JP2006118731A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006118731A
JP2006118731A JP2004304104A JP2004304104A JP2006118731A JP 2006118731 A JP2006118731 A JP 2006118731A JP 2004304104 A JP2004304104 A JP 2004304104A JP 2004304104 A JP2004304104 A JP 2004304104A JP 2006118731 A JP2006118731 A JP 2006118731A
Authority
JP
Japan
Prior art keywords
compressor
air conditioner
refrigerant
heat exchanger
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004304104A
Other languages
Japanese (ja)
Inventor
Kenichiro Yano
謙一郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004304104A priority Critical patent/JP2006118731A/en
Publication of JP2006118731A publication Critical patent/JP2006118731A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a start control time by controlling the start of a compressor on the basis of an operating state, and to improve comfortable sensation. <P>SOLUTION: This air conditioner comprises the refrigerant compressor, a refrigerant circuit constituted by circularly connecting a four-way valve, an outdoor-side heat exchanger, a pressure reducing expansion valve and an indoor-side heat exchanger, and a control circuit for controlling a rotating speed of the compressor, and a rotational frequency of the compressor is increased when the variation of suction pressure of the air conditioner becomes less than a prescribed value, thus the start of the compressor can be controlled on the basis of a state of the refrigerant circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷媒圧縮機の運転制御装置を搭載した空気調和機に関するものである。   The present invention relates to an air conditioner equipped with an operation control device for a refrigerant compressor.

従来この種の制御装置は図5のようになっている(例えば、特許文献1参照)。   Conventionally, this type of control device is as shown in FIG. 5 (see, for example, Patent Document 1).

すなわち、冷媒圧縮機1は周波数可変圧縮機で、その電源周波数を変化させることにより圧縮機の回転数を変化させ、容量を制御するものである。この冷媒圧縮機1から吐出された冷媒は、四方弁2をとおり、室内側熱交換器3で液化凝縮され、減圧膨張弁4で減圧膨張し、室外側熱交換器5で、被冷却物質より吸熱し、四方弁2を経て冷媒圧縮機1へ吸入される。6は前記冷媒圧縮機1の回転数を制御する制御装置であり、商用電源7を一次電源とする。8は速度信号部であり、被冷却物質の温度を温度検知器9で検知し、その設定温度との差を検出器10で検出し、信号を前記速度信号部8に送り前記冷媒圧縮機1の回転数を制御する。   That is, the refrigerant compressor 1 is a variable frequency compressor, and controls the capacity by changing the rotational frequency of the compressor by changing the power supply frequency. The refrigerant discharged from the refrigerant compressor 1 passes through the four-way valve 2, is liquefied and condensed in the indoor heat exchanger 3, is decompressed and expanded in the decompression expansion valve 4, and is cooled from the substance to be cooled in the outdoor heat exchanger 5. It absorbs heat and is sucked into the refrigerant compressor 1 through the four-way valve 2. Reference numeral 6 denotes a control device that controls the rotational speed of the refrigerant compressor 1, and uses a commercial power source 7 as a primary power source. Reference numeral 8 denotes a speed signal unit, which detects the temperature of the substance to be cooled by the temperature detector 9, detects a difference from the set temperature by the detector 10, and sends a signal to the speed signal unit 8 to send the refrigerant compressor 1. Control the number of revolutions.

なお、前記速度信号部8には別に起動制御回路11を設けて、前記冷媒圧縮機1の起動時一定時間、この起動回路11にて制御される優先回路が設けられている。   The speed signal unit 8 is provided with a start control circuit 11 and a priority circuit controlled by the start circuit 11 for a predetermined time when the refrigerant compressor 1 is started.

図6は、前記冷媒圧縮機1の起動時の回転数制御を示すものであり、横軸に起動からの時間、縦軸に冷媒圧縮機1の回転数をとっている。   FIG. 6 shows the rotational speed control at the time of starting the refrigerant compressor 1, where the horizontal axis represents the time from the start and the vertical axis represents the rotational speed of the refrigerant compressor 1.

冷媒圧縮機1が停止中は、潤滑油中に冷媒が溶け込み溜り込むいわゆる寝込み現象が頻繁に発生する。この状態から起動されると、冷媒圧縮機1内の潤滑油は多量に吐出冷媒により、冷媒圧縮機1の外部へと吐出される。   While the refrigerant compressor 1 is stopped, a so-called stagnation phenomenon in which the refrigerant melts and accumulates in the lubricating oil frequently occurs. When activated from this state, a large amount of lubricating oil in the refrigerant compressor 1 is discharged to the outside of the refrigerant compressor 1 by the discharged refrigerant.

しかし、図6に示す第1の保持周波数f1は低い周波数に設定されているため、潤滑油が外部へ持ち出される量は少なく、潤滑油が確保される。しかし、低い速度であるため摺動部への潤滑油の供給量は少なく、従って、長時間運転することは信頼性を低下させることになる。そのため、比較的短い所定時間保持した後、第2の保持周波数f2を設け立ち上がりのウオーミングアップ運転に入る。この第2の保持周波数f2で運転後、負荷に応じた回転数で運転する。
特開平7−301460号公報
However, since the first holding frequency f1 shown in FIG. 6 is set to a low frequency, the amount of lubricating oil taken out is small, and the lubricating oil is secured. However, since the speed is low, the amount of lubricating oil supplied to the sliding portion is small, and therefore operating for a long time reduces the reliability. Therefore, after holding for a relatively short predetermined time, the second holding frequency f2 is provided to start the warm-up operation. After the operation at the second holding frequency f2, the operation is performed at the rotation speed corresponding to the load.
JP-A-7-301460

しかしながら、前記従来の構成では、圧縮機の起動直後に第1保持周波数f1で一定時間(第1保持時間T1)保持し、ついで更に高い第2保持周波数f2で一定時間(第2保持時間T2)保持するとしているため、空調機の運転状態に影響する外気温度、室内温度、冷媒寝込み度合が異なる場合でも常に一定の起動制御を行う。   However, in the conventional configuration, immediately after the start of the compressor, the first holding frequency f1 is held for a certain time (first holding time T1), and then the higher second holding frequency f2 is held for a certain time (second holding time T2). Therefore, even if the outside air temperature, the room temperature, and the refrigerant stagnation level that affect the operation state of the air conditioner are different, constant starting control is always performed.

そのため、圧縮機の信頼性を確保するためには第1保持時間T1及び第2保持時間T2は最も厳しい運転状態に合わせて設定する必要が生じるので、起動制御時間が長くなり室温が目標に到達する時刻が遅くなるので快適性が損なわれる。   Therefore, in order to ensure the reliability of the compressor, it is necessary to set the first holding time T1 and the second holding time T2 according to the most severe operation state, so the start-up control time becomes long and the room temperature reaches the target. Because the time to do becomes late, comfort is impaired.

本発明は、前記従来の課題を解決するもので、運転状態に応じた圧縮機の起動制御を行うことで起動制御時間を短縮し、快適性を向上させた空気調和機の提供を目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide an air conditioner that improves the comfort by shortening the startup control time by performing the startup control of the compressor according to the operating state. .

前記従来の課題を解決するために、本発明の空気調和機は、吸入圧力の変化が所定値以下となったとき圧縮機の回転数を高くすることを特徴としたものである。   In order to solve the above-mentioned conventional problems, the air conditioner of the present invention is characterized in that the rotational speed of the compressor is increased when the change in the suction pressure becomes a predetermined value or less.

これによって、冷媒回路の状態に応じた圧縮機の起動制御を行うことができる。   Thereby, the starting control of the compressor according to the state of the refrigerant circuit can be performed.

また、本発明の空気調和機は、圧縮機運転電流の変化が所定値以下となったとき、圧縮機の回転数を高くすることを特徴としたとしたものである。   In addition, the air conditioner of the present invention is characterized in that when the change in the compressor operating current becomes a predetermined value or less, the rotational speed of the compressor is increased.

これによって、冷媒回路の状態に応じて圧縮機の起動制御を行うことができる。
また、本発明の空気調和機は、蒸発温度の変化が所定値以下となったとき、圧縮機の回転数を高くすることを特徴としたとしたものである。
Thereby, the start-up control of the compressor can be performed according to the state of the refrigerant circuit.
Further, the air conditioner of the present invention is characterized in that the rotation speed of the compressor is increased when the change in the evaporation temperature becomes a predetermined value or less.

これによって、冷媒回路の状態に応じて圧縮機の起動制御を行うことができる。   Thereby, the start-up control of the compressor can be performed according to the state of the refrigerant circuit.

本発明の空気調和機は、起動制御時間を短縮し快適性を向上させることができる。   The air conditioner of the present invention can shorten the startup control time and improve the comfort.

第1の発明は冷媒圧縮機と、四方弁、室外側熱交換器、減圧膨張弁、室内側熱交換器を環状に接続し冷媒回路を構成し、圧縮機の回転速度を制御する制御回路を設け、当該空気調和機の吸入圧力の変化が所定値以下となったとき圧縮機の回転数を高くすることを特徴とすることにより、冷媒回路の状態に応じた圧縮機の起動制御を行うことができ、起動制御時間を短縮し快適性を向上することができる。   A first invention is a control circuit for controlling the rotational speed of a compressor by connecting a refrigerant compressor, a four-way valve, an outdoor heat exchanger, a decompression expansion valve, and an indoor heat exchanger in an annular shape to form a refrigerant circuit. And controlling the start-up of the compressor according to the state of the refrigerant circuit by increasing the rotational speed of the compressor when the change in the suction pressure of the air conditioner falls below a predetermined value. It is possible to shorten the startup control time and improve the comfort.

第2の発明は、特に、第1の発明の空気調和機を、当該空気調和機の圧縮機運転電流の変化が所定値以下となったとき、圧縮機の回転数を高くすることを特徴とすることにより、冷媒回路の状態に応じた圧縮機の起動制御を行うことができ、起動制御時間を短縮し快適性を向上することができる。   The second aspect of the invention is characterized in that, in particular, the air conditioner of the first aspect of the invention is configured to increase the rotational speed of the compressor when the change in the compressor operating current of the air conditioner becomes a predetermined value or less. By doing so, the start-up control of the compressor according to the state of the refrigerant circuit can be performed, the start-up control time can be shortened, and the comfort can be improved.

第3の発明は、特に、第1の発明の空気調和機を、当該空気調和機の蒸発温度の変化が所定値以下となったとき、圧縮機の回転数を高くすることを特徴とすることにより、冷媒回路の状態に応じた圧縮機の起動制御を行うことができ、起動制御時間を短縮し快適性を向上することができる。   The third aspect of the invention is characterized in that, in particular, the air conditioner of the first aspect of the invention is characterized in that the rotation speed of the compressor is increased when the change in the evaporation temperature of the air conditioner becomes a predetermined value or less. Thus, the start-up control of the compressor according to the state of the refrigerant circuit can be performed, the start-up control time can be shortened, and the comfort can be improved.

第4の発明は、特に、第1〜3のいずれかの発明の空気調和機を、起動時の圧縮機の回転数初期値を圧縮機の外郭温度により決定することを特徴とすることにより、起動時の圧縮機の状態に適した圧縮機回転数で起動開始を行うことができ、さらに起動制御時間を短縮し快適性を向上することができる。   According to a fourth aspect of the invention, in particular, the air conditioner according to any one of the first to third aspects of the invention is characterized in that the initial value of the rotational speed of the compressor at the time of startup is determined by the outer temperature of the compressor Startup can be started at a compressor speed suitable for the state of the compressor at startup, and startup control time can be shortened and comfort can be improved.

第5の発明は、特に、第1〜3のいずれかの発明の空気調和機を、起動時の圧縮機の回転数初期値を圧縮機の吐出配管温度により決定することを特徴とすることにより、起動時の圧縮機の状態に適した圧縮機回転数で起動開始を行うことができ、さらに起動制御時間を短縮し快適性を向上することができる。   According to a fifth aspect of the invention, in particular, the air conditioner according to any one of the first to third aspects of the invention is characterized in that the initial value of the rotational speed of the compressor at startup is determined by the discharge pipe temperature of the compressor. Thus, the start-up can be started at the compressor speed suitable for the state of the compressor at the start-up, and the start-up control time can be shortened and the comfort can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の制御装置回路図を示すもので
ある。
(Embodiment 1)
FIG. 1 shows a control device circuit diagram of an air conditioner according to a first embodiment of the present invention.

冷媒圧縮機21は周波数可変圧縮機で、その電源周波数を変化させることにより圧縮機の回転数を変化させ、容量を制御するものである。この冷媒圧縮機21から吐出された冷媒は、四方弁22をとおり、室外側熱交換器23で液化凝縮され、減圧膨張弁24で減圧膨張し、室内側熱交換器25で、被冷却物質より吸熱し、四方弁22を経て冷媒圧縮機21へ吸入される。26は前記冷媒圧縮機21の回転数を制御する制御装置で、27は吸入圧力センサ、28は圧縮機21の外郭温度センサ、29は圧縮機の運転電流を検出する電流センサ、30は室外側熱交換器23の暖房時の蒸発温度を検出する室外熱交温度センサ、31は室内側熱交換器25の冷房時の蒸発温度を検出する室内熱交温度センサ、32は吐出温度を検出する吐出温度センサである。   The refrigerant compressor 21 is a variable frequency compressor, and controls the capacity by changing the rotational frequency of the compressor by changing the power frequency. The refrigerant discharged from the refrigerant compressor 21 passes through the four-way valve 22, is liquefied and condensed in the outdoor heat exchanger 23, is decompressed and expanded in the decompression expansion valve 24, and is cooled from the substance to be cooled in the indoor heat exchanger 25. It absorbs heat and is sucked into the refrigerant compressor 21 through the four-way valve 22. 26 is a control device for controlling the rotational speed of the refrigerant compressor 21, 27 is a suction pressure sensor, 28 is an outer temperature sensor of the compressor 21, 29 is a current sensor for detecting the operating current of the compressor, and 30 is an outdoor side. An outdoor heat exchange temperature sensor that detects the evaporation temperature during heating of the heat exchanger 23, 31 is an indoor heat exchange temperature sensor that detects the evaporation temperature during cooling of the indoor heat exchanger 25, and 32 is a discharge that detects the discharge temperature. It is a temperature sensor.

以上のように構成された空気調和機について、以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図2は、本発明の実施の形態1における動作フローチャートである。   FIG. 2 is an operation flowchart according to the first embodiment of the present invention.

まず、外郭温度センサ28により検出した温度により制御装置26で圧縮機の初期回転数を決定し(STEP1)、運転を開始する(STEP2)。   First, the initial rotational speed of the compressor is determined by the controller 26 based on the temperature detected by the outer temperature sensor 28 (STEP 1), and the operation is started (STEP 2).

次に所定の周期毎に吸入圧力センサ27で吸入圧力を検出する(STEP3)。前回と今回の検出値の差を算出し、所定値より大きいときはSTEP3に戻り、所定値以内であればSTEP5へ進み(STEP4)、圧縮機の回転数を所定値高くする(STEP5)。その後、負荷に応じた回転数で運転する。   Next, the suction pressure is detected by the suction pressure sensor 27 at predetermined intervals (STEP 3). The difference between the previous detection value and the current detection value is calculated. If it is larger than the predetermined value, the process returns to STEP 3. If it is within the predetermined value, the process proceeds to STEP 5 (STEP 4), and the rotation speed of the compressor is increased by a predetermined value (STEP 5). Then, it drive | operates with the rotation speed according to load.

このように起動制御を行うことで、圧縮機の外郭温度で初期回転数を決定し、潤滑油の温度が低いときは低い回転数とし、高いときはそれより高い回転数で運転を開始することにより、冷媒の寝込みが多いときは低い回転数で、少ないときはより高い回転数で運転を開始できる。さらに、吸入圧力の変化が所定値以内となってから圧縮機の回転数をさらに上げるので、吸入圧力の急激な低下にともなうフォーミングもなくなる。   By performing start-up control in this way, the initial rotational speed is determined based on the outer temperature of the compressor, and when the temperature of the lubricating oil is low, the initial rotational speed is set to low, and when it is high, operation is started at a higher rotational speed. Thus, the operation can be started at a low rotation speed when the refrigerant stagnation is large and at a higher rotation speed when the refrigerant is low. Furthermore, since the rotation speed of the compressor is further increased after the change in the suction pressure is within a predetermined value, there is no forming due to a rapid decrease in the suction pressure.

従って従来の技術のように、圧縮機の信頼性を確保するために、どのような状態でも常に圧縮機の回転数を一定時間保持する必要がなく、冷媒回路の状態に応じた圧縮機の起動制御を行うことができ、圧縮機の信頼性を確保しつつ起動制御時間を短縮し快適性を向上した空気調和機を提供することができる。   Therefore, unlike the prior art, in order to ensure the reliability of the compressor, it is not always necessary to maintain the rotation speed of the compressor for a certain period of time in any state, and the compressor is started according to the state of the refrigerant circuit. It is possible to provide an air conditioner that can perform control and shortens the start-up control time and improves comfort while ensuring the reliability of the compressor.

(実施の形態2)
本実施の形態において、空気調和機の制御装置回路図は同一であり説明を省略する。
(Embodiment 2)
In the present embodiment, the control device circuit diagram of the air conditioner is the same, and the description is omitted.

以上のように構成された空気調和機について、以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図3は、本発明の実施の形態2における動作フローチャートである。   FIG. 3 is an operation flowchart according to the second embodiment of the present invention.

まず、外郭温度センサ28により検出した温度により制御装置26で圧縮機の初期回転数を決定し(STEP1)、運転を開始する(STEP2)。   First, the initial rotational speed of the compressor is determined by the controller 26 based on the temperature detected by the outer temperature sensor 28 (STEP 1), and the operation is started (STEP 2).

次に所定の周期毎に電流センサ29で圧縮機運転電流を検出する(STEP3)。   Next, the compressor operating current is detected by the current sensor 29 at predetermined intervals (STEP 3).

前回と今回の検出値の差を算出し、所定値より大きいときはSTEP3に戻り、所定値以内であればSTEP5へ進み(STEP4)、
圧縮機の回転数を所定値高くする(STEP5)。その後、負荷に応じた回転数で運転
する。
The difference between the previous detection value and the current detection value is calculated. If it is larger than the predetermined value, the process returns to STEP 3, and if it is within the predetermined value, the process proceeds to STEP 5 (STEP 4).
The number of rotations of the compressor is increased by a predetermined value (STEP 5). Then, it drive | operates with the rotation speed according to load.

圧縮機の運転電流は、圧縮機の運転負荷と、圧縮機のモーター巻線温度によって変化する。即ち、起動直後巻線温度が低く、吐出と吸入圧力の差圧が小さいときに電流値は低く、巻線温度が上昇して差圧が大きくなると電流値も高くなる。   The operating current of the compressor varies depending on the operating load of the compressor and the motor winding temperature of the compressor. That is, the current value is low when the winding temperature is low immediately after startup and the differential pressure between discharge and suction pressure is small, and the current value increases when the winding temperature rises and the differential pressure increases.

従って、圧縮機電流値の変化が所定値以内となって、圧縮機が暖まり冷媒の寝込みが減少し冷媒回路が安定してから圧縮機の回転を高くするので、急激なフォーミングが発生することがない。   Therefore, since the change in the compressor current value is within a predetermined value, the compressor is warmed, the stagnation of the refrigerant is reduced, and the refrigerant circuit is stabilized to increase the rotation of the compressor. Absent.

従って従来の技術のように、圧縮機の信頼性を確保するために、どのような状態でも常に圧縮機の回転数を一定時間保持する必要がなく、冷媒回路の状態に応じた圧縮機の起動制御を行うことができ、圧縮機の信頼性を確保しつつ起動制御時間を短縮し快適性を向上した空気調和機を提供することができる。   Therefore, unlike the prior art, in order to ensure the reliability of the compressor, it is not always necessary to maintain the rotation speed of the compressor for a certain period of time in any state, and the compressor is started according to the state of the refrigerant circuit. It is possible to provide an air conditioner that can perform control and shortens the start-up control time and improves comfort while ensuring the reliability of the compressor.

(実施の形態3)
本実施の形態において、空気調和機の制御装置回路図は同一であり説明を省略する。
(Embodiment 3)
In the present embodiment, the control device circuit diagram of the air conditioner is the same, and the description is omitted.

以上のように構成された空気調和機について、以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図4は、本発明の実施の形態3における動作フローチャートである。   FIG. 4 is an operation flowchart according to the third embodiment of the present invention.

まず、吐出温度センサ32により検出した温度により制御装置26で圧縮機の初期回転数を決定し(STEP1)、運転を開始する(STEP2)。次に所定の周期毎に、冷房時は室内熱交温度センサ31で、暖房時は室外熱交温度センサ30で蒸発温度を検出する(STEP3)。   First, the initial rotational speed of the compressor is determined by the controller 26 based on the temperature detected by the discharge temperature sensor 32 (STEP 1), and the operation is started (STEP 2). Next, at predetermined intervals, the evaporating temperature is detected by the indoor heat exchanger temperature sensor 31 during cooling and by the outdoor heat exchanger temperature sensor 30 during heating (STEP 3).

前回と今回の検出値の差を算出し、所定値より大きいときはSTEP3に戻り、所定値以内であればSTEP5へ進み(STEP4)、圧縮機の回転数を所定値高くする(STEP5)。その後、負荷に応じた回転数で運転する。   The difference between the previous detection value and the current detection value is calculated. If the difference is larger than the predetermined value, the process returns to STEP 3. If it is within the predetermined value, the process proceeds to STEP 5 (STEP 4), and the rotation speed of the compressor is increased by a predetermined value (STEP 5). Then, it drive | operates with the rotation speed according to load.

このように起動制御を行うことで、圧縮機の吐出温度で初期回転数を決定し、吐出配管温度が低く、潤滑油の温度が低いときは低い回転数とし、高いときはそれより高い回転数で運転を開始することにより、冷媒の寝込みが多いときは低い回転数で、少ないときはより高い回転数で運転を開始できる。   By performing the start-up control in this way, the initial rotational speed is determined by the discharge temperature of the compressor, and when the discharge pipe temperature is low and the temperature of the lubricating oil is low, the rotational speed is low, and when it is high, the rotational speed is higher than that. By starting the operation, the operation can be started at a low rotation speed when the refrigerant stagnation is large and at a higher rotation speed when the refrigerant is low.

さらに、蒸発温度の変化が所定値以内となってから圧縮機の回転数をさらに上げるので、吸入圧力の急激な低下にともなうフォーミングもなくなる。   Furthermore, since the rotation speed of the compressor is further increased after the change in the evaporation temperature falls within a predetermined value, there is no forming due to a rapid decrease in the suction pressure.

従って従来の技術のように、圧縮機の信頼性を確保するために、どのような状態でも常に圧縮機の回転数を一定時間保持する必要がなく、冷媒回路の状態に応じた圧縮機の起動制御を行うことができ、圧縮機の信頼性を確保しつつ起動制御時間を短縮し快適性を向上した空気調和機を提供することができる。   Therefore, unlike the prior art, in order to ensure the reliability of the compressor, it is not always necessary to maintain the rotation speed of the compressor for a certain period of time in any state, and the compressor is started according to the state of the refrigerant circuit. It is possible to provide an air conditioner that can perform control and shortens the start-up control time and improves comfort while ensuring the reliability of the compressor.

以上のように、本発明にかかる空気調和機は、圧縮機の起動制御時間を短縮し快適性を向上させることが可能となるので、圧縮機の回転速度が制御できる冷蔵庫等冷凍機の制御の用途にも適用できる。   As described above, the air conditioner according to the present invention can shorten the start-up control time of the compressor and improve the comfort, so that it is possible to control the refrigerator such as a refrigerator that can control the rotation speed of the compressor. It can also be applied to applications.

本発明の第1〜第3の実施の形態における空気調和機の制御装置回路図Air conditioner control device circuit diagram in the first to third embodiments of the present invention 本発明の実施の形態1における動作フローチャートOperation flowchart according to the first embodiment of the present invention 本発明の実施の形態2における動作フローチャートOperation flowchart according to the second embodiment of the present invention 本発明の実施の形態3における動作フローチャートOperation flowchart in Embodiment 3 of the present invention 従来の空気調和機の制御装置回路図Conventional air conditioner control device circuit diagram 従来の空気調和機の制御装置の運転特性図Operating characteristic diagram of conventional air conditioner control device

符号の説明Explanation of symbols

21 圧縮機
22 四方弁
23 室外側熱交換器
24 減圧膨張弁
25 室内側熱交換器
27 吸入圧力センサー
21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 24 Pressure reduction expansion valve 25 Indoor heat exchanger 27 Suction pressure sensor

Claims (5)

冷媒圧縮機と、四方弁、室外側熱交換器、減圧膨張弁、室内側熱交換器を環状に接続し冷媒回路を構成し、圧縮機の回転速度を制御する制御回路を設け、圧縮機起動時、当該空気調和機の吸入圧力の変化が所定値以下となったとき圧縮機の回転数を高くすることを特徴とした空気調和機。 A refrigerant compressor, a four-way valve, an outdoor heat exchanger, a decompression expansion valve, and an indoor heat exchanger are connected in a ring to form a refrigerant circuit, and a control circuit for controlling the rotation speed of the compressor is provided to start the compressor An air conditioner characterized in that when the change in the suction pressure of the air conditioner becomes a predetermined value or less, the rotation speed of the compressor is increased. 冷媒圧縮機と、四方弁、室外側熱交換器、減圧膨張弁、室内側熱交換器を環状に接続し冷媒回路を構成し、圧縮機の回転速度を制御する制御回路を設け、圧縮機起動時、圧縮機運転電流の変化が所定値以下となったとき、前記圧縮機の回転数を高くすることを特徴とした空気調和機。 A refrigerant compressor, a four-way valve, an outdoor heat exchanger, a decompression expansion valve, and an indoor heat exchanger are connected in a ring to form a refrigerant circuit, and a control circuit for controlling the rotation speed of the compressor is provided to start the compressor An air conditioner characterized in that when the change in compressor operating current becomes a predetermined value or less, the rotational speed of the compressor is increased. 冷媒圧縮機と、四方弁、室外側熱交換器、減圧膨張弁、室内側熱交換器を環状に接続し冷媒回路を構成し、圧縮機の回転速度を制御する制御回路を設け、圧縮機起動時、蒸発温度の変化が所定値以下となったとき、前記圧縮機の回転数を高くすることを特徴とした空気調和機。 A refrigerant compressor, a four-way valve, an outdoor heat exchanger, a decompression expansion valve, and an indoor heat exchanger are connected in a ring to form a refrigerant circuit, and a control circuit for controlling the rotation speed of the compressor is provided to start the compressor An air conditioner characterized in that when the change in the evaporation temperature becomes a predetermined value or less, the rotational speed of the compressor is increased. 起動時の圧縮機の回転数初期値を圧縮機の外郭温度により決定することを特徴とした請求項1〜3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein an initial value of the rotational speed of the compressor at the time of startup is determined by an outer temperature of the compressor. 起動時の圧縮機の回転数初期値を圧縮機の吐出配管温度により決定することを特徴とした請求項1〜3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein an initial value of the rotational speed of the compressor at the time of startup is determined by a discharge pipe temperature of the compressor.
JP2004304104A 2004-10-19 2004-10-19 Air conditioner Withdrawn JP2006118731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304104A JP2006118731A (en) 2004-10-19 2004-10-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304104A JP2006118731A (en) 2004-10-19 2004-10-19 Air conditioner

Publications (1)

Publication Number Publication Date
JP2006118731A true JP2006118731A (en) 2006-05-11

Family

ID=36536780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304104A Withdrawn JP2006118731A (en) 2004-10-19 2004-10-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2006118731A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087973A (en) * 2011-10-13 2013-05-13 Mitsubishi Electric Corp Air conditioner
JP5693714B2 (en) * 2011-04-28 2015-04-01 三菱電機株式会社 HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND INVERTER CONTROL METHOD
US9543887B2 (en) 2010-10-15 2017-01-10 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9618249B2 (en) 2010-12-21 2017-04-11 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
JP2019082279A (en) * 2017-10-30 2019-05-30 ダイキン工業株式会社 Air conditioner
US11600105B2 (en) 2011-04-20 2023-03-07 Nec Corporation Tenrprint card input device, tenrprint card input method and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543887B2 (en) 2010-10-15 2017-01-10 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US9618249B2 (en) 2010-12-21 2017-04-11 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
US11600105B2 (en) 2011-04-20 2023-03-07 Nec Corporation Tenrprint card input device, tenrprint card input method and storage medium
US11935265B2 (en) 2011-04-20 2024-03-19 Nec Corporation Tenprint card input device, tenprint card input method and storage medium
JP5693714B2 (en) * 2011-04-28 2015-04-01 三菱電機株式会社 HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND INVERTER CONTROL METHOD
US9829226B2 (en) 2011-04-28 2017-11-28 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling inverter
JP2013087973A (en) * 2011-10-13 2013-05-13 Mitsubishi Electric Corp Air conditioner
JP2019082279A (en) * 2017-10-30 2019-05-30 ダイキン工業株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP6854901B2 (en) Air conditioner
WO2010137344A1 (en) Air-conditioning device
JP5511761B2 (en) Air conditioner
JP2016008742A (en) Air conditioning device
JP2009030915A (en) Air conditioner
JP5492625B2 (en) Air conditioner
JP6033416B2 (en) Air conditioner
JP2009109165A (en) Operation control method of air conditioner
JP2011252639A (en) Air conditioner
JP6821034B2 (en) Air conditioner
JP2006207932A (en) Air conditioner
JP2006214617A (en) Air conditioner
JP2010159934A (en) Air conditioner
JP2008256264A (en) Air conditioner
JP5195543B2 (en) Control method of air conditioner
JP2009085463A (en) Air conditioner
WO2019087630A1 (en) Air conditioner
JP2006118731A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
JP2007212023A (en) Air conditioning system
JPH10227533A (en) Air-conditioner
JP2005274035A (en) Operation control device for air-conditioner
JP2004003721A (en) Operation control method of air conditioner
JP2010091118A (en) Air conditioner
JP2508191B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090410