
The determination of "O" is made, and the process returns to step 106. Step 1
In 10 and 111, the heater heater 6, the indoor fan 16, and the outdoor fan 17 are turned off, and the process returns to step 100.

【0057】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
の圧力から飽和温度を算出することで、圧縮機内で冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを確実に判断でき、ヒータ加熱器をONにして圧縮
機を加熱することにより、凝縮液化した冷媒を蒸発させ
て圧縮機外に追い出し、ヒータ加熱器ONと同時に室内
ファンと室外ファンをONすることにより、蒸発した冷
媒を速やかに室内熱交換器と室外熱交換器に凝縮させる
ことができ、起動時の液冷媒の圧縮機摺動部に流れ込み
による潤滑不良による破損を防ぎ、最適な起動時の運転
と冷凍サイクル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature is lowered, the saturation temperature is calculated from the pressure in the compressor, so that the refrigerant and the refrigerating machine oil are stored in the compressor. It is possible to reliably determine whether or not is in a two-phase separated state (does not melt), and by turning on the heater heater and heating the compressor, the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor. By turning on the indoor fan and the outdoor fan at the same time as turning on the heater, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, and the liquid refrigerant compressor slides at startup. It is possible to prevent damage due to poor lubrication due to inflow, and to realize optimal start-up operation and refrigeration cycle control.

【0058】次に、本発明の第6の実施例について、図
14〜15、図17を参考に説明する。本発明の第6の
実施例は第5実施例の冷凍サイクル図と同じである。
Next, a sixth embodiment of the present invention will be described with reference to FIGS. The sixth embodiment of the present invention is the same as the refrigeration cycle diagram of the fifth embodiment.

【0059】第5の実施例と異なるのは、冷凍装置運転
中の制御についてのものであり、運転中に冷媒と冷凍機
油の二相分離(溶け合わない)状態であるときに、ヒー
タ加熱器のみで回避しようとするものである。
The difference from the fifth embodiment is in the control during operation of the refrigeration system, and when the refrigerant and the refrigeration oil are in a two-phase separation (do not melt) state during operation, the heater heater It's just something you try to avoid.

【0060】本発明においては、圧縮機の温度が低下し
たときに、圧縮機の飽和温度と冷媒の温度より、冷媒と
冷凍機油が二相分離(溶け合わない)状態であると考え
られる条件下においてのみヒータ加熱器6のON/OF
Fを制御する。
In the present invention, when the temperature of the compressor is lowered, it is considered that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state from the saturation temperature of the compressor and the temperature of the refrigerant. ON / OFF of heater / heater 6 only
Control F.

【0061】冷凍装置運転中の状態において、図17の
ステップ120が実行されて、圧縮機温度検出器10に
より圧縮機温度Tsが検出された後、ステップ121に
進み、圧縮機内圧力検出器11により圧縮機内の圧力P
sが出力され、ステップ122で圧力Psでの飽和温度
Twが算出された後、ステップ123に進み、ステップ
123では圧縮機温度Tsと飽和定温度Twとの比較演
算により、Ts<Twであれば「YES」の判定がなさ
れステップ124に進む。Ts>Twであれば「NO」
の判定がなされステップ120に戻る。ステップ124
ではメモリ22内蔵の選択手段により記憶回路の第一の
出力モードが選択され、出力回路23により制御信号が
出力されヒータ加熱器6がONされ、同様にステップ1
25、126、127に進み、圧縮機温度Tsと圧縮機
内の圧力Psでの飽和温度Twが算出された後、ステッ
プ128に進み、ステップ28では圧縮機温度Tsと飽
和定温度Twとの比較演算により、Ts>Tw+αであ
れば「YES」の判定がなされステップ129に進む。
Ts<Tw+αであれば「NO」の判定がなされステッ
プ125に戻る。ステップ129ではヒータ加熱器6が
OFFされステップ120に戻る。
While the refrigeration system is in operation, step 120 in FIG. 17 is executed, and the compressor temperature Ts is detected by the compressor temperature detector 10. After that, the process proceeds to step 121, and the compressor internal pressure detector 11 is used. Pressure P in the compressor
After s is output and the saturation temperature Tw at the pressure Ps is calculated in step 122, the process proceeds to step 123, and in step 123, if Ts <Tw is calculated by the comparison calculation between the compressor temperature Ts and the saturation constant temperature Tw. The determination of "YES" is made and the routine proceeds to step 124. If Ts> Tw, “NO”
Is determined and the process returns to step 120. Step 124
Then, the first output mode of the storage circuit is selected by the selection means built in the memory 22, the control signal is output by the output circuit 23, and the heater / heater 6 is turned on.
25, 126 and 127, the compressor temperature Ts and the saturation temperature Tw at the pressure Ps in the compressor are calculated, and then the routine proceeds to step 128, where the comparison calculation of the compressor temperature Ts and the saturation constant temperature Tw is performed at step 28. Thus, if Ts> Tw + α, a “YES” determination is made and the operation proceeds to step 129.
If Ts <Tw + α, a “NO” determination is made and the process returns to step 125. In step 129, the heater heater 6 is turned off and the process returns to step 120.

【0062】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
の圧力から飽和温度を算出することで、圧縮機内で冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを確実に判断でき、圧縮機内で冷媒と冷凍機油が二
相分離(溶け合わない)状態であるかどうかを確実に判
断でき、冷凍装置運転中の状態であっても、ヒータ加熱
器をONにして圧縮機を加熱することにより、凝縮液化
した冷媒を蒸発させて圧縮機外に追い出し、運転中の液
冷媒の圧縮機摺動部に流れ込みによる潤滑不良による破
損を防ぎ、最適な運転と冷凍サイクル制御の実現を図る
ことができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature is lowered, the saturation temperature is calculated from the pressure in the compressor, so that the refrigerant and the refrigerating machine oil are stored in the compressor. It is possible to reliably judge whether or not the refrigerant is in a two-phase separation (does not mix) state, and it is possible to reliably judge whether the refrigerant and refrigeration oil are in a two-phase separation (do not melt) inside the compressor, and the refrigerating machine operation Even in the middle state, by turning on the heater heater to heat the compressor, the condensed and liquefied refrigerant is evaporated and driven out of the compressor, and the liquid refrigerant in operation flows into the compressor sliding part. It is possible to prevent damage due to poor lubrication due to, and to realize optimal operation and refrigeration cycle control.

【0063】次に、本発明の第7の実施例について、図
13〜15、18を参考に説明する。本発明の第7の実
施例は第5、6、実施例の冷凍サイクル図と同じであ
る。第6の実施例と異なるのは、冷凍装置運転中の制御
について、図14の電子制御回路図に示す室内ファン1
6と室外ファン17を制御することである。
Next, a seventh embodiment of the present invention will be described with reference to FIGS. The seventh embodiment of the present invention is the same as the refrigeration cycle diagram of the fifth, sixth and fifth embodiments. The difference from the sixth embodiment is that the indoor fan 1 shown in the electronic control circuit diagram of FIG.
6 and the outdoor fan 17 are controlled.

【0064】本発明においては、圧縮機の温度が低下し
たときに、圧縮機の飽和温度と冷媒の温度より、冷媒と
冷凍機油が二相分離(溶け合わない)状態であると考え
られる条件下においてのみ室内ファン16と室外ファン
17の制御を行う。
In the present invention, when the temperature of the compressor is lowered, it is considered that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state from the saturation temperature of the compressor and the temperature of the refrigerant. The indoor fan 16 and the outdoor fan 17 are controlled only at.

【0065】冷凍装置運転中の状態において、図18の
ステップ130が実行されて、圧縮機温度検出器10に
より圧縮機温度Tsが検出された後、ステップ131に
進み、圧縮機内圧力検出器11により圧縮機内の圧力P
sが出力され、ステップ132で圧力Psでの飽和温度
Twが算出された後、ステップ133に進み、ステップ
133では圧縮機温度Tsと飽和定温度Twとの比較演
算により、Ts<Twであれば「YES」の判定がなさ
れステップ134に進む。Ts>Twであれば「NO」
の判定がなされステップ130に戻る。ステップ13
4、135では室内ファン回転数検出器12と室外ファ
ン回転数検出器13により室内ファン16の回転数Fn
と室外ファン17の回転数Fgが検出され、ステップ1
36に進み、運転モード検出器24により四方弁2のO
N/OFFが検出され、ステップ137において、四方
弁2=ONであれば「YES」の判定がなされステップ
138に進み、ステップ138で暖房運転でると判断さ
れステップ139に進む。四方弁2=OFFであれば
「NO」の判定がなされステップ140に進み、冷房運
転であると判断されステップ141に進む。ステップ1
39では出力回路23により、室内ファン16の回転数
Fn1=Fn−β(例:β=200rpm)にDOWN
し、室外ファン17の回転数Fg1=Fg+ε1(例:
ε1=150rpm)にUPされステップ142へ進
む。またステップ141ではステップ139と同様に、
出力回路23により、室内ファン16の回転数Fn1=
Fn+β(例:β=200rpm)にUPし、室外ファ
ン17の回転数Fg1=Fg−ε1(例:ε1=150
rpm)にDOWNされステップ142へ進む。ステッ
プ142、143、144では、圧縮機温度Tsと圧縮
機内の圧力Psでの飽和温度Twが算出された後、ステ
ップ145に進み、ステップ145では圧縮機温度Ts
と飽和定温度Twとの比較演算により、Ts>Tw+α
であれば「YES」の判定がなされステップ146に進
む。Ts<Tw+αであれば「NO」の判定がなされス
テップ142に戻る。ステップ146では室内ファン1
6の回転数Fn1が初期の回転数Fnに復帰し、室外フ
ァン17の回転数Fg1が初期の回転数Fgに復帰され
ステップ130に戻る。
While the refrigeration system is in operation, step 130 in FIG. 18 is executed, and the compressor temperature Ts is detected by the compressor temperature detector 10. Then, the process proceeds to step 131, where the compressor internal pressure detector 11 is used. Pressure P in the compressor
s is output, and the saturation temperature Tw at the pressure Ps is calculated in step 132. Then, the process proceeds to step 133, and in step 133, if Ts <Tw by the comparison calculation of the compressor temperature Ts and the saturation constant temperature Tw. The determination of “YES” is made, and the process proceeds to step 134. If Ts> Tw, “NO”
Is determined and the process returns to step 130. Step 13
In Nos. 4 and 135, the rotation speed Fn of the indoor fan 16 is determined by the indoor fan rotation speed detector 12 and the outdoor fan rotation speed detector 13.
And the rotation speed Fg of the outdoor fan 17 is detected, and step 1
Proceeding to 36, the operation mode detector 24 causes the O of the four-way valve 2 to
If N / OFF is detected, and the four-way valve 2 = ON is determined in step 137, a “YES” determination is made and the process proceeds to step 138. In step 138, it is determined that the heating operation is performed, and the process proceeds to step 139. If the four-way valve 2 = OFF, a "NO" determination is made and control proceeds to step 140, and it is determined that the cooling operation is in progress, and control proceeds to step 141. Step 1
In 39, the output circuit 23 causes the rotation speed Fn1 = Fn-β (example: β = 200 rpm) of the indoor fan 16 to be DOWN.
Then, the rotation speed of the outdoor fan 17 Fg1 = Fg + ε1 (Example:
ε1 = 150 rpm) and the process proceeds to step 142. In step 141, as in step 139,
By the output circuit 23, the rotation speed Fn1 of the indoor fan 16 =
UP to Fn + β (example: β = 200 rpm), and the rotation speed of the outdoor fan 17 Fg1 = Fg−ε1 (example: ε1 = 150)
rpm) and proceed to step 142. After the compressor temperature Ts and the saturation temperature Tw at the pressure Ps in the compressor are calculated in steps 142, 143, and 144, the process proceeds to step 145, and in step 145, the compressor temperature Ts.
And the saturation constant temperature Tw are compared, Ts> Tw + α
If so, a determination of "YES" is made and the process proceeds to step 146. If Ts <Tw + α, a “NO” determination is made and the process returns to step 142. In step 146, the indoor fan 1
The rotation speed Fn1 of 6 returns to the initial rotation speed Fn, the rotation speed Fg1 of the outdoor fan 17 returns to the initial rotation speed Fg, and the process returns to step 130.

【0066】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
の圧力から飽和温度を算出することで、圧縮機内で冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを確実に判断でき、圧縮機内で冷媒と冷凍機油が二
相分離(溶け合わない)状態であるかどうかを確実に判
断でき、冷凍装置運転中の状態であっても、室内ファン
と室外ファンの回転数を変化させることにより圧縮機の
温度を上昇させ、凝縮液化した冷媒を蒸発させて圧縮機
外に追い出し、運転中の液冷媒の圧縮機摺動部に流れ込
みによる潤滑不良による破損を防ぎ、最適な運転と冷凍
サイクル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature is lowered, the saturation temperature is calculated from the pressure in the compressor, so that the refrigerant and the refrigerating machine oil are stored in the compressor. It is possible to reliably judge whether or not the refrigerant is in a two-phase separation (does not mix) state, and it is possible to reliably judge whether the refrigerant and refrigeration oil are in a two-phase separation (do not melt) inside the compressor, and the refrigerating machine operation Even in the middle state, the temperature of the compressor is raised by changing the rotation speed of the indoor fan and the outdoor fan, and the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor to compress the liquid refrigerant during operation. It is possible to prevent damage due to poor lubrication due to flowing into the sliding parts of the machine, and to realize optimum operation and refrigeration cycle control.

【0067】次に、本発明の第8の実施例について、図
13、15、19、20を参考に説明する。本発明の第
8の実施例は第5、6、7実施例の冷凍サイクル図と同
じである。第7の実施例と異なるのは、冷凍装置運転中
の制御について、図19の電子制御回路図に示す室外フ
ァン17のみを制御することである。
Next, an eighth embodiment of the present invention will be described with reference to FIGS. 13, 15, 19 and 20. The eighth embodiment of the present invention is the same as the refrigeration cycle diagram of the fifth, sixth and seventh embodiments. The difference from the seventh embodiment is that only the outdoor fan 17 shown in the electronic control circuit diagram of FIG. 19 is controlled for the control during the operation of the refrigeration system.

【0068】本発明においては、圧縮機の温度が低下し
たときに、圧縮機の飽和温度と冷媒の温度より、冷媒と
冷凍機油が二相分離(溶け合わない)状態であると考え
られる条件下において室外ファン17のみ制御を行う。
In the present invention, when the temperature of the compressor is lowered, it is considered that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state from the saturation temperature of the compressor and the temperature of the refrigerant. At, only the outdoor fan 17 is controlled.

【0069】本発明の第8の実施例が第7の実施例の冷
凍装置プログラムとほぼ同じである為、本発明の第8の
実施例の冷凍装置プログラムのフローチャートの図20
中で、第7の実施例の冷凍装置プログラムと異なるステ
ップについてのみ説明することにする。
Since the eighth embodiment of the present invention is almost the same as the refrigeration system program of the seventh embodiment, FIG. 20 of the flowchart of the refrigeration system program of the eighth embodiment of the present invention is shown.
Among them, only steps different from those of the refrigeration system program of the seventh embodiment will be described.

【0070】第7の実施例と異なる図20中のステップ
は、ステップ154とステップ158、160、165
である。まず、ステップ154では室外ファン回転数検
出器13により室外ファン17の回転数Fgのみが検出
され、ステップ158では室外ファン17の回転数Fg
2=Fg+ε2(例:ε2=250rpm)にUPされ
ステップ161へ進む。またステップ160ではステッ
プ158と同様に、室外ファン17の回転数Fg2=F
g−ε2(例:ε2=250rpm)にDOWNされス
テップ161へ進む。ステップ165においては、室外
ファン17の回転数Fg2が初期の回転数Fgに復帰さ
れステップ150に戻る。
The steps in FIG. 20 different from the seventh embodiment are steps 154 and 158, 160, 165.
Is. First, in step 154, the outdoor fan rotation speed detector 13 detects only the rotation speed Fg of the outdoor fan 17, and in step 158, the rotation speed Fg of the outdoor fan 17 is detected.
2 = Fg + ε2 (example: ε2 = 250 rpm), and the process proceeds to step 161. Further, in step 160, as in step 158, the rotation speed Fg2 of the outdoor fan 17 = F
DOWN is performed to g-ε2 (eg, ε2 = 250 rpm), and the process proceeds to step 161. In step 165, the rotation speed Fg2 of the outdoor fan 17 is returned to the initial rotation speed Fg, and the process returns to step 150.

【0071】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
の圧力から飽和温度を算出することで、圧縮機内で冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを確実に判断でき、圧縮機内で冷媒と冷凍機油が二
相分離(溶け合わない)状態であるかどうかを確実に判
断でき、冷凍装置運転中の状態であっても、室内ファン
回転数を変えず、室外ファンのみ回転数を変化させるこ
とにより圧縮機の温度を上昇させると共に室内の快適性
を損なわずに、凝縮液化した冷媒を蒸発させて圧縮機外
に追い出し、運転中の液冷媒の圧縮機摺動部に流れ込み
による潤滑不良による破損を防ぎ、最適な運転と冷凍サ
イクル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature decreases, the saturation temperature is calculated from the pressure in the compressor, so that the refrigerant and the refrigerating machine oil are stored in the compressor. It is possible to reliably judge whether or not the refrigerant is in a two-phase separation (does not mix) state, and it is possible to reliably judge whether the refrigerant and refrigeration oil are in a two-phase separation (do not melt) inside the compressor, and the refrigerating machine operation Even in the medium state, the temperature of the compressor is raised by changing the rotation speed of only the outdoor fan without changing the rotation speed of the indoor fan, and the condensed liquefied refrigerant is evaporated without impairing indoor comfort. It is possible to prevent damage due to poor lubrication caused by the liquid refrigerant flowing out of the compressor to flow into the sliding parts of the compressor during operation, and to realize optimal operation and refrigeration cycle control.

【0072】次に、本発明の第9の実施例について、図
13、15、19、21を参考に説明する。本発明の第
9の実施例は第5、6、7、8実施例の冷凍サイクル図
と同じである。第8の実施例と異なるのは、冷凍装置運
転中の制御について、図19の電子制御回路図に示す圧
縮機モータ18の周波数のみを制御することである。
Next, a ninth embodiment of the present invention will be described with reference to FIGS. The ninth embodiment of the present invention is the same as the refrigeration cycle diagram of the fifth, sixth, seventh and eighth embodiments. The difference from the eighth embodiment is that only the frequency of the compressor motor 18 shown in the electronic control circuit diagram of FIG. 19 is controlled for the control during operation of the refrigeration system.

【0073】本発明においては、圧縮機の温度が低下し
たときに、圧縮機の飽和温度と冷媒の温度より、冷媒と
冷凍機油が二相分離(溶け合わない)状態であると考え
られる条件下において圧縮機モータ18の周波数のみ制
御を行う。
In the present invention, when the temperature of the compressor is lowered, it is considered that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state from the saturation temperature of the compressor and the temperature of the refrigerant. In, only the frequency of the compressor motor 18 is controlled.

【0074】冷凍装置運転中の状態において、図21の
ステップ170が実行されて、圧縮機温度検出器10に
より圧縮機温度Tsが検出された後、ステップ171に
進み、圧縮機内圧力検出器11により圧縮機内の圧力P
sが出力され、ステップ172で圧力Psでの飽和温度
Twが算出された後、ステップ173に進み、ステップ
173では圧縮機温度Tsと飽和定温度Twとの比較演
算により、Ts<Twであれば「YES」の判定がなさ
れステップ174に進む。Ts>Twであれば、「N
O」の判定がなされステップ170に戻る。ステップ1
74においては、圧縮機運転周波数検出器14により、
圧縮機モータ18の運転周波数fが検出され、ステップ
175に進み、ステップ175では出力回路23によ
り、運転周波数fa=f+δ(例:δ=20Hz)にU
Pし、ステップ176に進む、ステップ176、17
7、178では、圧縮機温度Tsと圧縮機内の圧力Ps
での飽和温度Twが算出された後、ステップ179に進
み、ステップ179では圧縮機温度Tsと飽和定温度T
wとの比較演算により、Ts>Tw+αであれば「YE
S」の判定がなされステップ180に進む。Ts<Tw
+αであれば「NO」の判定がなされステップ176に
戻る。ステップ180では圧縮機モータ18の運転周波
数faが初期の運転周波数fに復帰されステップ170
に戻る。
21 is executed and the compressor temperature detector 10 detects the compressor temperature Ts, the routine proceeds to step 171, where the in-compressor pressure detector 11 detects the compressor temperature Ts. Pressure P in the compressor
s is output, and the saturation temperature Tw at the pressure Ps is calculated in step 172, and then the process proceeds to step 173. In step 173, if Ts <Tw, the compressor temperature Ts is compared with the saturation constant temperature Tw. The judgment of "YES" is made and it progresses to step 174. If Ts> Tw, "N
The determination of "O" is made, and the process returns to step 170. Step 1
At 74, by the compressor operating frequency detector 14,
The operating frequency f of the compressor motor 18 is detected, and the process proceeds to step 175. At step 175, the output circuit 23 sets the operating frequency fa = f + δ (example: δ = 20 Hz) to U.
P, go to step 176, steps 176, 17
7, 178, the compressor temperature Ts and the pressure Ps in the compressor
After the saturation temperature Tw is calculated in step 179, the process proceeds to step 179. In step 179, the compressor temperature Ts and the saturation constant temperature T
If Ts> Tw + α by comparison with w, then “YE
The determination of "S" is made, and the routine proceeds to step 180. Ts <Tw
If it is + α, a “NO” determination is made and the process returns to step 176. In step 180, the operating frequency fa of the compressor motor 18 is restored to the initial operating frequency f, and step 170
Return to

【0075】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
の圧力から飽和温度を算出することで、圧縮機内で冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを確実に判断でき、圧縮機内で冷媒と冷凍機油が二
相分離(溶け合わない)状態であるかどうかを確実に判
断でき、冷凍装置運転中の状態であっても、圧縮機の運
転周波数を変化させることにより圧縮機の温度を上昇さ
せると共に、凝縮液化した冷媒を蒸発させて圧縮機外に
追い出し、運転中の液冷媒の圧縮機摺動部に流れ込みに
よる潤滑不良による破損を防ぎ、最適な運転と冷凍サイ
クル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature is lowered, the saturation temperature is calculated from the pressure in the compressor, so that the refrigerant and the refrigerating machine oil are stored in the compressor. It is possible to reliably judge whether or not the refrigerant is in a two-phase separation (does not mix) state, and it is possible to reliably judge whether the refrigerant and refrigeration oil are in a two-phase separation (do not melt) inside the compressor, and the refrigerating machine operation Even in the middle condition, the temperature of the compressor is raised by changing the operating frequency of the compressor, and the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor. It is possible to prevent damage due to poor lubrication due to flowing into the moving part, and realize optimal operation and refrigeration cycle control.

【0076】次に、本発明の第10の実施例について、
図13、15、19、22を参考に説明する。本発明の
第10の実施例は第5、6、7、8、9実施例の冷凍サ
イクル図と同じである。第9の実施例と異なるのは、冷
凍装置運転中の制御について、図19の電子制御回路図
に示す膨張弁19の弁開度のみを制御することである。
Next, the tenth embodiment of the present invention will be described.
Description will be made with reference to FIGS. The tenth embodiment of the present invention is the same as the refrigeration cycle diagram of the fifth, sixth, seventh, eighth and ninth embodiments. The difference from the ninth embodiment is that only the valve opening degree of the expansion valve 19 shown in the electronic control circuit diagram of FIG. 19 is controlled for the control during the operation of the refrigeration system.

【0077】本発明においては、圧縮機の温度が低下し
たときに、圧縮機の飽和温度と冷媒の温度より、冷媒と
冷凍機油が二相分離(溶け合わない)状態であると考え
られる条件下において膨張弁19の弁開度のみ制御を行
う。本発明の第10の実施例が第9の実施例の冷凍装置
プログラムとほぼ同じである為、本発明の第10の実施
例の冷凍装置プログラムのフローチャートの図22中
で、第9の実施例の冷凍装置プログラムと異なるステッ
プについてのみ説明することにする。
In the present invention, when the temperature of the compressor is lowered, it is considered that the refrigerant and the refrigerating machine oil are in a two-phase separated (not melted) state from the saturation temperature of the compressor and the temperature of the refrigerant. At, only the valve opening of the expansion valve 19 is controlled. Since the tenth embodiment of the present invention is substantially the same as the refrigeration system program of the ninth embodiment, the ninth embodiment is shown in the flowchart of the refrigeration system program of the tenth embodiment of the present invention. Only steps different from those of the refrigeration system program will be described.

【0078】第9の実施例と異なる図22中のステップ
は、ステップ194、195、200である。まず、ス
テップ194では膨張弁開度検出器15により、膨張弁
19の弁開度Kが検出され、ステップ195に進み、ス
テップ195では出力回路23により、弁開度Ka=K
−η(例:η=10パルス)絞られ、ステップ196に
進む。ステップ200では膨張弁19の膨張弁開度Ka
が初期の弁開度Kに復帰されステップ190に戻る。
The steps in FIG. 22 different from the ninth embodiment are steps 194, 195 and 200. First, in step 194, the valve opening degree K of the expansion valve 19 is detected by the expansion valve opening degree detector 15, and the process proceeds to step 195. In step 195, the output circuit 23 causes the valve opening degree Ka = K.
-Η (eg, η = 10 pulses) is narrowed down, and the process proceeds to step 196. In step 200, the expansion valve opening degree Ka of the expansion valve 19
Is returned to the initial valve opening K and the process returns to step 190.

【0079】このように、冷媒に非相溶の冷凍機油を用
いた場合でも、圧縮機温度が低下したときに、圧縮機内
の圧力から飽和温度を算出することで、圧縮機内で冷媒
と冷凍機油が二相分離(溶け合わない)状態であるかど
うかを確実に判断でき、圧縮機内で冷媒と冷凍機油が二
相分離(溶け合わない)状態であるかどうかを確実に判
断でき、冷凍装置運転中の状態であっても、膨張弁の弁
開度を変化させることにより圧縮機の温度を上昇させる
と共に、凝縮液化した冷媒を蒸発させて圧縮機外に追い
出し、運転中の液冷媒の圧縮機摺動部に流れ込みによる
潤滑不良による破損を防ぎ、簡単に最適な運転と冷凍サ
イクル制御の実現を図ることができる。
As described above, even when the incompatible refrigerating machine oil is used as the refrigerant, when the compressor temperature is lowered, the saturation temperature is calculated from the pressure in the compressor, so that the refrigerant and the refrigerating machine oil are stored in the compressor. It is possible to reliably judge whether or not the refrigerant is in a two-phase separation (does not mix) state, and it is possible to reliably judge whether the refrigerant and refrigeration oil are in a two-phase separation (do not melt) inside the compressor, and the refrigerating machine operation Even in the middle state, the temperature of the compressor is raised by changing the valve opening of the expansion valve, and the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor. It is possible to prevent damage due to poor lubrication due to flowing into the sliding portion, and easily realize optimum operation and refrigeration cycle control.

【0080】次に、本発明の第11の実施例について、
図23aと図23bを用いて説明する。図23aは圧縮
機全体の構成概要図であり、また図23bは圧縮機底部
の詳細図である。
Next, the eleventh embodiment of the present invention will be described.
This will be described with reference to FIGS. 23a and 23b. FIG. 23a is a schematic view of the configuration of the entire compressor, and FIG. 23b is a detailed view of the bottom of the compressor.

【0081】例えば図23aに示す様な縦型圧縮機の場
合、圧縮機下部に冷凍機油と液冷媒が滞留することにな
る。この詳細について図23bを用いて説明すると、同
図に示すように液冷媒と冷凍機油は二相分離した状態で
滞留する。よって、圧縮機の底部にヒータ加熱器6を設
置して加熱することにより、液冷媒をより効果的に気化
除去させることができる。
For example, in the case of a vertical compressor as shown in FIG. 23a, refrigerating machine oil and liquid refrigerant will stay in the lower part of the compressor. The details will be described with reference to FIG. 23b. As shown in FIG. 23, the liquid refrigerant and the refrigerating machine oil stay in a state of being separated into two phases. Therefore, by installing and heating the heater heater 6 at the bottom of the compressor, the liquid refrigerant can be vaporized and removed more effectively.

【0082】[0082]

【発明の効果】上記実施例からも明かなように本発明の
冷凍装置の制御装置は、冷媒に非相溶の冷凍機油を用い
た場合でも、外気温度を検出するための外気温度検出器
と圧縮機を加熱するためのヒータ加熱器を有すること
で、外気温度が低下したときに、圧縮機内で冷媒が凝縮
液化し、冷媒と冷凍機油が二相分離(溶け合わない)状
態であると考えられる条件では、ヒータ加熱器をONに
して圧縮機を加熱することにより、凝縮液化した冷媒を
蒸発させて、起動時の液冷媒の圧縮機摺動部に流れ込み
による潤滑不良による破損を防ぎ、最適な起動時の運転
と冷凍サイクル制御の実現を図ることが可能となる。
As is apparent from the above embodiments, the control device for the refrigerating apparatus of the present invention includes the outside air temperature detector for detecting the outside air temperature even when the incompatible refrigerating machine oil is used as the refrigerant. By having a heater heater to heat the compressor, it is considered that the refrigerant is condensed and liquefied in the compressor when the outside air temperature drops, and the refrigerant and refrigerating machine oil are in a two-phase separated (not melted) state. Under the conditions, the heater heater is turned on to heat the compressor to evaporate the condensed and liquefied refrigerant and prevent damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor at start-up. It is possible to realize the operation at the time of starting and the control of the refrigeration cycle.

【0083】また、冷媒に非相溶の冷凍機油を用いた場
合でも、外気温度を検出するための外気温度検出器と圧
縮機を加熱するためのヒータ加熱器、室内ファンと室外
ファン装置を有することで、外気温度が低下したとき
に、圧縮機内で冷媒が凝縮液化し、冷媒と冷凍機油が二
相分離(溶け合わない)状態であると考えられる条件で
は、ヒータ加熱器をONにして圧縮機を加熱することに
より、凝縮液化した冷媒を蒸発させて圧縮機外に追い出
し、ヒータ加熱器をONと同時に室内ファンと室外ファ
ンをONすることにより、蒸発した冷媒を速やかに室内
熱交換器と室外熱交換器に凝縮させることができ、起動
時の液冷媒の圧縮機摺動部に流れ込みによる潤滑不良に
よる破損を防ぎ、より最適な起動時の運転と冷凍サイク
ル制御の実現を図ることが可能となる。
Further, even when an incompatible refrigerating machine oil is used as the refrigerant, it has an outside air temperature detector for detecting the outside air temperature, a heater heater for heating the compressor, an indoor fan and an outdoor fan device. Therefore, when the outside air temperature decreases, the refrigerant is condensed and liquefied in the compressor, and under the condition that the refrigerant and the refrigerating machine oil are in two-phase separation (do not melt), turn on the heater heater and compress By heating the machine, the condensed and liquefied refrigerant is evaporated and expelled to the outside of the compressor. By turning on the heater heater and simultaneously turning on the indoor fan and the outdoor fan, the evaporated refrigerant is promptly changed to the indoor heat exchanger. It can be condensed in the outdoor heat exchanger, prevents damage due to poor lubrication due to liquid refrigerant flowing into the compressor sliding part at startup, and aims to realize more optimal startup operation and refrigeration cycle control. Theft is possible.

【0084】また、冷媒に非相溶の冷凍機油を用いた場
合でも、外気温度を検出するための外気温度検出器と圧
縮機を加熱するためのヒータ加熱器、室内ファンと室外
ファン装置を有することで、外気温度が低下したとき
に、圧縮機内で冷媒が凝縮液化し、冷媒と冷凍機油が二
相分離(溶け合わない)状態であると考えられる条件で
は、ヒータ加熱器をONにし、外気温度に対し圧縮機を
加熱する時間を変更することにより、凝縮液化した冷媒
をより無駄なく効率良く蒸発させて圧縮機外に追い出
し、ヒータ加熱器ONと同時に室内ファンと室外ファン
をONすることにより、蒸発した冷媒を速やかに室内熱
交換器と室外熱交換器に凝縮させることができ、起動時
の液冷媒の圧縮機摺動部に流れ込みによる潤滑不良によ
る破損を防ぎ、更に最適な起動時の運転と冷凍サイクル
制御の実現を図ることが可能となる。
Even when an incompatible refrigerating machine oil is used as the refrigerant, it has an outside air temperature detector for detecting the outside air temperature, a heater heater for heating the compressor, an indoor fan and an outdoor fan device. Therefore, when the outside air temperature drops, the refrigerant is condensed and liquefied in the compressor, and under the condition that the refrigerant and the refrigerating machine oil are separated into two phases (do not melt), turn on the heater heater and turn on the outside air. By changing the time to heat the compressor with respect to the temperature, the condensed and liquefied refrigerant is evaporated more efficiently without being wasted and driven out of the compressor. By turning on the heater heater and turning on the indoor fan and the outdoor fan at the same time. The evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, preventing damage due to poor lubrication caused by the liquid refrigerant flowing into the sliding parts of the compressor at startup, and It is possible to achieve the realization of Do operation and the refrigerating cycle control at the time of startup.

【0085】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機を加熱するためのヒータ加熱器、室内ファンと
室外ファン装置を有することで、圧縮機温度が低下した
ときに、圧縮機内で冷媒が凝縮液化し、冷媒と冷凍機油
が二相分離(溶け合わない)状態であると考えられる条
件では、ヒータ加熱器をONにして圧縮機を加熱するこ
とにより、外気温度に影響されずに、無駄なくより確実
に効率良く凝縮液化した冷媒を蒸発させて圧縮機外に追
い出し、室内ファンと室外ファンを同時にONすること
により、蒸発した冷媒を速やかに室内熱交換器と室外熱
交換器に凝縮させることができ、起動時の液冷媒の圧縮
機摺動部に流れ込みによる潤滑不良による破損を防ぎ、
最適な起動時の運転と冷凍サイクル制御の実現を図るこ
とが可能となる。
Even when the incompatible refrigerating machine oil is used as the refrigerant, the compressor temperature detector for detecting the compressor temperature, the heater heater for heating the compressor, the indoor fan and the outdoor fan device. When the temperature of the compressor is lowered, the refrigerant is condensed and liquefied in the compressor, and the heater and the heater are turned on under the condition that the refrigerant and the refrigerating machine oil are separated into two phases (do not melt). By heating the compressor as described above, without being affected by the outside air temperature, it is possible to more effectively and efficiently evaporate the condensed and liquefied refrigerant and expel it to the outside of the compressor, thereby turning on the indoor fan and the outdoor fan at the same time. , The evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, and prevents damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor at startup,
It is possible to realize the optimal start-up operation and refrigeration cycle control.

【0086】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機内圧力検出器から飽和温度を算出することで、
圧縮機温度が低下したときに、圧縮機内で冷媒と冷凍機
油が二相分離(溶け合わない)状態であるかどうかをよ
り確実に精度良く判断でき、ヒータ加熱器をONにして
圧縮機を加熱することにより、外気温度に影響されず
に、無駄なくより確実に精度良く凝縮液化した冷媒が完
全に無くなるまで蒸発させて圧縮機外に追い出し、ヒー
タ加熱器ONと同時に室内ファンと室外ファンをONす
ることにより、蒸発した冷媒を速やかに室内熱交換器と
室外熱交換器に凝縮させることができ、起動時の液冷媒
の圧縮機摺動部に流れ込みによる潤滑不良による破損を
防ぎ、最適な起動時の運転と冷凍サイクル制御の実現を
図ることが可能となる。
Even when the incompatible refrigerating machine oil is used as the refrigerant, the saturation temperature is calculated from the compressor temperature detector for detecting the compressor temperature and the compressor internal pressure detector,
When the temperature of the compressor drops, it can be judged more reliably and accurately whether the refrigerant and the refrigerating machine oil are in two-phase separation (do not melt), and the heater heater is turned on to heat the compressor. By doing so, without being affected by the outside air temperature, the condensed and liquefied refrigerant can be evaporated more reliably and more accurately and expelled to the outside of the compressor without waste, and the indoor fan and outdoor fan are turned on at the same time as the heater heater is turned on. By doing so, the evaporated refrigerant can be quickly condensed in the indoor heat exchanger and the outdoor heat exchanger, preventing damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor at startup, and optimal startup. It is possible to realize the operation at the time and the control of the refrigeration cycle.

【0087】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機内圧力検出器から飽和温度を算出することで圧
縮機温度が低下したときに、圧縮機内で冷媒と冷凍機油
が二相分離(溶け合わない)状態であるかどうかを確実
に判断でき、冷凍装置運転中の状態であっても、ヒータ
加熱器をONにして圧縮機を加熱することにより、凝縮
液化した冷媒を蒸発させて圧縮機外に追い出し、運転中
の液冷媒の圧縮機摺動部に流れ込みによる潤滑不良によ
る破損を防ぎ、最適な運転と冷凍サイクル制御の実現を
図ることができる。
Even when incompatible refrigerating machine oil is used as the refrigerant, the compressor temperature can be calculated by calculating the saturation temperature from the compressor temperature detector for detecting the compressor temperature and the compressor internal pressure detector. When the temperature drops, it can be surely determined whether the refrigerant and the refrigerating machine oil are in two-phase separation (do not melt) in the compressor, and even if the refrigerating machine is in operation, turn on the heater heater. By heating the compressor, the condensed and liquefied refrigerant is evaporated and driven out of the compressor, preventing damage due to poor lubrication due to the liquid refrigerant flowing into the sliding parts of the compressor during operation, and optimal operation and refrigeration cycle control Can be realized.

【0088】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機内圧力検出器から飽和温度を算出することで圧
縮機温度が低下したときに、圧縮機内で冷媒と冷凍機油
が二相分離(溶け合わない)状態であるかどうかを確実
に判断でき、冷凍装置運転中の状態であっても、室内フ
ァンと室外ファンの回転数を変化させることにより圧縮
機の温度を上昇させ、凝縮液化した冷媒を蒸発させて圧
縮機外に追い出し、運転中の液冷媒の圧縮機摺動部に流
れ込みによる潤滑不良による破損を防ぎ、より簡易的な
手段により最適な運転と冷凍サイクル制御の実現を図る
ことが可能となる。
Even when the incompatible refrigerating machine oil is used as the refrigerant, the compressor temperature can be calculated by calculating the saturation temperature from the compressor temperature detector for detecting the compressor temperature and the compressor internal pressure detector. When the temperature drops, it can be reliably determined whether the refrigerant and the refrigerating machine oil are separated into two phases (do not melt) in the compressor, and the rotation of the indoor fan and the outdoor fan even when the refrigerating machine is operating. By changing the number, the temperature of the compressor is raised, the condensed and liquefied refrigerant is evaporated and driven out of the compressor, and damage due to poor lubrication due to the flowing of the liquid refrigerant into the compressor sliding part during operation is prevented, and more Optimal operation and refrigeration cycle control can be realized by simple means.

【0089】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機内圧力検出器から飽和温度を算出することで圧
縮機温度が低下したときに、圧縮機内で冷媒と冷凍機油
が二相分離(溶け合わない)状態であるかどうかを確実
に判断でき、冷凍装置運転中の状態であっても、室外フ
ァンのみの回転数を変化させることにより圧縮機の温度
を上昇させ、凝縮液化した冷媒を蒸発させて圧縮機外に
追い出し、室内の快適性を損なわずに、運転中の液冷媒
の圧縮機摺動部に流れ込みによる潤滑不良による破損を
防ぎ、より簡易的な手段により最適で快適な運転と冷凍
サイクル制御の実現を図ることが可能となる。
Even when an incompatible refrigerating machine oil is used as the refrigerant, the compressor temperature can be calculated by calculating the saturation temperature from the compressor temperature detector for detecting the compressor temperature and the compressor internal pressure detector. When it decreases, it can be surely determined whether the refrigerant and the refrigerating machine oil are in two-phase separation (do not melt) in the compressor, and even if the refrigerating machine is operating, the rotation speed of the outdoor fan only By changing the temperature of the compressor, the temperature of the compressor is raised, and the condensed and liquefied refrigerant is evaporated to drive it out of the compressor, and the lubricating liquid flows into the sliding parts of the compressor during operation without impairing the indoor comfort. It is possible to prevent damage due to defects and to realize optimal and comfortable operation and refrigeration cycle control by simpler means.

【0090】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機内圧力検出器から飽和温度を算出することで圧
縮機温度が低下したときに、圧縮機内で冷媒と冷凍機油
が二相分離(溶け合わない)状態であるかどうかを確実
に判断でき、冷凍装置運転中の状態であっても、圧縮機
の運転周波数を変化させることにより圧縮機の温度を即
座に上昇させると共に、凝縮液化した冷媒を短時間で蒸
発させて圧縮機外に追い出し、運転中の液冷媒の圧縮機
摺動部に流れ込みによる潤滑不良による破損を防ぎ、よ
り最適な運転と冷凍サイクル制御の実現を図ることが可
能となる。
Even when an incompatible refrigerating machine oil is used as the refrigerant, the compressor temperature can be calculated by calculating the saturation temperature from the compressor temperature detector for detecting the compressor temperature and the compressor internal pressure detector. When it decreases, it can be surely judged whether the refrigerant and the refrigerating machine oil are in two-phase separation (do not melt) in the compressor, and the operating frequency of the compressor is changed even when the refrigerating machine is in operation. By doing so, the temperature of the compressor is immediately increased, and the condensed and liquefied refrigerant is evaporated in a short time to drive it out of the compressor, causing damage due to poor lubrication due to the flowing of the liquid refrigerant into the sliding parts of the compressor during operation. It is possible to prevent this and realize more optimal operation and refrigeration cycle control.

【0091】また、冷媒に非相溶の冷凍機油を用いた場
合でも、圧縮機温度を検出するための圧縮機温度検出器
と圧縮機内圧力検出器から飽和温度を算出することで圧
縮機温度が低下したときに、圧縮機内で冷媒と冷凍機油
が二相分離(溶け合わない)状態であるかどうかを確実
に判断でき、冷凍装置運転中の状態であっても、膨張弁
の弁開度を変化させることにより即座により簡易的に圧
縮機の温度を上昇させると共に、凝縮液化した冷媒を蒸
発させて圧縮機外に追い出し、運転中の液冷媒の圧縮機
摺動部に流れ込みによる潤滑不良による破損を防ぎ、よ
り簡易的な最適な運転と冷凍サイクル制御の実現を図る
ことが可能となる。
Even when an incompatible refrigerating machine oil is used as the refrigerant, the compressor temperature can be calculated by calculating the saturation temperature from the compressor temperature detector for detecting the compressor temperature and the compressor internal pressure detector. When it decreases, it can be surely determined whether the refrigerant and the refrigerating machine oil are in two-phase separation (do not melt) in the compressor, and even if the refrigerating machine is in operation, the expansion valve opening can be adjusted. Immediately and easily increase the temperature of the compressor by changing it, evaporate the condensed and liquefied refrigerant to drive it out of the compressor, and damage it due to poor lubrication by flowing liquid refrigerant into the sliding parts of the compressor during operation. This makes it possible to realize more simple and optimal operation and refrigeration cycle control.

【0092】また、圧縮機の底部にヒータ加熱器6を設
置して加熱することにより、圧縮機底部に滞留する液冷
媒をより効果的に気化除去させることができる。
By installing the heater heater 6 at the bottom of the compressor for heating, the liquid refrigerant staying at the bottom of the compressor can be more effectively vaporized and removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置の制御装置の第1、第2、第
3実施例を示す冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram showing first, second, and third embodiments of a refrigeration apparatus controller of the present invention.

【図2】第1実施例における電子制御回路図FIG. 2 is an electronic control circuit diagram in the first embodiment.

【図3】第1実施例におけるブロック図FIG. 3 is a block diagram of the first embodiment.

【図4】第1実施例におけるフローチャートFIG. 4 is a flowchart in the first embodiment.

【図5】第2、第3実施例における電子制御回路図FIG. 5 is an electronic control circuit diagram in the second and third embodiments.

【図6】第2、第3実施例におけるブロック図FIG. 6 is a block diagram of the second and third embodiments.

【図7】第2実施例におけるフローチャートFIG. 7 is a flowchart in the second embodiment.

【図8】第3実施例におけるフローチャートFIG. 8 is a flowchart in the third embodiment.

【図9】本発明の冷凍装置の制御装置の第4実施例を示
す冷凍サイクル図
FIG. 9 is a refrigeration cycle diagram showing a fourth embodiment of the control device of the refrigeration apparatus of the present invention.

【図10】第4実施例における電子制御回路図FIG. 10 is an electronic control circuit diagram in the fourth embodiment.

【図11】第4実施例におけるブロック図FIG. 11 is a block diagram of the fourth embodiment.

【図12】第4実施例におけるフローチャートFIG. 12 is a flowchart in the fourth embodiment.

【図13】本発明の冷凍装置の制御装置の第5、第6、
第7、第8、第9、第10の実施例を示す冷凍サイクル
FIG. 13 is a fifth, sixth, and sixth control devices of the refrigeration system of the present invention.
Refrigeration cycle diagram showing seventh, eighth, ninth, and tenth embodiments

【図14】第5、第6、第7実施例における電子制御回
路図
FIG. 14 is an electronic control circuit diagram in fifth, sixth and seventh embodiments.

【図15】第5、第6、第7、第8、第9、第10にお
けるブロック図
FIG. 15 is a block diagram of fifth, sixth, seventh, eighth, ninth, and tenth aspects.

【図16】第5実施例におけるフローチャートFIG. 16 is a flowchart in the fifth embodiment.

【図17】第6実施例におけるフローチャートFIG. 17 is a flowchart in the sixth embodiment.

【図18】第7実施例におけるフローチャートFIG. 18 is a flowchart in the seventh embodiment.

【図19】第8、第9、第10実施例における電子制御
回路図
FIG. 19 is an electronic control circuit diagram in eighth, ninth and tenth embodiments.

【図20】第8実施例におけるフローチャートFIG. 20 is a flowchart of the eighth embodiment.

【図21】第9実施例におけるフローチャートFIG. 21 is a flowchart in the ninth embodiment.

【図22】第10実施例におけるフローチャートFIG. 22 is a flowchart of the tenth embodiment.

【図23】(a)第11実施例における圧縮機全体の構
成概要図 (b)第11実施例における圧縮機底部の詳細図
FIG. 23 (a) Schematic configuration diagram of the entire compressor in the eleventh embodiment (b) Detailed view of the compressor bottom portion in the eleventh embodiment

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 減圧器 5 室内熱交換器 6 ヒータ加熱器 6a 加熱時間検出器 7 外気温度検出器 8 A/D変換器 9 LSI 10 圧縮機温度検出器 11 圧縮機内圧力検出器 12 室内ファン回転数検出器 13 室外ファン回転数検出器 14 運転周波数検出器 15 弁開度検出器 16 室内ファン 17 室外ファン 18 圧縮機モータ 19 膨張弁 20 入力回路 21 CPU 22 メモリ 23 出力回路 24 運転モード検出器 25 タイマ 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 decompressor 5 indoor heat exchanger 6 heater heater 6a heating time detector 7 outside air temperature detector 8 A / D converter 9 LSI 10 compressor temperature detector 11 inside compressor Pressure detector 12 Indoor fan rotational speed detector 13 Outdoor fan rotational speed detector 14 Operating frequency detector 15 Valve opening detector 16 Indoor fan 17 Outdoor fan 18 Compressor motor 19 Expansion valve 20 Input circuit 21 CPU 22 Memory 23 Output Circuit 24 Operation mode detector 25 Timer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤井 清 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Sawai 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記圧縮機に加熱手段と、
前記室外熱交換器には外気温度を検出して出力する外気
温度検出手段を設置し、冷暖房の各運転起動前に前記外
気温度検出手段から出力される外気温度と設定値とを比
較して制御信号を出力する第一の比較手段、前記加熱手
段が動作している時間を測定して出力する加熱時間検出
手段、前記加熱時間検出手段から出力される値と設定値
とを比較して制御信号を出力する第二の比較手段、前記
加熱手段のON/OFFを制御する出力モードを記憶し
た記憶手段、前記第一、第二の比較手段から発生する制
御信号により前記記憶手段の出力モードの一つを選択す
る選択手段と、前記記憶手段の出力モードに従い前記加
熱手段のON/OFFを制御する出力手段により構成し
た冷媒に非相溶の冷凍機油を用いた冷凍装置の制御装
置。
1. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a decompressor, an indoor heat exchanger are annularly connected to form a refrigerant circuit, and a heating unit is provided in the compressor.
The outdoor heat exchanger is provided with an outside air temperature detecting means for detecting and outputting the outside air temperature, and controls by comparing the outside air temperature output from the outside air temperature detecting means with a set value before starting each operation of cooling and heating. First comparing means for outputting a signal, heating time detecting means for measuring and outputting the operating time of the heating means, and a control signal for comparing a value output from the heating time detecting means with a set value Of the output mode of the storage means according to a control signal generated from the first and second comparison means, the storage means storing the output mode for controlling ON / OFF of the heating means. A control device for a refrigerating apparatus using refrigerating machine oil that is incompatible with a refrigerant, which is configured by a selection unit that selects one of the two and an output unit that controls ON / OFF of the heating unit according to the output mode of the storage unit.
【請求項2】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記圧縮機に加熱手段、前
記室内熱交換器には室内ファン制御手段、前記室外熱交
換器に室外ファン制御手段と外気温度を検出して出力す
る外気温度検出手段を設置し、冷暖房の各運転起動前に
前記外気温度検出手段から出力される外気温度と設定値
とを比較して制御信号を出力する第一の比較手段と、前
記加熱手段が動作している時間を測定して出力する加熱
時間検出手段と、前記加熱時間検出手段から出力される
値と設定値とを比較して制御信号を出力する第二の比較
手段と、前記加熱手段と前記室内ファン制御手段と前記
室外ファン制御手段のON/OFFを制御する出力モー
ドを記憶した記憶手段と、前記第一、第二の比較手段か
ら発生する制御信号により前記記憶手段の出力モードの
一つを選択する選択手段と、前記記憶手段の出力モード
に従い前記加熱手段と前記室内ファン制御手段と前記室
外ファン制御手段のON/OFFを制御する出力手段に
より構成した冷媒に非相溶の冷凍機油を用いた冷凍装置
の制御装置。
2. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the compressor has heating means, the indoor heat exchanger has indoor fan control means, and the outdoor heat exchange. The outdoor fan control means and the outside air temperature detecting means for detecting and outputting the outside air temperature are installed in the air conditioner, and the outside air temperature output from the outside air temperature detecting means is compared with the set value before the start of each operation of cooling and heating, and controlled. First comparing means for outputting a signal, heating time detecting means for measuring and outputting the operating time of the heating means, and comparing the value output from the heating time detecting means with a set value. Second comparison means for outputting a control signal, storage means for storing an output mode for controlling ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means, and the first and second Control signal generated by comparison means A selection means for selecting one of the output modes of the storage means, and an output means for controlling ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means according to the output mode of the storage means. Of a refrigeration system using refrigeration oil that is incompatible with the refrigerant.
【請求項3】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記圧縮機に加熱手段、前
記室内熱交換器に室内ファン制御手段、前記室外熱交換
器に室外ファン制御手段を設け、前記室外熱交換器に外
気温度を検出して出力する外気温度検出手段を設置し、
冷暖房の各運転起動前に前記外気温度検出手段から出力
される外気温度と複数の設定値とを比較して制御信号を
出力する第一の比較手段と、前記加熱手段が動作してい
る時間を測定して出力する加熱時間検出手段と、前記加
熱時間検出手段から出力される値と設定値とを比較して
制御信号を出力する第二の比較手段と、前記加熱手段と
前記室内ファン制御手段と前記室外ファン制御手段のO
N/OFFを制御する出力モードを記憶した記憶手段、
前記の第一、第二の比較手段から発生する制御信号によ
り前記記憶手段の出力モードの一つを選択する選択手段
と、前記記憶手段の出力モードに従い前記加熱手段と前
記室内ファン制御手段と前記室外ファン制御手段のON
/OFFを制御する出力手段により構成した冷媒に非相
溶の冷凍機油を用いた冷凍装置の制御装置。
3. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the compressor has heating means, the indoor heat exchanger has indoor fan control means, and the outdoor heat exchanger. An outdoor fan control unit is provided in the outdoor heat exchanger, and an outdoor air temperature detection unit that detects and outputs the outdoor air temperature is installed in the outdoor heat exchanger.
Before the start of each operation of cooling and heating, the first comparing means for comparing the outside air temperature output from the outside air temperature detecting means with a plurality of set values and outputting a control signal, and the time during which the heating means is operating are set. Heating time detecting means for measuring and outputting, second comparing means for comparing a value output from the heating time detecting means with a set value and outputting a control signal, the heating means and the indoor fan control means And O of the outdoor fan control means
Storage means for storing an output mode for controlling N / OFF,
Selection means for selecting one of the output modes of the storage means by a control signal generated from the first and second comparison means, and the heating means, the indoor fan control means, and the control means according to the output mode of the storage means. Outdoor fan control means ON
A control device for a refrigerating device using refrigerating machine oil that is incompatible with a refrigerant and is constituted by an output unit that controls ON / OFF.
【請求項4】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記室内熱交換器に室内フ
ァン制御手段、前記室外熱交換器に室外ファン制御手段
を設け、前記圧縮機に加熱手段と圧縮機の温度を検出し
て出力する圧縮機温度検出手段を設置し、冷暖房の各運
転起動前に前記圧縮機温度検出手段から出力される値と
設定値とを比較して制御信号を出力する比較手段と、前
記加熱手段と前記室内ファン制御手段と前記室外ファン
制御手段のON/OFFを制御する出力モードを記憶し
た記憶手段、前記比較手段から発生する制御信号により
前記記憶手段の出力モードの一つを選択する選択手段
と、前記記憶手段の出力モードに従い前記加熱手段と前
記室内ファン制御手段と前記室外ファン制御手段のON
/OFFを制御する出力手段により構成した冷媒に非相
溶の冷凍機油を用いた冷凍装置の制御装置。
4. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the indoor heat exchanger is provided with an indoor fan control means and the outdoor heat exchanger is provided with an outdoor fan control means. , A compressor temperature detecting means for detecting and outputting the temperature of the heating means and the compressor is installed in the compressor, and a value and a set value output from the compressor temperature detecting means are set before starting each operation of cooling and heating. Comparison means for comparing and outputting a control signal, storage means for storing an output mode for controlling ON / OFF of the heating means, the indoor fan control means, and the outdoor fan control means, and a control signal generated from the comparison means By means of selecting one of the output modes of the storage means, and turning on the heating means, the indoor fan control means, and the outdoor fan control means according to the output mode of the storage means.
A control device for a refrigerating device using refrigerating machine oil that is incompatible with a refrigerant and is constituted by an output unit that controls ON / OFF.
【請求項5】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記室内熱交換器に室内フ
ァン制御手段、前記室外熱交換器に室外ファン制御手段
を設け、前記圧縮機に加熱手段と前記圧縮機の温度を検
出して出力する圧縮機温度検出手段と前記圧縮機内の圧
力を検出して出力する圧縮機内圧力検出手段を設置し、
冷暖房の各運転起動前に前記圧縮機内圧力検出手段より
検出された値から冷媒の飽和温度を演算して出力する演
算手段と、前記演算手段により出力された値と前記圧縮
機温度検出手段から検出された値と前記圧縮機飽和温度
検出手段から出力される値を比較して制御信号を出力す
る比較手段と、前記加熱手段と前記室内ファン制御手段
と前記室外ファン制御手段のON/OFFを制御する出
力モードを記憶した記憶手段、前記比較手段から発生す
る制御信号により前記記憶手段の出力モードの一つを選
択する選択手段と、前記記憶手段の出力モードに従い前
記加熱手段と前記室内ファン制御手段と前記室外ファン
制御手段のON/OFFを制御する出力手段により構成
した冷媒に非相溶の冷凍機油を用いた冷凍装置の制御装
置。
5. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and the indoor heat exchanger is provided with an indoor fan control means and the outdoor heat exchanger is provided with an outdoor fan control means. The heating means and the compressor temperature detecting means for detecting and outputting the temperature of the compressor and the compressor internal pressure detecting means for detecting and outputting the pressure in the compressor are installed in the compressor,
Calculating means for calculating and outputting the saturation temperature of the refrigerant from the value detected by the in-compressor pressure detecting means before starting each operation of cooling and heating, and the value output by the calculating means and the compressor temperature detecting means. Comparing means for comparing the generated value with the value output from the compressor saturation temperature detecting means to output a control signal, and controlling ON / OFF of the heating means, the indoor fan control means and the outdoor fan control means. Storage means for storing the output mode to be stored, selection means for selecting one of the output modes of the storage means by a control signal generated from the comparison means, and the heating means and the indoor fan control means according to the output mode of the storage means. And a control device for a refrigerating apparatus using refrigerating machine oil that is incompatible with a refrigerant, which is constituted by an output unit that controls ON / OFF of the outdoor fan control unit.
【請求項6】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記圧縮機に加熱手段と圧
縮機の温度を検出して出力する圧縮機温度検出手段、前
記圧縮機内の圧力を検出して出力する圧縮機内圧力検出
手段を設置し、冷暖房の各運転中に前記圧縮機内圧力検
出手段より検出された値から冷媒の飽和温度を演算して
出力する演算手段と、前記演算手段により出力された値
と前記圧縮機温度検出手段から検出された値を比較して
制御信号を出力する比較手段と、前記加熱手段のON/
OFFを制御する出力モードを記憶した記憶手段、前記
比較手段から発生する制御信号により前記記憶手段の出
力モードの一つを選択する選択手段と、前記記憶手段の
出力モードに従い前記加熱手段のON/OFFを制御す
る出力手段により構成した冷媒に非相溶の冷凍機油を用
いた冷凍装置の制御装置。
6. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a pressure reducer, a refrigerant circuit is formed by annularly connecting the indoor heat exchanger, the compressor temperature detection means for detecting and outputting the temperature of the heating means and the compressor to the compressor, Arrangement means for detecting the pressure in the compressor and for outputting the pressure inside the compressor, and calculating and outputting the saturation temperature of the refrigerant from the value detected by the pressure detection means in the compressor during each operation of cooling and heating. ON / OFF of the heating means, comparing means for comparing the value output by the computing means with the value detected by the compressor temperature detecting means, and outputting a control signal.
A storage unit that stores an output mode for controlling OFF, a selection unit that selects one of the output modes of the storage unit according to a control signal generated from the comparison unit, and an ON / OFF of the heating unit according to the output mode of the storage unit. A control device for a refrigerating apparatus using refrigerating machine oil that is incompatible with a refrigerant and is constituted by an output means for controlling OFF.
【請求項7】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記四方弁には運転モード
を検出して出力する運転モード検出手段、前記室内熱交
換器に室内ファン制御手段と室内ファンの回転数を検出
して出力する室内ファン回転数検出手段、前記室外熱交
換器に室外ファン制御手段と室外ファンの回転数を検出
して出力する室外ファン回転数検出手段、前記圧縮機の
温度を検出して出力する圧縮機温度検出手段、前記圧縮
機内の圧力を検出して出力する圧縮機内圧力検出手段を
設置し、冷暖房の各運転中に前記圧縮機内圧力検出手段
より検出された値から冷媒の飽和温度を演算して出力す
る演算手段と、前記演算手段により出力された値と前記
圧縮機温度検出手段から検出された値を比較し制御信号
を出力する比較手段と、前記室内ファンと前記室外ファ
ンの回転数を制御する出力モードを記憶した記憶手段、
前記比較手段から発生する制御信号により前記記憶手段
の出力モードの一つを選択する選択手段と、前記記憶手
段の出力モードに従い前記室内ファンと室外ファンの回
転数を制御する出力手段により構成した冷媒に非相溶の
冷凍機油を用いた冷凍装置の制御装置。
7. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and an operation mode detecting means for detecting and outputting an operation mode to the four-way valve, the indoor heat exchanger. The indoor fan control means and the indoor fan rotation speed detection means for detecting and outputting the rotation speed of the indoor fan, and the outdoor fan rotation speed for detecting and outputting the rotation speed of the outdoor fan control means and the outdoor fan to the outdoor heat exchanger. Detecting means, compressor temperature detecting means for detecting and outputting the temperature of the compressor, and compressor internal pressure detecting means for detecting and outputting the pressure inside the compressor are installed, and the compressor internal pressure during each heating and cooling operation. Computation means for computing and outputting the saturation temperature of the refrigerant from the value detected by the detection means, and the value output by the computation means and the value detected by the compressor temperature detection means are compared and a control signal is output. Comparison hand If, storage means for storing an output mode for controlling the rotational speed of the outdoor fan and the indoor fan,
Refrigerant comprising selection means for selecting one of the output modes of the storage means by a control signal generated from the comparison means, and output means for controlling the rotational speeds of the indoor fan and the outdoor fan according to the output mode of the storage means. A control device for a refrigerating machine using an incompatible refrigerating machine oil.
【請求項8】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記四方弁には運転モード
を検出して出力する運転モード検出手段、前記室外熱交
換器に室外ファン制御手段と室外ファンの回転数を検知
し出力する室外ファン回転数検出手段、前記圧縮機の温
度を検出して出力する圧縮機温度検出手段、前記圧縮機
内の圧力を検出して出力する圧縮機内圧力検出手段を設
置し、冷暖房の各運転中に前記圧縮機内圧力検出手段よ
り検出された値から冷媒の飽和温度を演算して出力する
演算手段と、前記演算手段により出力された値と前記圧
縮機温度検出手段から検出された値を比較し制御信号を
出力する比較手段と、前記室外ファンの回転数を制御す
る出力モードを記憶した記憶手段、前記比較手段から発
生する制御信号により前記記憶手段の出力モードの一つ
を選択する選択手段と、前記記憶手段の出力モードに従
い前記室外ファンの回転数を制御する出力手段により構
成した冷媒に非相溶の冷凍機油を用いた冷凍装置の制御
装置。
8. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, and an operation mode detecting means for detecting and outputting an operation mode to the four-way valve, the outdoor heat exchanger. The outdoor fan control means and the outdoor fan rotation speed detection means for detecting and outputting the rotation speed of the outdoor fan, the compressor temperature detection means for detecting and outputting the temperature of the compressor, and the pressure in the compressor for detection and output. The compressor pressure detecting means is installed, and the calculating means for calculating and outputting the saturation temperature of the refrigerant from the value detected by the compressor pressure detecting means during each operation of cooling and heating, and the value output by the calculating means. And a comparison means for comparing a value detected by the compressor temperature detection means and outputting a control signal, a storage means for storing an output mode for controlling the rotation speed of the outdoor fan, and a control signal generated by the comparison means. Refrigeration using refrigerating machine oil that is incompatible with the refrigerant and is composed of a selection means for selecting one of the output modes of the storage means and an output means for controlling the rotation speed of the outdoor fan according to the output mode of the storage means. The control device of the device.
【請求項9】冷媒に非相溶の冷凍機油を用いた圧縮機、
四方弁、室外熱交換器、減圧器、室内熱交換器を環状に
連結して冷媒回路を構成し、前記圧縮機には圧縮機運転
周波数を検出して出力する運転周波数検出手段、前記圧
縮機の温度を検出して出力する圧縮機温度検出手段、前
記圧縮機内の圧力を検出して出力する圧縮機内圧力検出
手段を設置し、冷暖房の各運転中に前記圧縮機内圧力検
出手段より検出された値から冷媒の飽和温度を演算して
出力する演算手段と、前記演算手段により出力された値
と前記圧縮機温度検出手段から検出された値を比較し制
御信号を出力する比較手段と、前記圧縮機の運転周波数
を制御する出力モードを記憶した記憶手段、前記比較手
段から発生する制御信号により前記記憶手段の出力モー
ドの一つを選択する選択手段と、前記記憶手段の出力モ
ードに従い前記圧縮機の運転周波数を制御する出力手段
により構成した冷媒に非相溶の冷凍機油を用いた冷凍装
置の制御装置。
9. A compressor using an incompatible refrigerating machine oil as a refrigerant,
A four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger are annularly connected to form a refrigerant circuit, and an operating frequency detecting means for detecting and outputting a compressor operating frequency to the compressor, the compressor. A compressor temperature detecting means for detecting and outputting the temperature of the compressor, and a compressor internal pressure detecting means for detecting and outputting the pressure inside the compressor are installed, and detected by the compressor internal pressure detecting means during each operation of cooling and heating. Calculating means for calculating and outputting the saturation temperature of the refrigerant from the value, comparing means for comparing the value output by the calculating means with the value detected by the compressor temperature detecting means, and outputting a control signal; Storage means for storing an output mode for controlling the operating frequency of the machine; selection means for selecting one of the output modes of the storage means by a control signal generated from the comparison means; and the pressure according to the output mode of the storage means. Control apparatus for a refrigeration apparatus using the refrigerator oil incompatible with the refrigerant constituted by the output means for controlling the operating frequency of the machine.
【請求項10】冷媒に非相溶の冷凍機油を用いた圧縮
機、四方弁、室外熱交換器、減圧器、室内熱交換器を環
状に連結して冷媒回路を構成し、前記圧縮機の温度を検
出して出力する圧縮機温度検出手段、前記圧縮機内の圧
力を検出して出力する圧縮機内圧力検出手段、前記減圧
器の開度を検出して出力する開度検出手段を設置し、冷
暖房の各運転中に前記圧縮機内圧力検出手段より検出さ
れた値から冷媒の飽和温度を演算して出力する演算手段
と、前記演算手段により出力された値と前記圧縮機温度
検出手段から検出された値を比較し制御信号を出力する
比較手段と、前記減圧器の開度の制御を行う出力モード
を記憶した記憶手段、前記比較手段から発生する制御信
号により前記記憶手段の出力モードの一つを選択する選
択手段と、前記記憶手段の出力モードに従い前記減圧器
の開度の制御を行う出力手段により構成した冷媒に非相
溶の冷凍機油を用いた冷凍装置の制御装置。
10. A compressor using a refrigerating machine oil incompatible with a refrigerant, a four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are annularly connected to form a refrigerant circuit, A compressor temperature detecting means for detecting and outputting a temperature, a compressor pressure detecting means for detecting and outputting the pressure inside the compressor, and an opening degree detecting means for detecting and outputting the opening degree of the pressure reducer are installed, During each heating and cooling operation, a calculating means for calculating and outputting the saturation temperature of the refrigerant from the value detected by the compressor internal pressure detecting means, a value output by the calculating means and the compressor temperature detecting means are detected. One of the output mode of the storage means according to the control signal generated from the comparison means, the storage means storing the output mode for controlling the opening degree of the pressure reducer Selecting means for selecting Control apparatus for a refrigeration apparatus using the refrigerator oil incompatible with the refrigerant constituted by the output means in accordance with stage output mode controls the opening degree of the pressure reducer.
【請求項11】冷媒に非相溶の冷凍機油を用いた圧縮機
下部に冷凍機油の吸入口を有し、前記圧縮機下部を局部
的に加熱する加熱手段を具備する請求項1から請求項6
記載の冷媒に非相溶の冷凍機油を用いた冷凍装置の制御
装置。
11. The method according to claim 1, further comprising a heating means for locally heating the lower part of the compressor, which has a suction port for the refrigerating machine oil in a lower part of the compressor using refrigerating machine oil incompatible with a refrigerant. 6
A control device for a refrigerating apparatus using refrigerating machine oil that is incompatible with the described refrigerant.
JP488595A 1995-01-17 1995-01-17 Control device for freezer with freezer oil non-compatible with refrigerant Pending JPH08193759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP488595A JPH08193759A (en) 1995-01-17 1995-01-17 Control device for freezer with freezer oil non-compatible with refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP488595A JPH08193759A (en) 1995-01-17 1995-01-17 Control device for freezer with freezer oil non-compatible with refrigerant

Publications (1)

Publication Number Publication Date
JPH08193759A true JPH08193759A (en) 1996-07-30

Family

ID=11596144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP488595A Pending JPH08193759A (en) 1995-01-17 1995-01-17 Control device for freezer with freezer oil non-compatible with refrigerant

Country Status (1)

Country Link
JP (1) JPH08193759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102748A1 (en) * 2007-02-23 2008-08-28 Daikin Industries, Ltd. Refrigeration device
WO2010091350A3 (en) * 2009-02-09 2011-02-17 Earthlinked Technologies, Inc. Oil return system and method for active charge control in an air conditioning system
CN102538134A (en) * 2010-12-09 2012-07-04 三菱电机株式会社 Air-conditioning apparatus
JP2015025578A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
CN109539465A (en) * 2018-11-15 2019-03-29 珠海格力电器股份有限公司 Preheating control method and device for compressor, storage medium and air conditioner
CN110949650A (en) * 2019-12-04 2020-04-03 泰豪科技股份有限公司 Air conditioner anti-freezing system and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102748A1 (en) * 2007-02-23 2008-08-28 Daikin Industries, Ltd. Refrigeration device
JP2008209036A (en) * 2007-02-23 2008-09-11 Daikin Ind Ltd Refrigeration device
WO2010091350A3 (en) * 2009-02-09 2011-02-17 Earthlinked Technologies, Inc. Oil return system and method for active charge control in an air conditioning system
CN102538134A (en) * 2010-12-09 2012-07-04 三菱电机株式会社 Air-conditioning apparatus
AU2011223987B2 (en) * 2010-12-09 2013-01-31 Mitsubishi Electric Corporation Air-conditioning apparatus
CN102538134B (en) * 2010-12-09 2014-11-19 三菱电机株式会社 Air-conditioning apparatus
JP2015025578A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
CN109539465A (en) * 2018-11-15 2019-03-29 珠海格力电器股份有限公司 Preheating control method and device for compressor, storage medium and air conditioner
CN110949650A (en) * 2019-12-04 2020-04-03 泰豪科技股份有限公司 Air conditioner anti-freezing system and control method thereof

Similar Documents

Publication Publication Date Title
JP3861451B2 (en) Supercritical refrigeration cycle
JP2004156858A (en) Refrigerating cycle device and control method thereof
JP3852591B2 (en) Refrigeration cycle
JP3584276B2 (en) Air conditioning system
JPH08193759A (en) Control device for freezer with freezer oil non-compatible with refrigerant
JP2009085463A (en) Air conditioner
JPH10227533A (en) Air-conditioner
JPH10325624A (en) Refrigerating cycle device
KR100347899B1 (en) Control method of inverter compressor of air conditioner
JP5381749B2 (en) Refrigeration cycle equipment
JPH10253205A (en) Freezing cycle control device
JP3853550B2 (en) Air conditioner
JP2006118788A (en) Air conditioner
JP2007010254A (en) Air conditioner
JPH0763430A (en) Saturated vapor temperature detection circuit of refrigeration cycle
JP4286064B2 (en) Cooling system
JP2000018777A (en) Cooler/heater
JP3531049B2 (en) Refrigeration cycle control device
JP2006118731A (en) Air conditioner
JPH09159295A (en) Control device for refrigerating device
JPH0776640B2 (en) Method of starting refrigeration system using scroll compressor
JP2006170575A (en) Compressor control system
JPH05215417A (en) Air conditioner
JPH08327194A (en) Air conditioner
JPH0914782A (en) Air conditioner