JPH08193227A - Treatment of iron-making dust in indirect heating furnace - Google Patents

Treatment of iron-making dust in indirect heating furnace

Info

Publication number
JPH08193227A
JPH08193227A JP496295A JP496295A JPH08193227A JP H08193227 A JPH08193227 A JP H08193227A JP 496295 A JP496295 A JP 496295A JP 496295 A JP496295 A JP 496295A JP H08193227 A JPH08193227 A JP H08193227A
Authority
JP
Japan
Prior art keywords
iron
dust
zinc
aluminum
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP496295A
Other languages
Japanese (ja)
Inventor
Seiichi Kotani
精一 小谷
Hiromitsu Moridera
弘充 森寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP496295A priority Critical patent/JPH08193227A/en
Publication of JPH08193227A publication Critical patent/JPH08193227A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: To provide a method for treating iron-making dust in which an iron and non-ferrous metal components such as zinc in the dust are separated and recovered more inexpensively than the conventional method by executing the reduction treatment at lower temp. than the conventional method, in zinc removing treatment in the iron-making dust. CONSTITUTION: In the reduction-treatment of the iron-making dust, after drying the iron-making dust, metallic aluminum-containing raw material being the reducing agent is mixed and this mixed material is charged into an outer heating type indirect heating furnace at 700-1000 deg.C under reducing atmosphere containing 20-100% hydrogen or carbon monoxide in the furnace and the oxides of iron, zinc, lead and cadmium are reduced and the non-ferrous metal components such as zinc are vaporized and removed from the dust. Thus, the reduction treatment of the dust can be executed at lower temp. than the conventional zinc removing method, and the iron together with the zinc can be recovered in high concns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は製鉄業において発生する
製鉄ダストの再資源化処理に関し、還元性雰囲気の間接
加熱炉において、金属酸化物を還元・揮発除去し、鉄分
と非鉄成分を分離・回収する処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recycling process of iron-making dust generated in the iron-making industry. In an indirect heating furnace in a reducing atmosphere, metal oxides are reduced and volatilized to remove iron and non-ferrous components. The present invention relates to a processing method for collecting.

【0002】[0002]

【従来の技術】製鉄業で発生するダストには、高炉から
発生する高炉ダスト、転炉から発生する転炉ダスト、電
気炉から発生する電気炉ダストなどがある。これらの主
成分は酸化鉄であり、製鉄工程で再利用することが期待
できるが、ダスト中には鉄以外にも亜鉛等の非鉄金属成
分が含まれており、ダストを再資源化するには、ダスト
中の鉄分と非鉄分を分離、回収する処理が必要である。
2. Description of the Related Art The dust generated in the steel industry includes blast furnace dust generated from a blast furnace, converter dust generated from a converter, electric furnace dust generated from an electric furnace, and the like. The main component of these is iron oxide, which can be expected to be reused in the iron-making process. However, dust contains non-ferrous metal components such as zinc in addition to iron, and dust cannot be recycled. It is necessary to separate and recover the iron and non-iron components in the dust.

【0003】従来、このような非鉄金属成分を含んだ製
鉄ダストの処理の公知技術として、特開昭58−141
345号公報に示されているように、製鉄ダストを石
炭、コークス等の炭材とともに内燃型ロータリーキルン
で1000℃〜1400℃で熱処理することにより、ダ
スト中から亜鉛等の非鉄金属成分を還元揮発除去し、揮
発成分は、炉出側で再酸化された後、バグフィルターで
酸化物として回収する方法が一般的である。
Conventionally, as a known technique for treating iron-making dust containing such non-ferrous metal components, Japanese Patent Laid-Open No. 58-141 has been proposed.
As disclosed in Japanese Patent No. 345, by subjecting iron-making dust to heat treatment at 1000 ° C. to 1400 ° C. in an internal combustion type rotary kiln together with carbonaceous materials such as coal and coke, non-ferrous metal components such as zinc are reduced and volatilized and removed from the dust. However, the volatile component is generally reoxidized on the outlet side of the furnace and then recovered as an oxide by a bag filter.

【0004】ここで還元材としては、石炭、コークス等
の炭材の他に、アルミ精錬灰中の金属アルミニウムを用
いる方法もある。また、特開昭60−162736号公
報では内燃型ロータリーキルンにおいて、特開平05−
320779号公報では竪型還元溶解炉において、アル
ミ精錬灰中の金属アルミニウムを製鉄ダストの還元剤と
して用いる方法が開示されている。
Here, as the reducing agent, there is a method of using metallic aluminum in refined aluminum ash in addition to carbonaceous materials such as coal and coke. Further, in JP-A-60-162736, an internal combustion type rotary kiln is disclosed in JP-A-05-
Japanese Patent No. 320779 discloses a method of using metal aluminum in aluminum refined ash as a reducing agent for ironmaking dust in a vertical reduction melting furnace.

【0005】[0005]

【発明が解決しようとする課題】しかし、炭材で製鉄ダ
ストを還元処理する方法では、処理温度が1000℃以
上と高く、そのため、耐熱設備の維持コスト、熱量原単
位が高くなっている。一方、金属アルミニウムを還元剤
として利用する方法では、1000℃以下の比較的低温
でダスト中に含まれる重金属成分を還元できる。しか
し、従来方法の還元炉では、加熱源である燃焼炎が炉内
に在るため、燃焼用の大気中酸素、燃焼で生成する水蒸
気と二酸化炭素が炉内に存在する。これらのガスにより
次の反応式により金属アルミニウムが酸化されることに
なる。
However, in the method of reducing iron-made dust with carbonaceous material, the treatment temperature is as high as 1000 ° C. or higher, and therefore the maintenance cost of heat-resistant equipment and the unit quantity of heat are high. On the other hand, in the method of using metallic aluminum as a reducing agent, the heavy metal component contained in the dust can be reduced at a relatively low temperature of 1000 ° C. or lower. However, in the conventional reduction furnace, the combustion flame as a heating source is present in the furnace, and therefore oxygen in the atmosphere for combustion and steam and carbon dioxide produced by the combustion are present in the furnace. These gases oxidize metallic aluminum according to the following reaction formula.

【0006】[0006]

【数1】 [Equation 1]

【0007】このため、製鉄ダストの還元に寄与する金
属アルミニウムが不足し、結局、その不足分の還元剤を
炉内の熱源燃料として投入している炭材で補い、しかも
1000℃以上の高温処理が必要となるので、熱量原単
位はあまり低減されない。また、従来の内燃型ロータリ
ーキルンによる方法では、亜鉛等の還元揮発した非鉄金
属成分は、炉の出側で再酸化した後、微細な粉塵として
バグフィルターで回収され、その回収粉塵の亜鉛濃度は
50〜60%程度にとどまっている。そのため、この亜鉛を
主成分とする回収物は、さらに、非鉄精錬工場での還元
精錬する必要がある。
For this reason, metal aluminum that contributes to the reduction of ironmaking dust is deficient, and eventually the deficient reducing agent is supplemented with carbonaceous material that is being fed as a heat source fuel in the furnace, and high-temperature treatment at 1000 ° C. or higher. Therefore, the basic unit of calorific value is not reduced so much. Further, in the conventional method using the internal combustion type rotary kiln, the reduced and volatilized non-ferrous metal component such as zinc is reoxidized on the outlet side of the furnace and then recovered by a bag filter as fine dust, and the zinc concentration of the recovered dust is
It remains around 50-60%. Therefore, the recovered material containing zinc as a main component must be further reduced and refined in a non-ferrous smelting plant.

【0008】そこで、本発明の目的は、低温処理で低コ
ストで、製鉄ダストの還元を達成し、高純度の鉄および
非鉄成分を分離回収可能とする処理方法を提供すること
にある。
[0008] Therefore, an object of the present invention is to provide a treatment method capable of reducing iron-making dust by low-temperature treatment at low cost and separating and recovering high-purity iron and non-ferrous components.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するもので、その要旨とするところは、 (1)製鉄ダストの還元処理において、製鉄ダストを乾
燥後、還元剤としての金属アルミニウムを含有するアル
ミ含有原料とを混合物となし、炉内雰囲気が水素または
一酸化炭素を20%〜100%含有する還元性雰囲気
で、炉内温度が700〜1000℃の外熱式の間接加熱
炉に、該混合物を投入し、ダスト中の鉄、亜鉛、鉛、カ
ドミウムの酸化物を還元し、亜鉛、鉛、カドミウムをダ
スト中から揮発除去することを特徴とする製鉄ダストの
処理方法。
Means for Solving the Problems The present invention is to solve the above-mentioned problems, and its gist is to: (1) In the reduction treatment of iron-making dust, after the iron-making dust is dried, a metal as a reducing agent is used. External heating indirect heating at a furnace temperature of 700 to 1000 ° C. with a mixture of an aluminum-containing raw material containing aluminum and a furnace atmosphere of a reducing atmosphere containing 20% to 100% of hydrogen or carbon monoxide. A method for treating iron-making dust, which comprises charging the mixture into a furnace, reducing oxides of iron, zinc, lead, and cadmium in the dust, and volatilizing and removing zinc, lead, and cadmium from the dust.

【0010】(2)前記製鉄ダストとアルミ含有原料と
の混合物において、前記混合物を粒径2〜15mmφの
ペレットとする(1)記載の製鉄ダストの処理方法 (3)前記亜鉛、鉛、カドミウムの金属揮発成分を含ん
だ排出ガスから、金属揮発成分を除去した後、排出ガス
を回収し、前記排出ガスを炉内雰囲気ガスとしての再利
用する(1)記載の製鉄ダストの処理方法。
(2) In the mixture of the iron-making dust and the aluminum-containing raw material, the mixture is made into pellets having a particle diameter of 2 to 15 mmφ (1) The method for treating the iron-making dust (3) The zinc, lead and cadmium The method for treating iron-making dust according to (1), wherein after removing the metal volatile component from the exhaust gas containing the metal volatile component, the exhaust gas is recovered and reused as the atmosphere gas in the furnace.

【0011】(4)前記亜鉛、鉛、カドミウムの金属揮
発成分を含んだ排出ガスから、金属揮発成分を除去した
後、排出ガスを回収し、前記排出ガスを間接加熱炉の加
熱燃料として再利用する(1)記載の製鉄ダストの処理
方法。 本発明では、アルミ含有原料としては、例えばアルミ缶
屑、アルミ精錬ドロス、アルミ精錬集塵灰、アルミ精錬
残灰等が利用できる。これらの金属アルミニウム含有量
は、アルミ缶屑で95%以上、アルミ精錬ドロスで35
%程度、アルミ精錬集塵灰、アルミ精錬残灰で10%前
後である。
(4) After removing the metal volatile components from the exhaust gas containing the metal volatile components of zinc, lead and cadmium, the exhaust gas is recovered and reused as the heating fuel for the indirect heating furnace. (1) The method for treating iron-making dust described in (1). In the present invention, as the aluminum-containing raw material, for example, aluminum can scrap, aluminum refining dross, aluminum refining dust ash, aluminum refining residual ash, etc. can be used. The content of metallic aluminum in aluminum can waste is 95% or more, and in aluminum refining dross is 35% or more.
%, About 10% for aluminum refined dust ash and aluminum refined residual ash.

【0012】[0012]

【作用】本発明の作用について、以下に説明する。本発
明を実現する全体のプロセスフローを図1に示す。な
お、図1では、実線で固体の処理フローを、点線でガス
の流れを示す。本発明では、アルミ含有原料中に含まれ
る金属アルミニウムの、燃焼用の大気中酸素と、燃焼で
生成する水蒸気と二酸化炭素による酸化反応(前述の化
学反応(1) 〜(3) )を避けるため、加熱源としての燃焼
炎雰囲気とダストを還元する反応雰囲気とを分離する外
熱式の間接加熱炉を還元炉に用いている。
The operation of the present invention will be described below. The overall process flow for implementing the invention is shown in FIG. In addition, in FIG. 1, a solid processing flow is shown by a solid line, and a gas flow is shown by a dotted line. In the present invention, in order to avoid the oxidation reaction of the metallic aluminum contained in the aluminum-containing raw material with atmospheric oxygen for combustion, and steam and carbon dioxide produced by combustion (the aforementioned chemical reactions (1) to (3)). An externally heated indirect heating furnace that separates a combustion flame atmosphere as a heating source and a reaction atmosphere for reducing dust is used as a reduction furnace.

【0013】このことにより、炉内の反応雰囲気から、
燃焼用の大気中酸素、燃焼で生成する水蒸気と二酸化炭
素を排除し、金属アルミニウムのこれらのガスによる酸
化を防止できる。なお、本発明の間接加熱炉には、好ま
しくは、炉内での処理材の撹拌と搬送ができる外熱式ロ
ータリーキルンを用いる。また、製鉄ダストは、アルミ
含有原料と混合する前には乾燥しておく必要がある。こ
れは、製鉄ダストを乾燥せずにアルミ含有原料と混合す
れば、アルミ含有原料中に含まれる窒化アルミニウムが
水分と反応して、人体に有毒なアンモニアガスを発生す
るおそれがあり、また、間接加熱炉内でこの水分と金属
アルミニウムが反応し、金属アルミニウムの還元剤とし
ての反応効率が低下してしまうことによる。
By this, from the reaction atmosphere in the furnace,
Oxygen in the atmosphere for combustion, water vapor and carbon dioxide produced by combustion can be eliminated, and oxidation of metallic aluminum by these gases can be prevented. The indirect heating furnace of the present invention preferably uses an externally heated rotary kiln capable of stirring and transporting the treatment material in the furnace. Further, the ironmaking dust needs to be dried before being mixed with the aluminum-containing raw material. This is because if ironmaking dust is mixed with an aluminum-containing raw material without drying, the aluminum nitride contained in the aluminum-containing raw material may react with water to generate ammonia gas that is toxic to the human body. This is because the moisture reacts with metallic aluminum in the heating furnace, and the reaction efficiency of metallic aluminum as a reducing agent decreases.

【0014】さらに、製鉄ダストとアルミ含有原料の混
合は、むらなく混合することが重要となる。通常、アル
ミ精錬ドロス、集塵灰、残灰は粉体であるので製鉄ダス
トと混合する際、特に問題なく撹拌混合できるが、アル
ミ缶屑の場合、シュレッダー処理しておく必要があるの
で、アルミ含有原料としてはアルミ精錬ドロス、集塵
灰、残灰を用いることが望ましい。また、外熱式ロータ
リーキルンを用いる場合には、製鉄ダストの還元処理に
より、生成した還元鉄がロータリーキルンの炉壁に付着
するのを防止するため、製鉄ダストとアルミ精錬灰との
混合物をペレットにしておくと有利となる。このペレッ
トの粒径としては、2mmφ未満ではペレットが炉内で
破砕して粉化しやすく、炉壁へのダスト付着の問題が生
じ、15mmφ超ではペレット内部での、亜鉛等の非鉄
金属成分の還元揮発を抑制する効果が大きくなるので、
2〜15mmφが好ましい。
Furthermore, it is important to mix the ironmaking dust and the aluminum-containing raw material evenly. Usually, aluminum smelting dross, dust collecting ash, and residual ash are powders, so when mixing with iron-making dust, it can be stirred and mixed without any problems, but in the case of aluminum can scrap, it is necessary to shredder it. It is desirable to use aluminum refining dross, dust ash, and residual ash as the raw material. Further, when using an external heat type rotary kiln, in order to prevent the produced reduced iron from adhering to the furnace wall of the rotary kiln by reducing the iron-making dust, a mixture of iron-making dust and aluminum smelting ash is pelletized. It is advantageous to leave it. If the particle size of this pellet is less than 2 mmφ, the pellet is likely to be crushed and pulverized in the furnace, causing a problem of dust adhesion to the furnace wall, and if it exceeds 15 mmφ, reduction of non-ferrous metal components such as zinc inside the pellet. Since the effect of suppressing volatilization becomes large,
2 to 15 mmφ is preferable.

【0015】また、製鉄ダストとアルミ含有原料の混合
比については、ダスト中の鉄、亜鉛、鉛等の酸化物の量
とアルミ精錬灰中の金属アルミニウム含有量によって異
なる。基本的には、還元の対象となるダスト中の酸化物
の還元に対応する金属アルミニウムが必要であるが、還
元雰囲気中に少量ながら存在する水蒸気、または二酸化
炭素と金属アルミニウムが反応するので、必要当量の
1.2〜1.3倍に相当する金属アルミニウムを含有す
るアルミ含有原料と混合する。
Further, the mixing ratio of the iron-making dust and the aluminum-containing raw material varies depending on the amount of oxides of iron, zinc, lead, etc. in the dust and the content of metallic aluminum in the aluminum refined ash. Basically, it is necessary to use metallic aluminum that corresponds to the reduction of the oxides in the dust that is the object of reduction, but it is necessary because metallic aluminum reacts with water vapor or carbon dioxide that is present in a small amount in the reducing atmosphere. Mix with an aluminum-containing raw material containing metallic aluminum equivalent to 1.2 to 1.3 times the equivalent weight.

【0016】例えば、ダスト中の組成が表1に示される
ような組成で、アルミ精錬集塵灰の組成が表2に示され
るような組成の場合には、ダスト中の鉄、亜鉛、鉛をす
べて金属にまで還元するのに必要な金属アルミニウムの
量は200g/kg-dustとなるから、表2のようなアルミ精錬
集塵灰の場合では2kg/kg-dust で混合することになる。
For example, when the composition in the dust is as shown in Table 1 and the composition of the aluminum smelting dust ash is as shown in Table 2, iron, zinc and lead in the dust are The amount of metallic aluminum required to reduce all to metal is 200 g / kg-dust, so in the case of aluminum smelting dust ash as shown in Table 2, it will be mixed at 2 kg / kg-dust.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】本発明では、炉内雰囲気ガスとして、水素
または一酸化炭素を含有するガスを用いるが、ガス源と
しては、例えばコークス炉ガス(COG ガス) 、転炉ガ
ス、炭化水素部分燃焼ガス、またはこれらの混合ガスが
使用できる。表3にコークス炉ガス組成例、表4に転炉
ガス組成例、および表5にプロパン部分燃焼ガス組成例
をそれぞれ示す。
In the present invention, a gas containing hydrogen or carbon monoxide is used as the atmosphere gas in the furnace. Examples of the gas source include coke oven gas (COG gas), converter gas, hydrocarbon partial combustion gas, Alternatively, a mixed gas of these can be used. Table 3 shows a coke oven gas composition example, Table 4 shows a converter gas composition example, and Table 5 shows a propane partial combustion gas composition example.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】この場合の炉内雰囲気の濃度としては、水
素または一酸化炭素が20%未満では反応速度が遅くな
り、効果的でないので、20%以上に調整する。また、
一酸化炭素よりも水素の方が反応速度を高める点で効果
的であるので、水素濃度として50〜65%を有し、し
かも比較的安価なコークス炉ガスを用いることが望まし
い。
In this case, if the concentration of hydrogen or carbon monoxide is less than 20%, the reaction rate becomes slow and it is not effective. Therefore, the concentration of the atmosphere in the furnace is adjusted to 20% or more. Also,
Since hydrogen is more effective than carbon monoxide in increasing the reaction rate, it is desirable to use a coke oven gas having a hydrogen concentration of 50 to 65% and being relatively inexpensive.

【0024】本発明における反応機構としては、金属ア
ルミニウムの融点が660℃であるため、炉内で液化し
た金属アルミニウムがダスト中の酸化物と接触し、次の
ような還元反応を起こす。
As the reaction mechanism in the present invention, since the melting point of metallic aluminum is 660 ° C., the metallic aluminum liquefied in the furnace comes into contact with the oxide in the dust to cause the following reduction reaction.

【0025】[0025]

【数2】 [Equation 2]

【0026】この反応で鉄以外の亜鉛、鉛、カドミウム
は金属蒸気として揮発し、固体分から分離する。また、
炉内雰囲気が水素または一酸化炭素を含有する還元性雰
囲気であるため、ダスト中の酸化物は、これらの還元ガ
スによっても還元される。
In this reaction, zinc, lead and cadmium other than iron volatilize as metal vapor and are separated from the solid content. Also,
Since the furnace atmosphere is a reducing atmosphere containing hydrogen or carbon monoxide, the oxides in the dust are also reduced by these reducing gases.

【0027】[0027]

【数3】 (Equation 3)

【0028】しかし、この反応により生成した水蒸気ま
たは一酸化炭素と金属アルミニウムとが、先に示した反
応式(2) または(3) の反応を起こすため、結局、見かけ
上は反応式(4) 〜(8) の反応をすることになる。したが
って、この炉内雰囲気の水素または一酸化炭素は、金属
アルミニウムと金属アルミニウムに直接接触していない
酸化物とを見かけ上反応させる作用がある。
However, since the water vapor or carbon monoxide generated by this reaction and metallic aluminum cause the reaction of the above-mentioned reaction formula (2) or (3), the reaction formula (4) is apparently obtained. The reaction of (8) will be performed. Therefore, hydrogen or carbon monoxide in the atmosphere in the furnace has an effect of apparently reacting with the metal aluminum and the oxide not in direct contact with the metal aluminum.

【0029】本発明では、この炉内温度は金属アルミニ
ウムが溶融し、かつ亜鉛、カドミウムが揮発し始める温
度として700℃(700℃における亜鉛蒸気圧0.0
8atm)以上に設定する。また、炉内温度が1000℃
超では、間接加熱炉の外部加熱のための熱量原単位が高
くなり、しかも、間接加熱炉の材質として用いるSUS
310S等のステンレス鋼素材が使用限界点に近づくの
で、1000℃以下に設定する必要がある。水素による
酸化亜鉛の還元反応が、800〜900℃にかけて急激
に上昇するので、800〜950℃で還元処理すること
が特に好ましい。
In the present invention, this furnace temperature is 700 ° C. (zinc vapor pressure at 700 ° C. is 0.0) as the temperature at which metallic aluminum begins to melt and zinc and cadmium start to volatilize.
8 atm) or higher. The furnace temperature is 1000 ° C
If it exceeds, the unit quantity of heat for external heating of the indirect heating furnace becomes high, and moreover, SUS used as the material of the indirect heating furnace
Since stainless steel materials such as 310S approach the limit of use, it is necessary to set the temperature to 1000 ° C or lower. Since the reduction reaction of zinc oxide with hydrogen sharply increases over 800 to 900 ° C, it is particularly preferable to carry out the reduction treatment at 800 to 950 ° C.

【0030】また、排出ガス中の金属揮発成分の濃度に
ついては、排出ガス中の水蒸気と二酸化炭素の含有量が
少ないため、金属揮発成分は、これらのガスによる酸化
反応((9) 〜(18)の逆反応)の影響を受けにくく、飽和
蒸気圧付近まで濃縮できる。例えば、排出ガス温度が7
00℃であれば、700℃、1気圧での飽和亜鉛蒸気濃
度は8%であるから、間接加熱炉内での亜鉛蒸気濃度を
8%以下にまで設定することができる。金属蒸気濃度の
設定は、ダスト中の揮発金属成分の含有量に対する、間
接加熱炉に投入する雰囲気ガス量により調節できる。例
えば、処理するダストが表1のような組成で、排出ガス
中の亜鉛蒸気濃度を8%に設定する場合は、0.5Nm3/kg-
dustの雰囲気ガスを投入すればよい。排出ガス中に飽和
蒸気圧付近まで濃縮された金属揮発成分は、排出ガスを
冷却することにより凝縮液化回収できる。
Regarding the concentration of metal volatile components in the exhaust gas, since the contents of water vapor and carbon dioxide in the exhaust gas are small, the metal volatile components are oxidized by these gases ((9) to (18 (Reverse reaction of)) is less affected and can be concentrated to near saturated vapor pressure. For example, the exhaust gas temperature is 7
At 00 ° C., the saturated zinc vapor concentration at 700 ° C. and 1 atm is 8%, so the zinc vapor concentration in the indirect heating furnace can be set to 8% or less. The setting of the metal vapor concentration can be adjusted by the amount of the atmosphere gas charged into the indirect heating furnace with respect to the content of the volatile metal component in the dust. For example, if the dust to be treated has the composition shown in Table 1 and the zinc vapor concentration in the exhaust gas is set to 8%, 0.5 Nm 3 / kg-
It is only necessary to add the atmospheric gas of dust. The metal volatile components concentrated in the exhaust gas to near the saturated vapor pressure can be condensed and liquefied and recovered by cooling the exhaust gas.

【0031】金属揮発成分を除去した排出ガスの組成
は、ほぼ、間接加熱炉に投入した時点のガス成分と同じ
なので、還元雰囲気ガスとして循環使用することができ
る。ただ、ガス中には、微量ではあるが、水蒸気、二酸
化炭素の他、アルミ精錬残灰中の窒化アルミニウムから
発生するアンモニアが含まれるので、数回ガスを循環使
用した後、アンモニアを除去する必要がある。また、排
出ガスは間接加熱炉の加熱燃料としても用いることがで
きる。
The composition of the exhaust gas from which the metal volatile components have been removed is almost the same as the gas component at the time of charging into the indirect heating furnace, so that it can be circulated and used as a reducing atmosphere gas. However, the gas contains a small amount of water vapor, carbon dioxide, and ammonia generated from aluminum nitride in aluminum smelting residual ash, so it is necessary to circulate the gas several times before removing the ammonia. There is. The exhaust gas can also be used as heating fuel for an indirect heating furnace.

【0032】還元処理後の固形分には還元鉄が含まれて
おり、鉄源として利用できる。しかし、鉄以外にも酸化
アルミニウム等の酸化物が多く含まれているので、固形
分を破砕後、磁力選別により鉄分を主体とする磁性物と
非磁性物とに分別し、磁性物は鉄源として、非磁性物は
路盤材、セメント原料として回収する。以下、本発明に
ついて実施例に基づいてさらに詳述する。
The solid content after the reduction treatment contains reduced iron and can be used as an iron source. However, since a large amount of oxides such as aluminum oxide are contained in addition to iron, the solids are crushed, and then magnetic separation is performed to separate iron-based magnetic substances and non-magnetic substances. As a non-magnetic material, it is recovered as a roadbed material and a cement raw material. Hereinafter, the present invention will be described in more detail based on examples.

【0033】[0033]

【実施例】表1の組成を持つ電気炉ダスト10kgに対して
各種条件で還元揮発処理を行った。処理条件は、アル
ミ含有原料を加え、窒素雰囲気で熱処理したもの、処理
条件はアルミ含有原料は加えずにコークス炉ガス相当
雰囲気で熱処理したもの、処理条件はアルミ含有原料
を加え、コークス炉ガス相当雰囲気で熱処理した。
Example 10 kg of electric furnace dust having the composition shown in Table 1 was subjected to reduction volatilization treatment under various conditions. The treatment conditions are: heat treatment in a nitrogen atmosphere with an aluminum-containing material added; treatment conditions: heat treatment in an atmosphere equivalent to coke oven gas without adding an aluminum-containing material; treatment conditions include an aluminum-containing raw material; equivalent to a coke oven gas Heat treated in an atmosphere.

【0034】ここで、アルミ含有原料としては、表2の
組成を持つアルミ精錬集塵灰を電気炉ダストの還元当量
に相当する20kgを用いた。熱処理装置としては外部加熱
型の電気炉を用い、コークス炉ガス相当雰囲気としては
組成が(H2/CH4/N2=55/35/10)の雰囲気ガスを0.3l/minで
流通させ、800℃において60分間処理した。その結果
を表6に示す。
As the aluminum-containing raw material, 20 kg of aluminum refined dust ash having the composition shown in Table 2 corresponding to the reduction equivalent of electric furnace dust was used. An external heating type electric furnace is used as the heat treatment device, and the atmosphere gas having a composition (H 2 / CH 4 / N 2 = 55/35/10) is circulated at 0.3 l / min as the coke oven gas equivalent atmosphere, It was treated at 800 ° C. for 60 minutes. Table 6 shows the results.

【0035】[0035]

【表6】 [Table 6]

【0036】表6の処理条件の還元剤としてアルミ含
有原料だけを用いた場合では、800℃で亜鉛、鉛を還
元揮発除去するのは困難であることがわかる。一方、還
元雰囲気中では処理条件のアルミ含有原料を含まない
場合では脱亜鉛率が41.8%にとどまっているのに対し、
処理条件のアルミ含有原料を添加した場合では脱亜鉛
率92.4%、脱鉛率70.0%とともに飛躍的に向上した。
It can be seen that it is difficult to reduce and volatilize zinc and lead at 800 ° C. when only the aluminum-containing raw material is used as the reducing agent under the processing conditions shown in Table 6. On the other hand, in the reducing atmosphere, the dezincification rate was 41.8% when the processing conditions did not include the aluminum-containing raw material.
When the aluminum-containing raw material was added under the treatment conditions, the zinc removal rate was 92.4% and the lead removal rate was 70.0%, which was a dramatic improvement.

【0037】また、処理条件の時の炉出側での雰囲気
ガス中の水素濃度も54.0% と、投入ガス組成とほとんど
変化しておらず、雰囲気ガスとして循環使用できること
がわかった。さらに、処理条件において、電気炉ダス
トとアルミ精錬集塵灰を混合した後に、10mmφのペレッ
トとし、コークス炉相当雰囲気で熱処理した結果、還元
鉄がロータリーキルンの壁面に付着することなく、上記
と同様の脱亜鉛率90%以上、脱鉛率70%以上にすること
ができた。
Further, it was found that the hydrogen concentration in the atmosphere gas on the outlet side of the furnace under the processing conditions was 54.0%, which was almost the same as the composition of the input gas and could be circulated and used as the atmosphere gas. Furthermore, in the processing conditions, after mixing the electric furnace dust and the aluminum refined dust collecting ash into pellets of 10 mmφ, as a result of heat treatment in a coke oven equivalent atmosphere, reduced iron does not adhere to the wall surface of the rotary kiln, and the same as above. The dezincification rate was 90% or higher, and the lead removal rate was 70% or higher.

【0038】[0038]

【発明の効果】以上の実施例からも明らかなとおり、本
発明は製鉄ダストに、アルミ含有原料を添加し、還元雰
囲気炉でダスト中の金属成分を還元・揮発処理を行うこ
とによって、従来より低温で製鉄ダストから亜鉛を除去
し、鉄と亜鉛をそれぞれ高純度で回収することを可能と
する。
EFFECTS OF THE INVENTION As is clear from the above examples, according to the present invention, an aluminum-containing raw material is added to iron-making dust, and a metal component in the dust is reduced and volatilized in a reducing atmosphere furnace. It is possible to remove zinc from iron-making dust at low temperature and recover iron and zinc with high purity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製鉄ダスト処理の固体およびガス
のプロセスフロー図である。
FIG. 1 is a process flow diagram of solids and gases in iron dust processing according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 製鉄ダストの還元処理において、製鉄ダ
ストを乾燥後、還元剤としての金属アルミニウムを含有
するアルミ含有原料とを混合物となし、炉内雰囲気が水
素または一酸化炭素を20%〜100%含有する還元性
雰囲気で、炉内温度が700〜1000℃の外熱式の間
接加熱炉に、該混合物を投入し、ダスト中の鉄、亜鉛、
鉛、カドミウムの酸化物を還元し、亜鉛、鉛、カドミウ
ムをダスト中から揮発除去することを特徴とする製鉄ダ
ストの処理方法。
1. In the reduction treatment of iron-making dust, after drying the iron-making dust, a mixture with an aluminum-containing raw material containing metallic aluminum as a reducing agent is used, and the atmosphere in the furnace contains hydrogen or carbon monoxide of 20% to 100%. % In a reducing atmosphere, the temperature in the furnace is 700 to 1000 ° C., and the mixture is put into an externally heated indirect heating furnace, and iron, zinc in dust,
A method for treating iron-making dust, which comprises reducing oxides of lead and cadmium and volatilizing and removing zinc, lead and cadmium from the dust.
【請求項2】 前記製鉄ダストとアルミ含有原料との混
合物において、該混合物を粒径2〜15mmφのペレッ
トとする請求項1記載の製鉄ダストの処理方法。
2. The method for treating iron-making dust according to claim 1, wherein the mixture of the iron-making dust and the aluminum-containing raw material is formed into pellets having a particle diameter of 2 to 15 mmφ.
【請求項3】 前記亜鉛、鉛、カドミウムの金属揮発成
分を含んだ排出ガスから、金属揮発成分を除去した後、
排出ガスを回収し、該排出ガスを炉内雰囲気ガスとして
の再利用する請求項1記載の製鉄ダストの処理方法。
3. After removing the metal volatile components from the exhaust gas containing the metal volatile components of zinc, lead and cadmium,
The method for treating iron-made dust according to claim 1, wherein the exhaust gas is recovered and reused as the atmosphere gas in the furnace.
【請求項4】 前記亜鉛、鉛、カドミウムの金属揮発成
分を含んだ排出ガスから、金属揮発成分を除去した後、
排出ガスを回収し、該排出ガスを間接加熱炉の加熱燃料
として再利用する請求項1記載の製鉄ダストの処理方
法。
4. After removing metal volatile components from the exhaust gas containing the metal volatile components of zinc, lead and cadmium,
The method for treating iron-making dust according to claim 1, wherein the exhaust gas is recovered and the exhaust gas is reused as heating fuel for an indirect heating furnace.
JP496295A 1995-01-17 1995-01-17 Treatment of iron-making dust in indirect heating furnace Withdrawn JPH08193227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP496295A JPH08193227A (en) 1995-01-17 1995-01-17 Treatment of iron-making dust in indirect heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP496295A JPH08193227A (en) 1995-01-17 1995-01-17 Treatment of iron-making dust in indirect heating furnace

Publications (1)

Publication Number Publication Date
JPH08193227A true JPH08193227A (en) 1996-07-30

Family

ID=11598222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP496295A Withdrawn JPH08193227A (en) 1995-01-17 1995-01-17 Treatment of iron-making dust in indirect heating furnace

Country Status (1)

Country Link
JP (1) JPH08193227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032048A1 (en) * 1996-02-29 1997-09-04 Nippon Steel Corporation Method and apparatus for treating ironmaking dust

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032048A1 (en) * 1996-02-29 1997-09-04 Nippon Steel Corporation Method and apparatus for treating ironmaking dust

Similar Documents

Publication Publication Date Title
KR0158210B1 (en) Process for recovering valvable metals from a dust containing zinc.
US5364441A (en) Cotreatment of sewage and steelworks wastes
JP5336472B2 (en) Recycling method for high zinc and sulfate content residues
WO2008052661A1 (en) Recovery of non-ferrous metals from by-products of the zinc and lead industry using electric smelting with submerged plasma
EP0972849A1 (en) Method and apparatus for treating ironmaking dust
EA013690B1 (en) Separation of metal values in zinc leaching residues
US4765829A (en) Treating lead- and zinc-containing steelmaking byproducts
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
US3311465A (en) Iron-containing flux material for steel making process
US6932853B2 (en) Mechanical separation of volatile metals at high temperatures
JP2002105550A (en) Method for zinc recovery
JP3516854B2 (en) Steelmaking furnace dust treatment method and dust pellets
JPH08193227A (en) Treatment of iron-making dust in indirect heating furnace
US2011400A (en) Process of treating zinciferous iron ores
JPH08134557A (en) Operation of dust treatment by vacuum reaction furnace
KR900006695B1 (en) Process for recovering valuable metals from an iron dust constaining a higher content of zinc
US1269110A (en) Continuous process for recovering lead or zinc or both metals from their ores or from slag in the form of metal fumes, whereby the charge is mixed with fuel.
WO2024046656A1 (en) Process for heavy metal removal from iron- and steelmaking flue dust
JPH0477054B2 (en)
RU2182184C1 (en) Technology of processing of iron-carrying materials
AU638559B2 (en) Cotreatment of sewage and steelworks wastes
CA2080879A1 (en) Method for the pyrometallurgical treatment of iron oxides and heavy metals contained in the fumes of electric arc furnaces
JPH07331353A (en) Treatment of steelmaking waste material
JPH09279263A (en) Reduction treatment of iron-making dust
JPH0213017B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402